This manuscript considers the state feedback stabilization problem for a class of stochastic high-order and low-order nonlinear systems with time-delay. Compared with the previous results, a distinctive feature to be studied is that the considered systems involve high-order, low-order, intricate stochastic diffusion terms and time-delay simultaneously. First, the homogeneous domination approach and suitable coordinate transformations are introduced to obtain the updating laws. Then, a state feedback controller is devised to make the closed-loop systems globally asymptotically stable in probability. Finally, a simulation example is shown to prove the proposed approach powerfully.
Citation: Yanghe Cao, Junsheng Zhao, Zongyao Sun. State feedback stabilization problem of stochastic high-order and low-order nonlinear systems with time-delay[J]. AIMS Mathematics, 2023, 8(2): 3185-3203. doi: 10.3934/math.2023163
This manuscript considers the state feedback stabilization problem for a class of stochastic high-order and low-order nonlinear systems with time-delay. Compared with the previous results, a distinctive feature to be studied is that the considered systems involve high-order, low-order, intricate stochastic diffusion terms and time-delay simultaneously. First, the homogeneous domination approach and suitable coordinate transformations are introduced to obtain the updating laws. Then, a state feedback controller is devised to make the closed-loop systems globally asymptotically stable in probability. Finally, a simulation example is shown to prove the proposed approach powerfully.
[1] | P. Pepe, Z. Jiang, A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems, Syst. Control Lett., 55 (2006), 1006–1014. http://doi.org/10.1016/j.sysconle.2006.06.013 doi: 10.1016/j.sysconle.2006.06.013 |
[2] | X. F. Zhang, Q. R. Liu, E. Boukas, Feedback stabilization for high order feedforward onlinear time-delay systems, Automatica, 47 (2011), 962–967. http://doi.org/10.1016/j.automatica.2011.01.018 doi: 10.1016/j.automatica.2011.01.018 |
[3] | S. H. Yang, Z. Y.Sun, Z. Wang, T. Li, A new approach to global stabilization of high-order time-delay uncertain nonlinear systems via time-varying feedback and homogeneous domination, J. Franklin I., 355 (2018), 6469–6492. http://doi.org/10.1016/j.jfranklin.2018.05.063 doi: 10.1016/j.jfranklin.2018.05.063 |
[4] | Z. B. Song, Z. Y. Sun, S. H. Yang, T. Li, Global stabilization via nested saturation function for high-order feedforward nonlinear systems with unknown time-varying delays, Int. J. Robust Nonlin., 26 (2016), 3363–3387. http://doi.org/10.1002/rnc.3512 doi: 10.1002/rnc.3512 |
[5] | Z. Q. Zhang, J. W. Lu, S. Y. Xu, Tuning functions-based robust adaptive tracking control of a class of nonlinear systems with time delays, Int. J. Robust Nonlin., 22 (2012), 1631–1646. http://doi.org/10.1002/rnc.1776 doi: 10.1002/rnc.1776 |
[6] | Z. Y. Sun, Y. Liu, Adaptive control design for a class of uncertain high-order nonlinear systems with time delay, Asian J. Control, 17 (2015), 535–543. http://doi.org/10.1002/asjc.895 doi: 10.1002/asjc.895 |
[7] | Z. Y. Sun, X. H. Zhang, Continuous global stabilisation of high-order time-delay nonlinear systems, Int. J. Control, 86 (2013), 994–1007. http://doi.org/10.1080/00207179.2013.768776 doi: 10.1080/00207179.2013.768776 |
[8] | Y. G. Liu, Global Asymptotic Regulation via time-varying output feedback for a class of uncertain nonlinear systems, SIAM J. Control Optim., 51 (2013), 4318–4342. https://doi.org/10.1137/120862570 doi: 10.1137/120862570 |
[9] | J. Wang, S. C. Huo, J. W. Xia, J. H. Park, X. Huang, H. Shen, Generalised dissipative asynchronous output feedback control for Markov jump repeated scalar non-linear systems with time-varying delay, IET Control Theory A., 13 (2019), 2114–2121. http://doi.org/10.1049/IET-CTA.2018.6114 doi: 10.1049/IET-CTA.2018.6114 |
[10] | Y. Liu, Q. Zhu, G. Wen, Adaptive tracking control for perturbed strict-feedback nonlinear systems based on optimized backstepping technique, IEEE T. Neur. Net. Lear., 33 (2020), 853–865. https://doi.org/10.1109/TNNLS.2020.3029587 doi: 10.1109/TNNLS.2020.3029587 |
[11] | H. Deng, M. Krsti$\acute{c}$, R. J. Williams, Stabilization of stochastic nonlinear systems driven by noise of unknown covariance, IEEE T. Automat. Contr., 46 (2011), 1237–1253. https://doi.org/10.1109/9.940927 doi: 10.1109/9.940927 |
[12] | Q. M. Zhu, S. Billings, Parameter estimation for stochastic nonlinear rational models, Int. J. Control, 57 (1997), 309–333. http://doi.org/10.1080/00207179308934390 doi: 10.1080/00207179308934390 |
[13] | Z. Y. Sun, J. W. Xing, Q. H. Meng, Output feedback regulation of time-delay nonlinear systems with unknown continuous output function and unknown growth rate, Int. J. Robust Nonlin., 100 (2020), 1309–1325. http://doi.org/10.1007/s11071-020-05552-3 doi: 10.1007/s11071-020-05552-3 |
[14] | Y. Liu, Decentralized output feedback stabilization for switched stochastic high-order nonlinear systems with time-varying state/input delays, Inf. Sci., 603 (2022), 91–105. |
[15] | L. Marconi, A. Isidllri, Robust global stabilization of a class of uncertain feedforward nonlinear systems, Syst. Contml Lett., 41 (2006), 281–290. https://doi.org/10.1016/S0167-6911(00)00066-9 doi: 10.1016/S0167-6911(00)00066-9 |
[16] | C. J. Qian, W. Lin, Recursive observer design, homogeneous approximation, and nonsmooth output feedback stabilization of nonlinear systems, IEEE T. Automat. Contr., 51 (2006), 1457–1471. https://doi.org/10.1109/TAC.2006.880955 doi: 10.1109/TAC.2006.880955 |
[17] | P. Florchinger, Lyapunov-like techniques for stochastic stability, SIAM J. Control Optim., 33 (1995), 1151–1169. https://doi.org/10.1137/S0363012993252309 doi: 10.1137/S0363012993252309 |
[18] | W. T. Zha, J. Y. Zhai, S. M. Fei, Output feedback control for a class of stochastic high-order nonlinear systems with time-varying delays, Int. J. Robust Nonlin., 24 (2013), 2243–2260. http://doi.org/10.1002/rnc.2985 doi: 10.1002/rnc.2985 |
[19] | L. Liu, X. J. Xie, Output-feedback stabilization for stochastic high-order nonlinear systems with time-varying delay, Automatica, 47 (2011), 2772–2779. http://doi.org/10.1016/j.automatica.2011.09.014 doi: 10.1016/j.automatica.2011.09.014 |
[20] | Y. S. Fu, Z. Tian, S. Shi, State feedback stabilization for a class of stochastic time-delay nonlinear systems, IEEE T. Automat. Contr., 2 (2003), 494–499. http://doi.org/10.1109/TAC.2002.808481 doi: 10.1109/TAC.2002.808481 |
[21] | W. S. Chen, J. Wu, L. Jiao, State-feedback stabilization for a class of stochastic time-delay nonlinear systems, Int. J. Robust Nonlin., 22 (2012), 1921–1937. https://doi.org/10.1002/rnc.1798 doi: 10.1002/rnc.1798 |
[22] | X. J. Xie, L. Liu, A homogeneous domination approach to state feedback of stochastic high-order nonlinear systems with time-varying delay, IEEE T. Automat. Contr., 33 (2013), 2577–2586. https://doi.org/10.1109/TAC.2012.2208297 doi: 10.1109/TAC.2012.2208297 |
[23] | L. Liu, X. J. Xie, State-feedback stabilization for stochastic high-order nonlinear systems with SISS inverse dynamics, Asian J. Control, 14 (2012), 207–216. http://doi.org/10.1002/asjc.288 doi: 10.1002/asjc.288 |
[24] | Z. Y. Sun, Z. G. Liu, X. H. Zhang, New results on global stabilization for time-delay nonlinear systems with low-order and high-order growth conditions, Int. J. Robust Nonlin., 25 (2013), 878–899. http://doi.org/10.1002/rnc.3115 doi: 10.1002/rnc.3115 |
[25] | C. J. Qian, J. Li, Global output feedback stabilization of upper-triangular nonlinear systems using a homogeneous domination approach, Int. J. Robust Nonlin., 16 (2006), 441–463. http://doi.org/10.1002/RNC.1074 doi: 10.1002/RNC.1074 |
[26] | F. Z. Li, T. S. Li, G. Feng, Adaptive neural control for a class of stochastic nonlinear time-delay systems with unknown dead zone using dynamic surface technique, Int. J. Robust Nonlin., 26 (2016), 759–781. http://doi.org/10.1002/rnc.3336 doi: 10.1002/rnc.3336 |
[27] | Z. Y. Sun, D. Zhang, C. C. Chen, Q. H. Meng, Feedback stabilisation of time-delay nonlinear systems with continuous time-varying output function, Int. J. Syst. Sci., 50 (2018), 244–255. http://doi.org/10.1080/00207721.2018.1543472 doi: 10.1080/00207721.2018.1543472 |
[28] | S. J. Liu, J.F. Zhang, Z.P. Jiang, Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems, Automatica, 43 (2007), 238–251. http://doi.org/10.1016/j.automatica.2006.08.028 doi: 10.1016/j.automatica.2006.08.028 |
[29] | X. J. Xie, L. Liu, Further results on output feedback stabilization for stochastic high-order nonlinear systems with time-varying delay, Automatica, 48 (2012), 2577–2586. http://doi.org/10.1016/j.automatica.2012.06.061 doi: 10.1016/j.automatica.2012.06.061 |
[30] | G. D. Zhao, X. J. Xie, A homogeneous domination approach to state feedback of stochastic high-order nonlinear systems, Int. J. Robust Nonlin., 86 (2013), 966–976. http://doi.org/10.1080/00207179.2013.767942 doi: 10.1080/00207179.2013.767942 |
[31] | X. Y. Qin, H. F. Min, Further results on adaptive state feedback stabilization for a class of stochastic feedforward nonlinear systems with time delays, T. Meas. Control, 41 (2019), 127–134. https://doi.org/10.1177/0142331217752 doi: 10.1177/0142331217752 |
[32] | Z. B. Song, J. Y. Zhai, Decentralized output feedback stabilization for switched stochastic high-order nonlinear systems with time-varying state/input delays, ISA T., 90 (2019), 64–73. https://doi.org/10.1016/j.isatra.2018.12.044 doi: 10.1016/j.isatra.2018.12.044 |