Research article

Dissipative Williamson fluid flow with double diffusive Cattaneo-Christov model due to a slippery stretching sheet embedded in a porous medium

  • Received: 20 July 2022 Revised: 03 September 2022 Accepted: 07 September 2022 Published: 26 September 2022
  • MSC : 65L10, 76A05, 76D50, 76S05

  • A numerical analysis of the incompressible two-dimensional flow of a non-Newtonian Williamson fluid is offered by expanding the sheet embedded in a porous medium and combining it with the Cattaneo-Christov model. Additionally, it is considered that the thermal conductivity and fluid viscosity both change as a linear function of temperature and an exponential function, respectively. The velocity, temperature and concentration field are all affected by thermal radiation, viscous dissipation, fluid variable properties, chemical reactions, and the slip velocity phenomenon. When the appropriate variables are employed, a system of non-linear, non-dimensional parameters emerges. The shooting method is used to numerically address this system. To better comprehend the impact of dimensionless parameters on dimensionless velocity, concentration, and temperature profiles, physical descriptions are prepared and justified using graphical representations. The values of the local skin-friction coefficient, the rate of heat transfer, and the rate of mass transfer are also investigated using tables. The behavior of changing fluid properties, on the other hand, establishes the link between Williamson fluid flow and the rate of heat mass transfer. According to the results, increasing the slip velocity and viscosity factors lowers both the Nusselt number and the Sherwood number. Also, due to an increase in Deborah number and the chemical reaction parameter, the temperature profiles decrease.

    Citation: W. Abbas, Ahmed M. Megahed, Osama M. Morsy, M. A. Ibrahim, Ahmed A. M. Said. Dissipative Williamson fluid flow with double diffusive Cattaneo-Christov model due to a slippery stretching sheet embedded in a porous medium[J]. AIMS Mathematics, 2022, 7(12): 20781-20796. doi: 10.3934/math.20221139

    Related Papers:

  • A numerical analysis of the incompressible two-dimensional flow of a non-Newtonian Williamson fluid is offered by expanding the sheet embedded in a porous medium and combining it with the Cattaneo-Christov model. Additionally, it is considered that the thermal conductivity and fluid viscosity both change as a linear function of temperature and an exponential function, respectively. The velocity, temperature and concentration field are all affected by thermal radiation, viscous dissipation, fluid variable properties, chemical reactions, and the slip velocity phenomenon. When the appropriate variables are employed, a system of non-linear, non-dimensional parameters emerges. The shooting method is used to numerically address this system. To better comprehend the impact of dimensionless parameters on dimensionless velocity, concentration, and temperature profiles, physical descriptions are prepared and justified using graphical representations. The values of the local skin-friction coefficient, the rate of heat transfer, and the rate of mass transfer are also investigated using tables. The behavior of changing fluid properties, on the other hand, establishes the link between Williamson fluid flow and the rate of heat mass transfer. According to the results, increasing the slip velocity and viscosity factors lowers both the Nusselt number and the Sherwood number. Also, due to an increase in Deborah number and the chemical reaction parameter, the temperature profiles decrease.



    加载中


    [1] A. Acrivos, A theoretical analysis of laminar natural convection heat transfer to non-Newtonian fluids, AIChE J., 6 (1960), 584–590. https://doi.org/10.1002/aic.690060416 doi: 10.1002/aic.690060416
    [2] L. J. Crane, Flow past a stretching plate, Z. Angew. Math. Phys., 21 (1970), 645–647. https://doi.org/10.1007/BF01587695
    [3] L. J. Grubka, K. M. Bobba, Heat transfer characteristics of a continuous stretching surface with variable temperature, J. Heat Transfer, 107 (1985), 248–250. https://doi.org/10.1115/1.3247387 doi: 10.1115/1.3247387
    [4] I-C. Liu, A. M. Megahed, Numerical study for the flow and heat transfer in a thin liquid film over an unsteady stretching sheet with variable fluid properties in the presence of thermal radiation, J. Mech., 28 (2012), 291–297. https://doi.org/10.1017/jmech.2012.32 doi: 10.1017/jmech.2012.32
    [5] A. M. Megahed, Variable heat flux effect on MHD flow and heat transfer over an unsteady stretching sheet in the presence of thermal radiation, Can. J. Phys., 92 (2014), 86–91. https://doi.org/10.1139/cjp-2012-0543 doi: 10.1139/cjp-2012-0543
    [6] M. S. Uddin, Viscous and joules dissipation on MHD flow past a stretching porous surface embedded in a porous medium, J. Appl. Math. Phys., 3 (2015), 1710–1725. https://doi.org/10.4236/jamp.2015.312196 doi: 10.4236/jamp.2015.312196
    [7] A. M. Megahed, Variable viscosity and slip velocity effects on the flow and heat transfer of a power-law fluid over a non-linearly stretching surface with heat flux and thermal radiation, Rheol. Acta, 51 (2012), 841–847. https://doi.org/10.1007/s00397-012-0644-8 doi: 10.1007/s00397-012-0644-8
    [8] F. Ahmed, M. Iqba, MHD power law fluid flow and heat transfer analysis through Darcy Brinkman porous media in annular sector, Int. J. Mech. Sci., 130 (2017), 508–517. https://doi.org/10.1016/j.ijmecsci.2017.05.042 doi: 10.1016/j.ijmecsci.2017.05.042
    [9] R. Cortell, Similarity solutions for flow and heat transfer of a viscoelastic fluid over a stretching sheet, Int. J. Nonlin. Mech., 29 (1994), 155–161. https://doi.org/10.1016/0020-7462(94)90034-5 doi: 10.1016/0020-7462(94)90034-5
    [10] S. K. Khan, Heat transfer in a viscoelastic fluid flow over a stretching surface with heat source/sink, suction/blowing and radiation, Int. J. Heat Mass Tran., 49 (2006), 628–639. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.049 doi: 10.1016/j.ijheatmasstransfer.2005.07.049
    [11] A. M. Megahed, Slip flow and variable properties of viscoelastic fluid past a stretching surface embedded in a porous medium with heat generation, J. Cent. Sou. Univ., 23 (2016), 991–999. https://doi.org/10.1007/s11771-016-3147-4 doi: 10.1007/s11771-016-3147-4
    [12] W. Ibrahim, B. Hindebu, Magnetohydrodynamic (mhd) boundary layer flow of Eyring-Powell nanofluid past stretching cylinder with cattaneo-christov heat flux model, Nonlinear Eng., 8 (2019), 303–317. https://doi.org/10.1515/nleng-2017-0167 doi: 10.1515/nleng-2017-0167
    [13] M. Bilal, S. Ashbar, Flow and heat transfer analysis of Eyring-Powell fluid over stratified sheet with mixed convection, J. Egypt. Math. Soc., 28 (2020), 40. https://doi.org/10.1186/s42787-020-00103-6 doi: 10.1186/s42787-020-00103-6
    [14] W. Abbas, A. M. Megahed, Powell-Eyring fluid flow over a stratified sheet through porous medium with thermal radiation and viscous dissipation, AIMS Mathematics, 6 (2021), 13464–13479. https://doi.org/10.3934/math.2021780 doi: 10.3934/math.2021780
    [15] S. Pramanik, Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation, Ain Shams Eng. J., 5 (2014), 205–212. https://doi.org/10.1016/j.asej.2013.05.003 doi: 10.1016/j.asej.2013.05.003
    [16] S. Rana, R. Mehmood, N. S. Akbar, Mixed convective oblique flow of a casson fluid with partial slip, internal heating and homogeneous heterogeneous reactions, J. Mol. Liq., 222 (2016), 1010–1019. https://doi.org/10.1016/j.molliq.2016.07.137 doi: 10.1016/j.molliq.2016.07.137
    [17] E. Alali, A. M. Megahed, MHD dissipative Casson nanofluid liquid film flow due to an unsteady stretching sheet with radiation influence and slip velocity phenomenon, Nanotechnol. Rev., 11 (2022), 463–472. https://doi.org/10.1515/ntrev-2022-0031 doi: 10.1515/ntrev-2022-0031
    [18] T. Hayat, S. A. Shehzad, H. H. Al-Sulami, S. Asghar, Influence of thermal stratification on the radiative flow of Maxwell fluid, J. Braz. Soc. Mech. Sci., 35 (2013), 381–389. https://doi.org/10.1007/s40430-013-0036-8 doi: 10.1007/s40430-013-0036-8
    [19] K. V. Prasad, K. Vajravelu, A. Sujatha, Influence of internal heat generation/absorption, thermal radiation, magnetic field, variable fluid property and viscous dissipation on heat transfer characteristics of a Maxwell fluid over a stretching sheet, J. Appl. Fluid Mech., 6 (2013), 249–256. https://doi.org/10.36884/JAFM.6.02.19525 doi: 10.36884/JAFM.6.02.19525
    [20] A. M. Megahed, Improvement of heat transfer mechanism through a Maxwell fluid flow over a stretching sheet embedded in a porous medium and convectively heated, Math. Comput. Simulat., 187 (2021), 97–109. https://doi.org/10.1016/j.matcom.2021.02.018 doi: 10.1016/j.matcom.2021.02.018
    [21] M. I. Khan, A. Alsaedi, S. Qayyum, T. Hayat, M. I. Khan, Entropy generation optimization in flow of Prandtl-Eyring nanofluid with binary chemical reaction and Arrhenius activation energy, Colloids Surf. A, 570 (2019), 117–126. https://doi.org/10.1016/j.colsurfa.2019.02.060 doi: 10.1016/j.colsurfa.2019.02.060
    [22] M. I. Khan, F. Haq, S. A. Khan, T. Hayat, M. I. Khan, Development of thixotropic nanomaterial in fluid flow with gyrotactic microorganisms, activation energy, mixed convection, Comput. Meth. Prog. Bio., 187 (2020), 105186. https://doi.org/10.1016/j.cmpb.2019.105186 doi: 10.1016/j.cmpb.2019.105186
    [23] T. Hayat, K. Muhammad, S. Momani, Melting heat and viscous dissipation in fow of hybrid nanomaterial: a numerical study via fnite diference method, J. Therm. Anal. Calorim., 147 (2022), 6393–6401. https://doi.org/10.1007/s10973-021-10944-7 doi: 10.1007/s10973-021-10944-7
    [24] C. I. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction, Mech. Res. Commun., 36 (2009), 481–486. https://doi.org/10.1016/j.mechrescom.2008.11.003 doi: 10.1016/j.mechrescom.2008.11.003
    [25] T. Hayat, M. I. Khan, M. Farooq, A. Alsaedi, M. Waqas, T. Yasmeen, Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface, Int. J. Heat Mass Tran., 99 (2016), 702–710. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.016 doi: 10.1016/j.ijheatmasstransfer.2016.04.016
    [26] T. Hayat, S. Qayyum, S. A. Shehzad, A. Alsaedi, Chemical reaction and heat generation/absorption aspects in flow of Walters-B nanofluid with Cattaneo-Christov double-diffusion, Results Phys., 7 (2017), 4145–4152. https://doi.org/10.1016/j.rinp.2017.10.036 doi: 10.1016/j.rinp.2017.10.036
    [27] J. Z. Sui, L. C. Zheng, X. X. Zhang, Boundary layer heat and mass transfer with Cattaneo-Christov double-diffusion in upper-convective Maxwell nanofluid past a stretching sheet with slip velocity, Int. J. Therm. Sci., 104 (2016), 461–468. https://doi.org/10.1016/j.ijthermalsci.2016.02.007 doi: 10.1016/j.ijthermalsci.2016.02.007
    [28] S. A. Shehzad, T. Hayat, A. Alsaedi, M. A. Meraj, Cattaneo-Christov heat and mass flux model for 3D hydromagnetic flow of chemically reactive Maxwell liquid, Appl. Math. Mech., 38 (2017), 1347–1356. https://doi.org/10.1007/s10483-017-2250-6 doi: 10.1007/s10483-017-2250-6
    [29] K. S. Ullah, N. Ali, T. Hayat, Z. Abbas, Heat transfer analysis based on Cattaneo–Christov heat flux model and convective boundary conditions for flow over an oscillatory stretching surface, Therm. Sci., 23 (2019), 443–455. https://doi.org/10.2298/TSCI160225172U doi: 10.2298/TSCI160225172U
    [30] R. Garia, S. K. Rawat, M. Kumar, M. Yaseen, Hybrid nanofluid flow over two different geometries with Cattaneo-Christov heat flux model and heat generation: A model with correlation coefficient and probable error, Chinese J. Phys., 74 (2021), 421–439. https://doi.org/10.1016/j.cjph.2021.10.030 doi: 10.1016/j.cjph.2021.10.030
    [31] T. Hayat, K. Muhammad, A. Alsaedi, Melting effect and Cattaneo-Christov heat flux in fourth-grade material flow through a Darcy-Forchheimer porous medium, Appl. Math. Mech., 42 (2021), 1787–1798. https://doi.org/10.1007/s10483-021-2798-6 doi: 10.1007/s10483-021-2798-6
    [32] M. A. A. Mahmoud, Chemical reaction and variable viscosity effects on flow and mass transfer of a non-Newtonian visco-elastic fluid past a stretching surface embedded in a porous medium, Meccanica, 45 (2010), 835–846. https://doi.org/10.1007/s11012-010-9292-1 doi: 10.1007/s11012-010-9292-1
    [33] A. M. Megahed, M. Gnaneswara Reddy, W. Abbas, Modeling of MHD fluid flow over an unsteady stretching sheet with thermal radiation, variable fluid properties and heat flux, Math. Comput. Simulat., 185 (2021), 583–593. https://doi.org/10.1016/j.matcom.2021.01.011 doi: 10.1016/j.matcom.2021.01.011
    [34] S. H. Han, L. C. Zheng, C. R. Li, X. X. Zhang, Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model, Appl. Math. Lett., 38 (2014), 87–93. https://doi.org/10.1016/j.aml.2014.07.013 doi: 10.1016/j.aml.2014.07.013
    [35] A. Rauf, Z. Abbas, S. A. Shehzad, A. Alsaedi, T. Hayat, Numerical simulation of chemically reactive Powell-Eyring liquid flow with double diffusive Cattaneo-Christov heat and mass flux theories, Appl. Math. Mech., 39 (2018), 467–476. https://doi.org/10.1007/s10483-018-2314-8 doi: 10.1007/s10483-018-2314-8
    [36] A. M. Megahed, Steady flow of MHD Williamson fluid due to a continuously moving surface with viscous dissipation and slip velocity, Int. J. Mod. Phys. C, 31 (2020), 2050019. https://doi.org/10.1142/S0129183120500199 doi: 10.1142/S0129183120500199
    [37] A. M. Megahed, Williamson fluid flow due to a nonlinearly stretching sheet with viscous dissipation and thermal radiation, J. Egypt. Math. Soc., 27 (2019), 12. https://doi.org/10.1186/s42787-019-0016-y doi: 10.1186/s42787-019-0016-y
    [38] H. I. Andersson, Slip flow past a stretching surface, Acta Mech., 158 (2002), 121–125. https://doi.org/10.1007/BF01463174 doi: 10.1007/BF01463174
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1635) PDF downloads(78) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog