Research article

Least energy sign-changing solution for a fractional $ p $-Laplacian problem with exponential critical growth

  • Received: 21 August 2022 Revised: 14 September 2022 Accepted: 21 September 2022 Published: 27 September 2022
  • MSC : 35J60, 35J92, 35R11

  • In this paper, we consider the following fractional $ p $-Laplacian equation involving Trudinger-Moser nonlinearity:

    $ (-\Delta)_{N/s}^{s} u+V(x)|u|^{\frac{N}{s}-2} u = f(u) \ \ {\rm { in }}\ \mathbb{R}^{N}, $

    where $ s \in(0, 1), 2 < \frac{N}{s} = p $. The nonlinear function $ f $ has exponential critical growth, and potential $ V $ is a continuous function. By using the constrained variational methods, quantitative Deformation Lemma and Brouwer degree theory, we prove the existence of least energy sign-changing solutions.

    Citation: Kun Cheng, Wentao Huang, Li Wang. Least energy sign-changing solution for a fractional $ p $-Laplacian problem with exponential critical growth[J]. AIMS Mathematics, 2022, 7(12): 20797-20822. doi: 10.3934/math.20221140

    Related Papers:

  • In this paper, we consider the following fractional $ p $-Laplacian equation involving Trudinger-Moser nonlinearity:

    $ (-\Delta)_{N/s}^{s} u+V(x)|u|^{\frac{N}{s}-2} u = f(u) \ \ {\rm { in }}\ \mathbb{R}^{N}, $

    where $ s \in(0, 1), 2 < \frac{N}{s} = p $. The nonlinear function $ f $ has exponential critical growth, and potential $ V $ is a continuous function. By using the constrained variational methods, quantitative Deformation Lemma and Brouwer degree theory, we prove the existence of least energy sign-changing solutions.



    加载中


    [1] V. Ambrosio, Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method, Ann. Mat. Pura Appl., 196 (2017), 2043–2062. https://doi.org/10.1007/s10231-017-0652-5 doi: 10.1007/s10231-017-0652-5
    [2] V. Ambrosio, T. Isernia, Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional $p$-Laplacian, Discrete Cont. Dyn., 38 (2018), 5835–5881. https://doi.org/10.3934/dcds.2018254 doi: 10.3934/dcds.2018254
    [3] V. Ambrosio, T. Isernia, Sign-changing solutions for a class of schrödinger equations with vanishing potentials, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., 29 (2018), 127–152. https://doi.org/10.4171/RLM/797 doi: 10.4171/RLM/797
    [4] S. Barile, G. Figueiredo, Existence of least energy positive, negative and nodal solutions for a class of $p$&$q$-problems with potentials vanishing at infinity, J. Math. Anal. Appl., 427 (2015), 1205–1233. https://doi.org/10.1016/j.jmaa.2015.02.086 doi: 10.1016/j.jmaa.2015.02.086
    [5] T. Bartsch, Z. Liu, T. Weth, Sign changing solutions of superlinear Schrödinger equations, Commun. Part. Diff. Eq., 29 (2005), 25–42. https://doi.org/10.1081/PDE-120028842 doi: 10.1081/PDE-120028842
    [6] T. Bartsch, T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 259–281. https://doi.org/10.1016/j.anihpc.2004.07.005 doi: 10.1016/j.anihpc.2004.07.005
    [7] T. Bartsch, T. Weth, M. Willem, Partial symmetry of least energy nodal solutions to some variational problems, J. Anal. Math., 96 (2005), 1–18. https://doi.org/10.1007/BF02787822 doi: 10.1007/BF02787822
    [8] E. Böer, O. Miyagaki, Existence and multiplicity of solutions for the fractional $p$-Laplacian Choquard logarithmic equation involving a nonlinearity with exponential critical and subcritical growth, J. Math. Phys., 62 (2021), 051507. https://doi.org/10.1063/5.0041474 doi: 10.1063/5.0041474
    [9] X. Cabré, Y. Sire, Nonlinear equations for fractional Laplacians, Ⅰ: regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23–53. https://doi.org/10.1016/j.anihpc.2013.02.001 doi: 10.1016/j.anihpc.2013.02.001
    [10] L. Caffarelli, L. Silvestre, An extension problem related to the fractional laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245–1260. https://doi.org/10.1080/03605300600987306 doi: 10.1080/03605300600987306
    [11] D. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb{R}^{2}$, Commun. Part. Diff. Eq., 17 (1992), 407–435. https://doi.org/10.1080/03605309208820848 doi: 10.1080/03605309208820848
    [12] A. Castro, J. Cossio, J. Neuberger, A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math., 27 (1997), 1041–1053. https://doi.org/10.1216/rmjm/1181071858 doi: 10.1216/rmjm/1181071858
    [13] X. Chang, Z. Nie, Z. Wang, Sign-changing solutions of fractional $p$-laplacian problems, Adv. Nonlinear Stud., 19 (2019), 29–53. https://doi.org/10.1515/ans-2018-2032 doi: 10.1515/ans-2018-2032
    [14] X. Chang, Z. Wang, Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differ. Equations, 256 (2014), 2965–2992. https://doi.org/10.1016/j.jde.2014.01.027 doi: 10.1016/j.jde.2014.01.027
    [15] M. de Souza, On a class of nonhomogeneous fractional quasilinear equations in $\mathbb{R}^{N}$ with exponential growth, Nonlinear Differ. Equ. Appl., 22 (2015), 499–511. https://doi.org/10.1007/s00030-014-0293-y doi: 10.1007/s00030-014-0293-y
    [16] M. de Souza, U. Severo, T. do Rêgo, Nodal solutions for fractional elliptic equations involving exponential critical growth, Math. Method. Appl. Sci., 43 (2020), 3650–3672. https://doi.org/10.1002/mma.6145 doi: 10.1002/mma.6145
    [17] A. Di Castro, T. Kuusi, G. Palatucci, Local behavior of fractional $p$-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1279–1299. https://doi.org/10.1016/j.anihpc.2015.04.003 doi: 10.1016/j.anihpc.2015.04.003
    [18] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
    [19] P. Felmer, A. Quaas, J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, P. Roy. Soc. Edinb. A, 142 (2012), 1237–1262. https://doi.org/10.1017/S0308210511000746 doi: 10.1017/S0308210511000746
    [20] G. Franzina, G. Palatucci, Fractional $p$-eigenvalues, Riv. Mat. Uni. Parma, 5 (2014), 373–386.
    [21] A. Iannizzotto, S. Liu, K. Perera, M. Squassina, Existence results for fractional $p$-Laplacian problems via Morse theory, Adv. Calc. Var., 9 (2016), 101–125. https://doi.org/10.1515/acv-2014-0024 doi: 10.1515/acv-2014-0024
    [22] A. Iannizzotto, M. Squassina, 1/2-Laplacian problems with exponential nonlinearity, J. Math. Anal. Appl., 414 (2014), 372–385. https://doi.org/10.1016/j.jmaa.2013.12.059 doi: 10.1016/j.jmaa.2013.12.059
    [23] H. Kozono, T. Sato, H. Wadade, Upper bound of the best constant of a Trudinger-Moser inequality and its application to a Gagliardo-Nirenberg inequality, Indiana Univ. Math. J., 55 (2006), 1951–1974. https://doi.org/10.1512/iumj.2006.55.2743 doi: 10.1512/iumj.2006.55.2743
    [24] I. Kuzin, S. Pohozaev, Entire solutions of semilinear elliptic equations, Basel: Birkhäuser, 1997. https://doi.org/10.1007/978-3-0348-9250-6
    [25] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298–305. https://doi.org/10.1016/S0375-9601(00)00201-2 doi: 10.1016/S0375-9601(00)00201-2
    [26] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108. https://doi.org/10.1103/PhysRevE.66.056108 doi: 10.1103/PhysRevE.66.056108
    [27] Q. Li, Z. Yang, Multiple solutions for a class of fractional quasi-linear equations with critical exponential growth in $\mathbb{R}^{N}$, Complex Var. Elliptic, 61 (2016), 969–983. https://doi.org/10.1080/17476933.2015.1131683 doi: 10.1080/17476933.2015.1131683
    [28] C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Un. Mat. Ital., 3 (1940), 5–7.
    [29] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970), 1077–1092.
    [30] T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259–269. https://doi.org/10.1006/jfan.1995.1012 doi: 10.1006/jfan.1995.1012
    [31] R. Pei, Fractional $p$-Laplacian equations with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition, Mediterr. J. Math., 15 (2018), 66. https://doi.org/10.1007/s00009-018-1115-y doi: 10.1007/s00009-018-1115-y
    [32] P. Pucci, M. Xiang, B. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional $p$-Laplacian in $\mathbb{R}^{N}$, Calc. Var., 54 (2015), 2785–2806. https://doi.org/10.1007/s00526-015-0883-5 doi: 10.1007/s00526-015-0883-5
    [33] S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbb{R}^{N}$, J. Math. Phys., 54 (2013), 031501. https://doi.org/10.1063/1.4793990 doi: 10.1063/1.4793990
    [34] N. Thin, Multiplicity and concentration of solutions to a fractional $p$-Laplace problem with exponential growth, J. Math. Anal. Appl., 506 (2022), 125667. https://doi.org/10.1016/j.jmaa.2021.125667 doi: 10.1016/j.jmaa.2021.125667
    [35] Z. Wang, H. Zhou, Radial sign-changing solution for fractional Schrödinger equation, Discrete Cont. Dyn., 36 (2016), 499–508. https://doi.org/10.3934/dcds.2016.36.499 doi: 10.3934/dcds.2016.36.499
    [36] M. Willem, Minimax theorems, Boston: Birkhäuser, 1996. https://doi.org/10.1007/978-1-4612-4146-1
    [37] C. Zhang, Trudinger-Moser inequalities in fractional Sobolev-Slobodeckij spaces and multiplicity of weak solutions to the fractional-Laplacian equation, Adv. Nonlinear Stud., 19 (2019), 197–217. https://doi.org/10.1515/ans-2018-2026 doi: 10.1515/ans-2018-2026
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1423) PDF downloads(52) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog