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Abstract: In this paper, we consider the following fractional p-Laplacian equation involving
Trudinger-Moser nonlinearity:

(−∆)s
N/su + V(x)|u|

N
s −2u = f (u) in RN ,

where s ∈ (0, 1), 2 < N
s = p. The nonlinear function f has exponential critical growth, and potential

V is a continuous function. By using the constrained variational methods, quantitative Deformation
Lemma and Brouwer degree theory, we prove the existence of least energy sign-changing solutions.
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1. Introduction and main results

In this paper, we investigate the existence of a least energy sign-changing solution for the following
fractional p-Laplacian problem:

(−∆)s
N/su + V(x)|u|

N
s −2u = f (u) in RN , (1.1)

where s ∈ (0, 1), 2 < N
s := p, (−∆)s

p is the fractional p-Laplacian operator which, up to a normalizing
constant, may be defined by setting

(−∆)s
pu(x) = 2 lim

ε→0+

∫
RN\Bε(x)

|u(x) − u(y)|p−2 (u(x) − u(y))
|x − y|N+ps dy, x ∈ RN
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along functions u ∈ C∞0 (RN), where Bε(x) denotes the ball of RN centered at x ∈ RN and radius ε > 0.
In addition, the potential V ∈ C(RN ,R), the nonlinear f has exponential critical growth, and such
nonlinear behavior is motivated by the Trudinger-Moser inequality (Lemma 2.2).

Recently, the study of nonlocal problems driven by fractional operators has piqued the mathematical
community’s interest, both because of their intriguing theoretical structure and due to concrete
applications such as obstacle problems, optimization, finance, phase transition, and so on. We refer
to [18] for more details. In fact, when p = 2, problem (1.1) appears in the study of standing
wave solutions, i.e., solutions of the form ψ(x, t) = u(x)e−iωt, to the following fractional Schrödinger
equation:

i~
∂ψ

∂t
= ~2(−∆)sψ + W(x)ψ − f (|ψ|) in RN × R, (1.2)

where ~ is the Planck constant, W : RN → R is an external potential, and f is a suitable nonlinearity.
Laskin [25, 26] first introduced the fractional Schrödinger equation due to its fundamental importance
in the study of particles on stochastic fields modeled by Lévy processes.

After that, remarkable attention has been devoted to the study of fractional Schrödinger equations,
and a lot of interesting results were obtained. For the existence, multiplicity and behavior of standing
wave solutions to problem (1.2), we refer to [1, 9, 10, 14, 19, 33] and the references therein.

For general p with 2 < p < N
s , problem (1.1) becomes the following fractional Laplacian problem:

(−∆)s
pu + V(x)|u|p−2u = f (u) in RN . (1.3)

We emphasize that the fractional p-Laplacian is appealing because it contains two phenomena: the
operator’s nonlinearity and its nonlocal character. In fact, for the fractional p-Laplacian operator (−∆)s

p

with p , 2, one cannot obtain a similar equivalent definition of (−∆)s
p by the harmonic extension

method in [10]. For those reasons, the study of (1.3) becomes attractive. In [13], the authors obtained
infinitely many sign-changing solutions of (1.3) by using the invariant sets of descent flow. Moreover,
they also proved (1.3) possesses a least energy sign-changing solution via deformation Lemma and
Brouwer degree. We stress that, by using a similar method, Wang and Zhou [35], Ambrosio and
Isernia [3] obtained the least energy sign-changing solutions of (1.3) with p = 2. For more results
involving the fractional p-Laplacian, we refer to [2, 17, 20, 21, 32] and the references therein.

Another motivation to investigate problem (1.1) comes from the fractional Schrödinger equations
involving exponential critical growth. Indeed, we shall study the case where the nonlinearity f (t) has
the maximum growth that allows us to treat problem (1.1) variationally in W s, N

s (RN) (see the definition
in (1.5)). If p < N

s , Sobolev embedding (Theorem 6.9 in [18]) states W s,p(RN) ↪→ Lp∗s (RN), where
p∗s =

N p
N−sp , and p∗s is called the critical Sobolev exponent. Moreover, the same result ensures that

W s, N
s (RN) ↪→ Lλ(RN) for any λ ∈ [ N

s ,+∞). However, W s, N
s (RN) is not continuously embedded in

L∞(RN) (for more details, we refer to [18]). On the other hand, in the case p = N
s , the maximum growth

that allows us to treat problem (1.1) variationally in Sobolev space W s, N
s (RN), which is motivated by

the fractional Trudinger-Moser inequality proved by Ozawa [30] and improved by Kozono et al. [23]
(see Lemma 2.2). More precisely, inspired by [23], we say that f (t) has exponential critical growth if
there exists α0 > 0 such that

lim
|t|→∞

f (t)

exp(α|t|
N

N−s )
=

0, for α > α0,

+∞, for α < α0.
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On the basis of this notation of critical, many authors pay their attention to investigating elliptic
problems involving the fractional Laplacian operator and nonlinearities with exponential growth. When
N = 1, s = 1

2 , p = 2 and replacing R by (a, b), problem (1.1) becomes the following fractional
Laplacian equation: (−∆)

1
2 u = f (u) in (a, b),

u = 0 in R\(a, b).
(1.4)

When f is o(|t|) at the origin and behaves like exp(αt2) as |t| → ∞, by virtue of the Mountain Pass
theorem, Iannizzotto and Squassina [22] proved the existence and multiplicity of solutions for (1.4).
Utilizing the constrained variational methods and quantitative deformation lemma, Souza et al. [16]
considered the least energy sign-changing solution of problem (1.4) involving exponential critical
growth.

For problem (1.1) with exponential critical growth nonlinearity f , we would like to mention
references [8, 27, 34]. In [27], by applying variational methods together with a suitable Trudinger-
Moser inequality for fractional space, the authors obtained at least two positive solutions of (1.1).
In [8], the authors considered problem (1.1) with a Choquard logarithmic term and exponential critical
growth nonlinearity f . They proved the existence of infinite many solutions via genus theory. In [34],
by using Ljusternik-Schnirelmann theory, Thin obtained the existence, multiplicity and concentration
of nontrivial nonnegative solutions for problem (1.1). For more recent results on fractional equations
involving exponential critical growth, see [8, 15, 16, 22, 27, 31, 34] and the references therein. We also
refer the interested readers to [11, 29] for general problems with Trudinger-Moser-type behavior.

Inspired by the works mentioned above, it is natural to ask whether problem (1.1) has sign-changing
solutions when the nonlinearity f has exponential critical growth. To our knowledge, there are few
works on it except [16]. Souza et al. [16] considered the case when N = 1, p = 2 and s = 1

2 . However,
compared with [16], the situation when p > 2 is quite different. In particular, the decomposition of
functional I (see the definition in (1.8)) is more difficult than that in [16]. Therefore, some difficulties
arise in studying the existence of a least energy sign-changing solution for problem (1.1), and this
makes the study interesting.

In order to study problem (1.1), from now on, we fix p = N
s , p′ =

p
p−1 = N

N−s and consider the
following assumptions on V and f :

(V) V(x) ∈ C
(
RN

)
and there exists V0 > 0 such that V(x) ≥ V0 in RN . Moreover, lim|x|→∞ V(x) = +∞;

( f1) The function f ∈ C1 (R) with exponential critical growth at infinity, that is, there exists a constant
α0 > 0 such that

lim
|t|→∞

| f (t)|
exp (α|t|p′)

= 0 for α > α0 and lim
|t|→∞

| f (t)|
exp (α|t|p′)

= ∞ for α < α0;

( f2) lim
t→0

| f (t)|
|t|p−1 = 0;

( f3) There exists θ > p such that

0 < θF(t) ≤ t f (t) for t ∈ R\{0},

where F(t) =
∫ t

0
f (s)ds;
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( f4) There are two constants q > p and γ > 1 such that

sgn(t) f (t) ≥ γ|t|q−1 for t ∈ R;

( f5)
f (t)
|t|p−1 is an increasing function of t ∈ R\{0}.

Before stating our results, we recall some useful notations. The fractional Sobolev space W s,p(RN),
where p = N

s , is defined by

W s,p(RN) :=
{
u ∈ Lp(RN) : [u]s,p < ∞

}
, (1.5)

where [u]s,p denotes Gagliardo seminorm, that is,

[u]s,p :=


∫
R2N

|u(x) − u(y)|p

|x − y|N+ps dxdy


1
p

.

W s,p(RN) is a uniformly convex Banach space (see [18]) with norm

‖u‖W s,p =
(
‖u‖p

Lp(RN ) + [u]p
s,p

) 1
p
.

Let us consider the work space

X :=

u ∈ W s,p(RN) :
∫
RN

V(x)|u|pdx < +∞

 , (1.6)

with the norm

‖u‖X :=

[u]p
s,p +

∫
RN

V(x)|u|pdx


1
p

.

X is a uniformly convex Banach space, and thus X is a reflexive space. By the condition (V), we have
that the embedding from X into W s,p(RN) is continuous.

Definition 1.1. We say that u ∈ X is a weak solution of problem (1.1) if∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))
|x − y|N+ps dxdy +

∫
RN

V(x)|u(x)|p−2u(x)ϕ(x)dx

=

∫
RN

f (u(x))ϕ(x)dx (1.7)

for all ϕ ∈ X.
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Define the energy functional I : X → R associated with problem (1.1) by

I(u) =
1
p

∫
R2N

|u(x) − u(y)|p

|x − y|N+ps dxdy +
1
p

∫
RN

V(x)|u|pdx −
∫
RN

F(u)dx. (1.8)

By the Trudinger-Moser type inequality in [23] (see Lemma 2.2), we prove that I(u) ∈ C1(X,R), and
the critical point of functional I is a weak solution of problem (1.1) (see Remark 2.2 in Section 2).

For convenience, we consider the operator A : X → X∗ given by

〈A(u), v〉X∗,X =

∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+ps dxdy+

∫
RN

V(x)|u|p−2uvdx, ∀u, v ∈ X, (1.9)

where X∗ is the dual space of X. In the sequel, for simplicity, we denote 〈·, ·〉X∗,X by 〈·, ·〉. Moreover,
we denote the Nehari set N associated with I by

N = {u ∈ X\{0} : 〈I′(u), u〉 = 0} . (1.10)

Clearly, N contains all the nontrivial solutions of (1.1). Define u+(x) := max {u(x), 0} and u−(x) :=
min {u(x), 0}, and then the sign-changing solution of (1.1) stays on the following set:

M =
{
u ∈ X\{0} : u± , 0,

〈
I′(u), u+〉 = 0,

〈
I′(u), u−

〉
= 0

}
. (1.11)

Set
c := inf

u∈N
I(u), (1.12)

and
m := inf

u∈M
I(u). (1.13)

Now, we can state our main results.

Theorem 1.1. Assume that (V) and ( f1) to ( f5) hold, and then problem (1.1) possesses a least energy
sign-changing solution u∗ ∈ X, provided that

γ > γ∗ :=
[
θpmq

θ − p

(
α0

α∗

)p−1
] q−p

p

> 0,

where α∗ is a constant defined in Lemma 2.2,

mq = inf
u∈Mq

Iq(u), Mq =
{
u ∈ X : u± , 0,

〈
I′q(u), u±

〉
= 0

}
,

and

Iq(u) =
1
p
‖u‖p

X −
1
q

∫
RN

|u|qdx.
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The proof of Theorem 1.1 is based on the arguments presented in [7]. We first check that the
minimum of functional I restricted on setM can be achieved. Then, by using a suitable variant of the
quantitative deformation Lemma, we show that it is a critical point of I. However, due to the nonlocal
term

1
p

∫
R2N

|u(x) − u(y)|p

|x − y|N+ps dxdy,

the functional I no longer satisfies the decompositions

I(u) = I(u+) + I(u−) and
〈
I′(u), u±

〉
=

〈
I′(u±), u±

〉
, (1.14)

which are very useful to get sign-changing solutions of problem (1.1) (see for instance [4–7, 12]). In
fact, due to the fractional p-Laplacian operator (−∆)s

p with s ∈ (0, 1) and p , 2, one cannot obtain
a similar equivalent definition of (−∆)s

p by the harmonic extension method (see [10]). In addition,
compared with [16], problem (1.1) contains nonlocal operator (−∆)s

p with p > 2, which brings some
difficulties while studying problem (1.1). In particular, for problem (1.4), one has the following
decomposition:

J(u) = J(u+) + J(u−) +

∫
R2N

−u+(x)u−(y) − u−(x)u+(y)
|x − y|N+2s dxdy,

〈J′(u), u+〉 = 〈J′(u+), u+〉 +

∫
R2N

−u+(x)u−(y) − u−(x)u+(y)
|x − y|N+2s dxdy,

(1.15)

where J is the energy functional of (1.4). However, for the energy functional I, it is impossible to
obtain a similar decomposition like (1.15) due to the nonlinearity of the operator (−∆)s

p. In order to
overcome this difficulty, we divide R2N into several regions (see Lemma 2.6) and decompose functional
I on each region carefully. Furthermore, another difficulty arises in verifying the compactness of
the minimizing sequence in X since problem (1.1) involves the exponential critical nonlinearity term.
Fortunately, thanks to the Trudinger-Moser inequality in [23], we overcome this difficulty by choosing
γ in assumption ( f4) appropriately large to ensure the compactness of the minimizing sequence. To
achieve this, a more meticulous calculation is needed in estimating m.

On the other hand, by a similar argument in [13], we also consider the energy behavior of I(u∗) in
the following theorem, where u∗ is the least energy sign-changing solution obtained in Theorem 1.1.

Theorem 1.2. Assume that (V) and ( f1) to ( f4) are satisfied. Then, c > 0 is achieved, and

I(u∗) > 2c,

where u∗ is the least energy sign-changing solution obtained in Theorem 1.1.

The paper is organized as follows: Section 2 contains the variational setting of problem (1.1),
and it establishes a version of the Trudinger-Moser inequality for (1.1). In Section 3, we give some
technical lemmas which will be crucial in proving the main result. Finally, in Section 4, we combine
the minimizing arguments with a variant of the Deformation Lemma and Brouwer degree theory to
prove the main result.

Throughout this paper, we will use the following notations: Lλ(RN) denotes the usual Lebesgue
space with norm | · |λ; C,C1,C2, · · · will denote different positive constants whose exact values are not
essential to the exposition of arguments.
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2. Preliminaries

In this section, we outline the variational framework for problem (1.1) and give some preliminary
Lemmas. For convenience, we assume that V0 = 1 throughout this paper. Recalling the definition of
fractional Sobolev space X in (1.6), we have the following compactness results.

Lemma 2.1. Suppose that (V) holds. Then, for all λ ∈ [p,∞), the embedding X ↪→ Lλ(RN) is compact.

Proof. Define Y = Lλ
(
RN

)
and BR =

{
x ∈ RN : |x| < R

}
, Bc

R = RN\BR. Let X(Ω) and Y(Ω) be the spaces
of functions u ∈ X, u ∈ Y restricted onto Ω ⊂ RN respectively. Then, it follows from Theorems 6.9, 6.10
and 7.1 in [18] that X (BR) ↪→ Y (BR) is compact for any R > 0. Define VR = inf

x∈Bc
R

V(x). By (V), we

deduce that VR → ∞ as R→ ∞. Therefore, when λ = N
s = p, we have∫

Bc
R

|u|pdx ≤
1

VR

∫
Bc

R

V(x)|u|pdx ≤
1

VR
‖u‖p

X,

which implies

lim
R→+∞

sup
u∈X\{0}

‖u‖Lp(Bc
R)

‖u‖X
= 0.

By virtue of Theorem 7.9 in [24], we can see that X ↪→ Lp(RN) is compact.
When λ > p, by the interpolation inequality, one can also obtain that X ↪→ Lλ(RN) is compact. This

completes the proof. �

To study problems involving exponential critical growth in the fractional Sobolev space, the main
tool is the following fractional Trudinger-Moser inequality, and its proof can be found in Zhang [37].
First, to make the notation concise, we set, for α > 0 and t ∈ R,

Φ(α, t) = exp(α|t|p
′

) − S kp−2(α, t), (2.1)

where S kp−2(α, t) =
∑kp−2

k=0
αk

k! |t|
p′k with kp = min{k ∈ N; k ≥ p}.

Lemma 2.2. Let s ∈ (0, 1) and sp=N. Then, there exists a positive constant α∗ > 0 such that∫
RN

Φ(α, u)dx < +∞, ∀α ∈ (0, α∗) , (2.2)

for all u ∈ W s,p(RN) with ‖u‖W s,p(RN ) ≤ 1.

For Φ(α, u), we also have the following properties, which have been proved in [8, 27]. For the
reader’s convenience, we sketch the proof here.

Lemma 2.3. [27] Let α > 0 and r > 1. Then, for every β > r, there exists a constant C = C(β) > 0
such that (

exp(α|t|p
′

) − S kp−2(α, t)
)r
≤ C(β)

(
exp(βα|t|p

′

) − S kp−2(βα, t)
)
.
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Proof. Noticing that

(
exp(α|t|p

′

) − S kp−2(α, t)
)r

exp(βα|t|p′) − S kp−2(βα, t)
=

 ∞∑
j=kp−1

α j|t| jp
′

j!


r

∞∑
j=kp−1

(βα) j|t| jp
′

j!

=

|t|r(p−1)p′

 ∞∑
j=kp−1

α j|t|( j−p+1)p′

j!


r

|t|(p−1)p′
∞∑

j=kp−1

(βα) j|t|( j−p+1)p′

j!

,

we deduce

lim
t→0

(
exp(α|t|p

′

) − S kp−2(α, t)
)r

exp(βα|t|p′) − S kp−2(βα, t)
= 0.

On the other hand, it holds that

lim
|t|→∞

(
exp(α|t|p

′

) − S p−2(α, t)
)r

exp(βα|t|p′) − S p−2(βα, t)
= lim
|t|→∞

exp(αr|t|p
′

)
(
1 − S p−2(α,t)

(exp(α|t|))p′

)r

exp(βα|t|p′)
(
1 − S p−2(βα,t)

exp(βα|t|p′ )

) = 0, (2.3)

and the lemma follows. �

Lemma 2.4. [8] Let α > 0. Then, Φ(α, u) ∈ L1
(
RN

)
for all u ∈ X.

Proof. Let u ∈ X\{0} and ε > 0. Since C∞0
(
RN

)
is dense in X, there exists φ ∈ C∞0

(
RN

)
such that 0 <

‖u − φ‖X < ε. Observe that for each k ≥ kp − 1,

|u|p
′k ≤ 2p′kεp′k

∣∣∣∣∣ u − φ
‖u − φ‖X

∣∣∣∣∣p′k + 2p′k|φ|p
′k.

Consequently,

Φ(α, u) ≤ Φ

(
α2p′εp′ ,

∣∣∣∣∣ u − φ
‖u − φ‖X

∣∣∣∣∣p′) + Φ
(
α2p′ , |φ|p

′
)
.

From Lemma 2.2, choosing ε > 0 sufficiently small such that α2p′εp′ < α∗, we have∫
RN

Φ

(
α2p′εp′ ,

∣∣∣∣∣ u − φ
‖u − φ‖X

∣∣∣∣∣p′) dx < +∞.

On the other side, since exp
(
α2p′ |φ|p

′
)

=
∑+∞

k=0
αk

k! 2p′k|φ|p
′k, there exists k0 ∈ N such that∑+∞

k=k0
αk

k! 2p′k|φ|p
′k < ε. This fact, combined with the fact that p′k > 0 for all kp − 1 ≤ k ≤ k0, gives us∫

RN

Φ
(
α2p′ , |φ|p

′
)

dx =

∫
suppφ

Φ
(
α2p′ , |φ|p

′
)

dx < +∞.

Therefore, Φ(α, u) ∈ L1
(
RN

)
for all u ∈ X. �

Remark 2.1. From Lemmas 2.2–2.4, we deduce that Φ(α, u)l ∈ L1(RN) for all u ∈ X, α > 0 and l ≥ 1.
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The next lemma shows the growth behavior of the nonlinearity f .

Lemma 2.5. Given ε > 0, α > α0 and ζ > p, for all u ∈ X, it holds that

| f (u)| ≤ ε|u|p−1 + C1(ε)|u|ζ−1Φ(α, u),

and
|F(u)| ≤

ε

p
|u|p + C2(ε)|u|ζΦ(α, u).

Proof. We will only prove the first result. Since the second inequality is a direct consequence of the
first one due to assumption ( f3), we omit it here.

In fact, by ( f2), for given ε > 0, there exists δ > 0 such that | f (u)| ≤ ε|u|p−1 for all |u| < δ. Now,
as ζ > p, there exists r > 0 such that ζ = p + r. Hence, once zζ−1, zq′k for all k ≥ kp − 1 and zr are
increasing functions, if |u| > δ, it follows from ( f1) that

| f (u)| ≤ ε|u|p−1 + CεΦ(α, u) ≤ ε|u|p−1 |u|
rΦ(α, u)

δrΦ(α, δ)
+ Cε

|u|ζ−1

δζ−1 Φ(α, u) = C1(ε)|u|ζ−1Φ(α, u).

This completes the proof. �

Remark 2.2. It follows from Lemmas 2.1–2.3 that I is well-defined on X. Moreover, I ∈ C1(X,RN),
and

〈I′(u), v〉 =

∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+ps dxdy +

∫
RN

V(x)|u|p−2uvdx −
∫
RN

f (u)vdx

for all v ∈ X. Consequently, the critical point of I is the weak solution of problem (1.1).

We seek the sign-changing solution of problem (1.1). As we saw in Section 1, one of the difficulties
is the fact that the functional I does not possess a decomposition like (1.14). Inspired by [13, 35], we
have the following:

Lemma 2.6. Let u ∈ X with u± , 0. Then,

(i) I(u) > I(u+) + I(u−),
(ii) 〈I′(u), u±〉 > 〈I′(u±), u±〉.

Proof. Observe that

I(u) =
1
p
‖u‖p

X −

∫
RN

F(u)dx =
1
p
〈A(u), u〉 −

∫
RN

F(u)dx

=
1
p

〈
A(u), u+〉 − ∫

RN

F(u+)dx +
1
p

〈
A(u), u−

〉
−

∫
RN

F(u−)dx. (2.4)

By density (see Di Nezza et al. Theorem 2.4 [18]), we can assume that u is continuous. Define

(RN)+ = {x ∈ RN; u+(x) ≥ 0} and (RN)− = {x ∈ RN; u−(x) ≤ 0}.
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Then, for u ∈ X with u± , 0, by a straightforward computation, one can see that

〈
A(u), u+〉 =

∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(u+(x) − u+(y))
|x − y|N+ps dxdy +

∫
RN

V(x)|u+|pdx

=

∫
(RN )+×(RN )+

|u+(x) − u+(y)|p

|x − y|N+ps dxdy +

∫
(RN )+×(RN )−

|u+(x) − u−(y)|p−1u+(x)
|x − y|N+ps dxdy

+

∫
(RN )−×(RN )+

|u−(x) − u+(y)|p−1u+(y)
|x − y|N+ps dxdy +

∫
RN

V(x)|u+|pdx

=
〈
A(u+), u+〉 +

∫
(RN )+×(RN )−

|u+(x) − u−(y)|p−1u+(x) − |u+(x)|p

|x − y|N+ps dxdy

+

∫
(RN )−×(RN )+

|u−(x) − u+(y)|p−1u+(y) − |u+(y)|p

|x − y|N+ps dxdy >
〈
A(u+), u+〉 . (2.5)

Similarly, we also have 〈
A(u), u−

〉
>

〈
A(u−), u−

〉
. (2.6)

Taking into account (2.4)–(2.6), we deduce that I(u) > I(u+) + I(u−). Analogously, one can prove (ii).
�

In the last part of this section, we prove the following inequality, which will play an important role
in estimating the upper bound for m := inf

u∈M
I(u).

Lemma 2.7. For all u ∈ X with u± , 0 and constants σ, τ > 0, it holds that∥∥∥σu+ + τu−
∥∥∥p

X
≤ σp 〈

A(u), u+〉 + τp 〈
A(u), u−

〉
. (2.7)

Furthermore, the inequality in (2.7) is an equality if and only if σ = τ.

Proof. First, we claim the following elementary inequality holds true:

(σa + τb)p ≤ (a + b)p−1(σpa + τpb), (2.8)

where a, b ≥ 0, σ, τ > 0 and p = N
s > 2.

Indeed, if a = 0 or b = 0, one can easily check (2.8). Thus, we can assume that a, b > 0. Setting
κ = a

a+b and t = σ
τ
, (2.8) becomes

(κt + (1 − κ))p ≤ κtp + (1 − κ). (2.9)

Let us define g(t) := κtp + (1− κ)− (κt + (1− κ))p, and then g′(t) = κp
[
tp−1 − (κt + (1 − κ))p−1

]
. Noting

that 0 < κ < 1, we can observe that g′(1) = 0, g′(t) < 0 for 0 < t < 1, and g′(t) > 0 for t > 1. Therefore,
g(t) > g(1) = 0 for all t > 0 and t , 1, which implies (2.9). Consequently, (2.8) holds true.

Now, let us consider the inequality (2.7). By a straightforward computation, one can see from (2.8)
that ∥∥∥σu+ + τu−

∥∥∥p

X
− σp 〈

A(u), u+〉 − τp 〈
A(u), u−

〉
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=

∫
(RN )+×(RN )−

|σu+(x) − τu−(y)|p − |u+(x) − u−(y)|p−1(σpu+(x) − τpu−(y))
|x − y|N+ps dxdy

+

∫
(RN )−×(RN )+

|τu−(x) − σu+(y)|p − |u−(x) − u+(y)|p−1(τp(−u−(x)) + σpu+(y))
|x − y|N+ps dxdy ≤ 0,

which implies (2.7), and Lemma 2.7 follows. �

3. Some technical lemmas

The aim of this section is to prove some technical lemmas related to the existence of a least energy
nodal solution. Firstly, we collect some preliminary lemmas which will be fundamental to prove our
main result.

Lemma 3.1. Under the assumptions of Theorem 1.1, we have
(i) For all u ∈ N such that ‖u‖X → ∞, I(u)→ ∞;
(ii) There exist ρ, µ > 0 such that ‖u±‖X ≥ ρ for all u ∈ M and ‖u‖X > µ for all u ∈ N .

Proof. (i) Since u ∈ N and ( f3) holds, we see that

I(u) = I(u) −
1
θ
〈I′(u), u〉 ≥

(
1
p
−

1
θ

)
‖u‖p

X. (3.1)

Hence, the above inequality ensures that I(u)→ ∞ as ‖u‖X → ∞.
(ii) We claim that there exists µ > 0, such that ‖u‖X > µ for all u ∈ N . By contradiction, we suppose

that there exists a sequence {un} ⊂ N such that ‖un‖X → 0 in X.
Then, it follows from Lemmas 2.1, 2.3, 2.5 and Hölder’s inequality that

‖un‖
p
X =

∫
RN

f (un)undx ≤ ε
∫
RN

|un|
pdx + C1(ε)

∫
RN

|un|
ζΦ(α, un)dx

≤ ε ‖un‖
p
X + C1(ε)


∫
RN

|un|
ζr′dx


1
r′

∫
RN

Φ(α, un)rdx


1
r

= ε ‖un‖
p
X + C2(ε)


∫
RN

Φ(α, un)rdx


1
r

‖un‖
ζ
X , (3.2)

where α > α0, ζ > p and r > 1 with 1
r + 1

r′ = 1.
On the other hand, since ‖un‖X → 0, there exists N0 ∈ N and ϑ > 0 such that ‖un‖

p′

X < ϑ < α∗

α0
for all

n > N0. Choosing α > α0, r > 1 and β > r satisfying αϑ < α∗ and βαϑ < α∗, for all n > N0, we deduce
from Lemmas 2.2 and 2.3 that∫

RN

Φ(α, un)rdx =

∫
RN

(
exp(α|un|

p′) − S kp−2(α, un)
)r

dx
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=

∫
RN

exp

α ‖un‖
p′

X

(
un

‖un‖X

)p′ − S kp−2

(
α ‖un‖

p′

X ,
un

‖un‖X

)r

dx

≤ C
∫
RN

exp

βαϑ (
un

‖un‖X

)p′ − S kp−2

(
βαϑ,

un

‖un‖X

) dx

≤ C. (3.3)

Combining (3.3) with (3.2), and choosing ε = 1
2 in (3.2), we can see that

‖un‖
p
X ≤ C′ ‖un‖

ζ
X , (3.4)

where C′ is a constant independent of n. Obviously, (3.4) contradicts with ‖un‖X → 0, and we have
proved the claim.

For un ∈ M, we have
〈
I′(un), u±n

〉
= 0. Hence, it follows from Lemma 2.6 that〈

I′(u±n ), u±n
〉
< 0,

which implies ∥∥∥u±n
∥∥∥p

X
<

∫
RN

f (u±n )u±n dx.

By arguments as with (3.2) and (3.3), we deduce that there exist ρ1, ρ2 > 0 such that
∥∥∥u+

n

∥∥∥
X
> ρ1 and∥∥∥u−n

∥∥∥
X
> ρ2. Select ρ = min(ρ1, ρ2), and then

∥∥∥u±n
∥∥∥

X
> ρ, and this completes the proof. �

Lemma 3.2. Under the assumptions of Theorem 1.1, for any u ∈ X\{0}, there exists a unique νu ∈ R
+

such that νuu ∈ N . Moreover, for any u ∈ N , we have

I(u) = max
ν∈[0,∞)

I(νuu). (3.5)

Proof. Given u ∈ X\{0}, we define g(ν) = I(νu) for all ν ≥ 0, i.e.,

g(ν) =
1
p
νp ‖u‖p

X −

∫
RN

F(νu)dx.

It follows from ( f2) and ( f4) that the function g(ν) possesses a global maximum point νu, and g′(νu) = 0,
i.e.,

νp−1
u ‖u‖p

X =

∫
RN

f (νuu)udx, (3.6)

which implies νuu ∈ N . Now, we claim the uniqueness of νu. Suppose, on the contrary, there exists
ν̃u , νu such that ν̃uu ∈ N . Then, it holds that

ν̃p−1
u ‖u‖p

X =

∫
RN

f (ν̃uu)udx. (3.7)
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Without loss of generality, we may assume ν̃u > νu. Combining (3.6), (3.7) and ( f5), we deduce that

0 =

∫
{x∈RN : u(x),0}

(
f (ν̃uu)
|ν̃uu|p−1 −

f (νuu)
|νuu|p−1

)
|u|p−1udx > 0,

which leads to a contradiction. Thus, νu is unique. Obviously, for any u ∈ N , νu = 1, and (3.5) follows.
This completes our proof. �

Since we are considering the constrained minimization problem on M, in the following, we will
show that the setM is nonempty.

Lemma 3.3. If u ∈ X with u± , 0, then there exists a unique pair (σu, τu) of positive numbers such that(〈
I′(σuu+ + τuu−), u+〉 , 〈I′(σuu+ + τuu−), u−

〉)
= (0, 0).

Consequently, σuu+ + τuu− ∈ M.

Proof. Let G : (0,+∞) × (0,+∞)→ R2 be a continuous vector field given by

G(σ, τ) =
(〈

I′(σu+ + τu−), σu+〉 , 〈I′(σu+ + τu−), τu−
〉)

for every (σ, τ) ∈ (0,+∞) × (0,+∞). By virtue of Lemmas 2.5 and 2.6, we deduce that〈
I′(σu+ + τu−), σu+〉 ≥ 〈

I′(σu+), σu+〉
= σp

∥∥∥u+
∥∥∥p

X
−

∫
RN

f (σu+)σu+dx

≥ σp
∥∥∥u+

∥∥∥p

X
− εσp

∫
RN

|u+|pdx −Cε

∫
RN

|σu+|ζΦ(α, σu+)dx, (3.8)

where α > α0 and ζ > q. Choose ε = 1
2 , σ small enough such that ‖σu+‖

p′

X < α∗

α0
. Taking into

account (3.8) and arguing as with (3.3) in Lemma 3.1, one can see that

〈
I′(σu+ + τu−), σu+〉 ≥ 1

2
σp

∥∥∥u+
∥∥∥p

X
−C1σ

ζ
∥∥∥u+

∥∥∥ζ
X
, (3.9)

and similarly

〈
I′(σu+ + τu−), τu−

〉
≥

1
2
τp

∥∥∥u−
∥∥∥p

X
−C2τ

ζ
∥∥∥u−

∥∥∥ζ
X
. (3.10)

Hence, it follows from (3.9) and (3.10) that there exists R1 > 0 small enough such that〈
I′(R1u+ + τu−),R1u+〉 > 0 for all τ > 0, (3.11)

and 〈
I′(σu+ + R1u−),R1u−

〉
> 0 for all σ > 0. (3.12)
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On the other hand, by ( f3), there exist constants D1,D2 > 0 such that

F(t) ≥ D1tθ − D2 for all t > 0. (3.13)

Then, we have〈
I′(σu+ + τu−), σu+〉
≤ σp

∫
(RN )+×(RN )+

|u+(x) − u+(y)|p

|x − y|N+ps dxdy +

∫
(RN )+×(RN )−

|σu+(x) − τu−(y)|p−1σu+(x)
|x − y|N+ps dxdy

+

∫
(RN )−×(RN )+

|τu−(x) − σu+(y)|p−1σu+(y)
|x − y|N+ps dxdy + σp

∫
RN

V(x)|u+|pdx

− D1σ
θ

∫
A+

|u+|θdx + D2|A+|, (3.14)

where A+ ⊂ supp (u+) is a measurable set with finite and positive measure |A+|. Due to the fact that
θ > p, for R2 sufficiently large, we get〈

I′(R2u+ + τu−),R2u+〉 < 0 for all τ ∈ [R1,R2]. (3.15)

Similarly, we get 〈
I′(σu+ + R2u−),R2u−

〉
< 0 for all σ ∈ [R1,R2]. (3.16)

Hence, taking into account (3.11), (3.12), (3.15), (3.16) and thanks to the Miranda theorem [28], there
exists (σu, τu) ∈ [R1,R2] × [R1,R2] such that G(σu, τu) = 0, which implies σuu+ + τuu− ∈ M.

Now, we are in the position to prove the uniqueness of the pair (σu, τu). First, we assume that
u = u+ + u− ∈ M and (σu, τu) ∈ (0,+∞) × (0,∞) is another pair such that σuu+ + τuu− ∈ M. In this
case, we just need to prove that (σu, τu) = (1, 1). Notice that

〈
A(u), u+〉 =

∫
RN

f (u+)u+dx,
〈
A(u), u−

〉
=

∫
RN

f (u−)u−dx, (3.17)

and〈
A(σuu+ + τuu−), σuu+〉 =

∫
RN

f (σuu+)σuu+dx,
〈
A(σuu+ + τuu−), τuu−

〉
=

∫
RN

f (τuu−)τuu−dx. (3.18)

Without loss of generality, we may assume σu ≤ τu. Then, by a direct computation, one has

〈
A(σuu+ + τuu−), σuu+〉 =

∫
(RN )+×(RN )+

|σuu+(x) − σuu+(y)|p

|x − y|N+ps dxdy

+

∫
(RN )+×(RN )−

|σuu+(x) − τuu−(y)|p−1σuu+(x)
|x − y|N+ps dxdy
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+

∫
(RN )−×(RN )+

|τuu−(x) − σuu+(y)|p−1σuu+(y)
|x − y|N+ps dxdy

≥
〈
A(σuu+ + σuu−), σuu+〉

= σp
u
〈
A(u), u+〉 , (3.19)

which together with (3.18) implies

σp
u
〈
A(u), u+〉 ≤ ∫

RN

f (σuu+)σuu+dx. (3.20)

Combining (3.20) with (3.17), we deduce that∫
{x∈RN : u+(x),0}

(
f (σuu+)

(σuu+)p−1 −
f (u+)

(u+)p−1

)
(u+)pdx ≥ 0.

Hence, by ( f5) and since u+ , 0, we obtain σu ≥ 1. Moreover, using similar arguments as in (3.19), we
can deduce that 〈

A(σuu+ + τuu−), τuu−
〉
≤

〈
A(τuu+ + τuu−), τuu−

〉
. (3.21)

Therefore, it follows from (3.17), (3.18) and (3.21) that∫
{x∈RN : u−(x),0}

(
f (τuu−)

(τuu−)p−1 −
f (u−)

(u−)p−1

)
(u−)pdx ≤ 0,

which together with ( f5) implies τu ≤ 1. Thus, we conclude the proof of the uniqueness of the
pair (1, 1).

For the general case, we suppose that u does not necessarily belong toM. Let (σu, τu), (σ′u, τ
′
u) ∈

(0,+∞) × (0,∞). We define v = v+ + v− with v+ = σuu+ and v− = τuu−. Therefore, we have v ∈ M and
σ′u
σu

v+ +
τ′u
τu

v− ∈ M, which implies (σu, τu) = (σ′u, τ
′
u), and this completes the proof. �

The following two lemmas will be useful in proving Theorem 1.1.

Lemma 3.4. Under the assumptions of Theorem 1.1, and let u ∈ X with u± , 0 such that 〈I′(u), u±〉 ≤ 0.
Then, the unique pair of positive numbers obtained in Lemma 3.3 satisfies 0 < σu, τu ≤ 1.

Proof. Here we will only prove 0 < σu ≤ 1. The proof of 0 < τu ≤ 1 is analogous, and we omit it here.
Since 〈I′(u), u+〉 ≤ 0, it holds that 〈

A(u), u+〉 ≤ ∫
RN

f (u+)u+dx. (3.22)

Without loss of generality, we can assume that σu ≥ τu > 0, and σuu+ +τuu− ∈ M. Therefore, utilizing
a similar argument as in (3.19), we deduce that

σp
u
〈
A(u), u+〉 =

〈
A(σuu+ + σuu−), σuu+〉 ≥ 〈

A(σuu+ + τuu−), σuu+〉 =

∫
RN

f (σuu+)σuu+dx. (3.23)
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Taking into account (3.22) and (3.23), we obtain∫
RN

(
f (σuu+)

(σuu+)p−1 −
f (u+)

(u+)p−1

)
(u+)pdx ≤ 0,

which together with assumption ( f5) and the fact u+ , 0 shows that σu ≤ 1. Hence, we finish the
proof. �

Lemma 3.5. Under the assumptions of Theorem 1.1, let u ∈ X with u± , 0 and (σu, τu) be the unique
pair of positive numbers obtained in Lemma 3.3. Then, (σu, τu) is the unique maximum point of the
function hu : [0,+∞) × [0,+∞)→ R given by

hu(σ, τ) := I
(
σu+ + τu−

)
.

Proof. In the demonstration of Lemma 3.3, we saw that (σu, τu) is the unique critical point of hu in
(0,+∞) × (0,+∞). In addition, by the definition of hu and (3.13), we have

hu(σ, τ) = I(σu+ + τu−)

≤
1
p

∥∥∥σu+ + τu−
∥∥∥p

X
− D1σ

θ

∫
A+

|u+|θdx − D1τ
θ

∫
A−

|τu−|θdx + D2(|A+| + |A−|),

where A+ ⊂ supp (u+) and A− ⊂ supp (u−) are measurable sets with finite and positive measures |A+|

and |A−|. Since θ > p, we conclude that hu(σ, τ) → −∞ as |(σ, τ)| → ∞. In particular, one can easily
check that there exists R > 0 such that hu(a, b) < hu(σu, τu) for all (a, b) ∈ (0,∞)× (0,∞)\BR(0), where
BR(0) is a closure of the ball of radius R in R2.

To end the proof, we just need to verify that the maximum of hu does not occur in the boundary of
[0,+∞) × [0,+∞). Suppose, by contradiction, that (0, b) is a maximum point of hu. Then, for a > 0
small enough, one can see from (3.9) that hu(a, 0) = I(au+) > 0. Hence, it follows from Lemma 2.6
that

hu(a, b) = I(au+ + bu−) > I(au+) + I(bu−) > hu(0, b),

for a > 0 small enough. However, this contradicts with the assumption that (0, b) is a maximum point
of hu. The case (a, 0) is similar, and we complete the proof. �

Since Lemma 3.3 showsM is nonempty, and Lemma 3.1 implies that I(u) > 0 for all u ∈ M, I is
bounded below inM, which means that m := inf

u∈M
I(u) is well-defined. Now, we shall prove an upper

bound for m to recover the compactness, which urges us to prove that m can be achieved.

Lemma 3.6. Under the assumptions of Theorem 1.1 and that θ is the constant given by ( f3),

0 < m <
θ − p
θp

(
α∗

α0

)p−1

. (3.24)

Proof. Due toM ⊂ N , we have m ≥ c := inf
u∈N

I(u). Moreover, for all u ∈ N , by Lemma 3.1 it holds

that

I(u) ≥
(

1
p
−

1
θ

)
‖u‖p

X ≥
θ − p
θp

µp > 0. (3.25)
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On the other hand, by the similar procedure used in [13], there exists w ∈ Mq with w± , 0, such
that Iq(w) = mq and

〈
I′q(w),w±

〉
= 0. Therefore, it holds that

1
p
‖w‖p

X −
1
q
|w|qq = mq and

〈
A(w),w±

〉
= |w±|qq. (3.26)

In addition, by virtue of Lemma 3.3, there exist σ, τ > 0 such that σw+ + τw− ∈ M. Therefore, it holds
that

m ≤ I(σw+ + τw−) =
1
p

∥∥∥σw+ + τw−
∥∥∥p

X
−

∫
RN

F(σw+ + τw−)dx,

which together with ( f4) implies that

m ≤
1
p

∥∥∥σw+ + τw−
∥∥∥p

X
−
γ

q
σq|w+|qq −

γ

q
τq|w−|qq.

Now, from (3.26) and thanks to Lemma 2.7, we conclude that

m ≤
1
p
σp 〈

A(w),w+〉 +
1
p
τp 〈

A(w),w−
〉
−
γ

q
σq|w+|qq −

γ

q
τq|w−|qq

+
1
p

(∥∥∥σw+ + τw−
∥∥∥p

X
− σp 〈

A(w),w+〉 − τp 〈
A(w),w−

〉)
≤

(
1
p
σp −

γ

q
σq

)
|w+|qq +

(
1
p
τp −

γ

q
τq

)
|w−|qq

≤ max
ξ≥0

(
1
p
ξp −

γ

q
ξq

)
|w|qq =

(
1
p
−

1
q

)
γ

p
p−q |w|qq

= γ
p

p−q mq.

Therefore, by the definition of γ in Theorem 1.1, we obtain (3.24). �

Lemma 3.7. Under the assumptions of Theorem 1.1, let {un} ⊂ M be a minimizing sequence for m,
and then ∫

RN

f (u±n )u±n dx→
∫
RN

f (u±)u±dx as n→ ∞, (3.27)

and ∫
RN

F(u±n )dx→
∫
RN

F(u±)dx as n→ ∞ (3.28)

hold for some u ∈ X.

Proof. We will only prove the first result, since the second limit is a direct consequence of the first one.
Since {un} ⊂ M is a minimizing sequence for m, I(un)→ m, and it follows from (3.25) that

‖un‖
p
X ≤

θp
θ − p

I(un), (3.29)
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which implies {un} is bounded in X. Then, by virtue of Lemma 2.1, up to a subsequence, there exists
u ∈ X such that

un ⇀ u in X,

un → u in Lλ(RN) for λ ∈ [p,+∞),
un → u a.e. in RN .

(3.30)

Hence,
u±n ⇀ u± in X,

u±n → u± in Lλ(RN) for λ ∈ [p,+∞),
u±n → u± a.e. in RN .

(3.31)

Moreover, utilizing (3.29) again, we deduce that there exist n0 ∈ N and ϑ > 0 such that ‖un‖
p′

X < ϑ < α∗

α0

for n > n0. Choose α > α0, r > 1 and close to 1, and β > r satisfying αϑ < α∗ and βαϑ < α∗, and then
for all n > n0, it follows from Lemmas 2.2 and (2.3) that∫

RN

Φ(α, un)rdx =

∫
RN

(
exp(α|un|

p′) − S kp−2(α, un)
)r

dx

=

∫
RN

exp

α ‖un‖
p′

X

(
un

‖un‖X

)p′ − S kp−2

(
α ‖un‖

p′

X ,
un

‖un‖X

)r

dx

≤ C
∫
RN

exp

βαϑ (
un

‖un‖X

)p′ − S kp−2

(
βαϑ,

un

‖un‖X

)
≤ C, (3.32)

where C is a constant independent of n. Thus, by virtue of Lemma 2.5 and Hölder’s inequality, for
every Lebesgue measurable set A ⊂ RN and n > n0, it holds that∣∣∣∣∣∣∣∣

∫
A

f (un)undx

∣∣∣∣∣∣∣∣ ≤ C1

∫
A

|un|
pdx + C2

∫
A

|un|
ζΦ(α, un)dx

≤ C1

∫
A

|un|
pdx + C2


∫
A

|un|
ζr′dx


1
r′

∫
A

Φ(α, un)rdx


1
r

= C1

∫
A

|un|
pdx + C2C

1
r


∫
A

|un|
ζr′dx


1
r′

. (3.33)

Due to (3.33) and the fact that u±n → u± in Lp(RN) and Lζr′(RN), we conclude that for any ε > 0 and
n > n0, there exists δ > 0 such that for every Lebesgue measurable set A ⊂ RN with meas(A) ≤ δ, it
holds that ∣∣∣∣∣∣∣∣

∫
A

f (u±n )u±n dx

∣∣∣∣∣∣∣∣ < ε. (3.34)
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Similarly, for any ε > 0 and n > n0, there exists R > 0 such that∣∣∣∣∣∣∣∣∣
∫

RN\BR(0)

f (u±n )u±n dx

∣∣∣∣∣∣∣∣∣ < ε. (3.35)

Therefore, by (3.31), (3.34), (3.35) and thanks to Vitali’s convergence theorem, one can prove∫
RN

f (u±n )u±n dx→
∫
RN

f (u±)u±dx as n→ ∞. (3.36)

Thus, we finish the proof. �

4. Proof of main results

In this section, we will prove Theorems 1.1 and 1.2. To this end, we consider the minimization
problem

m := inf
u∈M

I(u).

Firstly, let us start with the existence of a minimizer u∗ ∈ M of I.

Lemma 4.1. Under the assumptions of Theorem 1.1, the infimum m is achieved.

Proof. By using Lemma 3.1, we know that there exists a minimizing sequence {un}n ⊂ M bounded in
X, such that

I(un)→ m as n→ ∞. (4.1)

Without loss of generality, we may assume up to a subsequence that there exists u∗ such that

u±n ⇀ (u∗)± in X,

u±n → (u∗)± in Lλ(RN) for all λ ∈ [p,+∞),
u±n → (u∗)± a.e. in RN .

Then, by Lemmas 2.6, 3.1 and 3.7, we conclude that

ρp ≤ lim inf
n→∞

∥∥∥u±n
∥∥∥p

X
≤ lim inf

n→∞

〈
A(un), u±n

〉
= lim inf

n→∞

∫
RN

f (u±n )u±n dx =

∫
RN

f ((u∗)±)(u∗)±dx,

which implies (u∗)± , 0, and consequently u∗ = (u∗)+ + (u∗)− is sign-changing. Hence, by Lemma 3.3,
there exist σ, τ > 0 such that〈

I′(σ(u∗)+ + τ(u∗)−), (u∗)+〉 = 0,
〈
I′(σ(u∗)+ + τ(u∗)−), (u∗)−

〉
= 0. (4.2)

Now, we claim that σ = τ = 1. Indeed, since un ∈ M,
〈
I′(un), u±n

〉
= 0, i.e.,

∥∥∥u+
n

∥∥∥p

X
+

∫
(RN )+

n×(RN )−n

(
|u+

n (x) − u−n (y)|p−1u+
n (x)

|x − y|N+ps −
|u+

n (x)|p

|x − y|N+ps

)
dxdy
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+

∫
(RN )−n×(RN )+

n

(
|u−n (x) − u+

n (y)|p−1u+
n (y)

|x − y|N+ps −
|u+

n (y)|p

|x − y|N+ps

)
dxdy =

∫
RN

f (u+
n )u+

n dx, (4.3)

and ∥∥∥u−n
∥∥∥p

X
+

∫
(RN )−n×(RN )+

n

(
|u−n (x) − u+

n (y)|p−1(−u−n (x))
|x − y|N+ps −

|u−n (x)|p

|x − y|N+ps

)
dxdy

+

∫
(RN )+

n×(RN )−n

(
|u+

n (x) − u−n (y)|p−1(−u−n (y))
|x − y|N+ps −

|u−n (y)|p

|x − y|N+ps

)
dxdy =

∫
RN

f (u−n )u−n dx, (4.4)

where (RN)+
n := {x ∈ RN : un(x) ≥ 0} and (RN)−n := {x ∈ RN : un(x) ≤ 0}. Notice the functional ‖u‖p

X is
weakly lower semicontinuous on X, and we see that∥∥∥(u∗)±

∥∥∥p

X
≤ lim inf

n→∞

∥∥∥u±n
∥∥∥p

X
. (4.5)

Moreover, it follows from Lemma 3.7 that∫
RN

f (u±n )u±n dx→
∫
RN

f ((u∗)±)(u∗)±dx as n→ ∞. (4.6)

Taking into account (4.3)–(4.6) and thanks to Fatou’s lemma, we deduce that〈
I′(u∗), (u∗)+〉 ≤ 0 and

〈
I′(u∗), (u∗)−

〉
≤ 0, (4.7)

which together with Lemma 3.4 implies that 0 < σ, τ ≤ 1. In the following, we will show that
σ = τ = 1, and I(u∗) = m. In fact, by (4.2), ( f5), Fatou’s lemma and the definition ofM, one has

m ≤ I(σ(u∗)+ + τ(u∗)−) = I(σ(u∗)+ + τ(u∗)−) −
1
p

〈
I′(σ(u∗)+ + τ(u∗)−), (σ(u∗)+ + τ(u∗)−)

〉
=

∫
RN

[
1
p

f (σ(u∗)+)σ(u∗)+ − F(σ(u∗)+)
]

dx +

∫
RN

[
1
p

f (τ(u∗)−)τ(u∗)− − F(τ(u∗)−)
]

dx

≤

∫
RN

[
1
p

f ((u∗)+)(u∗)+ − F((u∗)+)
]

dx +

∫
RN

[
1
p

f ((u∗)−)(u∗)− − F((u∗)−)
]

dx

≤ lim inf
n→∞

[
I(un) −

1
p
〈I′(un), un〉

]
= lim

n→∞
I(un) = m. (4.8)

Let us observe that by the above calculation we can infer that σ = τ = 1. Thus, u∗ ∈ M, and
I(u∗) = m. �

Now we are ready to prove Theorem 1.1. The proof is based on the quantitative deformation lemma
and Brouwer degree theory. For more details, we refer to the arguments used in [7].
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Proof of Theorem 1.1. We assume by contradiction that I′(u∗) , 0. Then, there exist δ, κ > 0 such that

|I′(v)| ≥ κ, for all ‖v − u∗‖X ≤ 3δ.

Define D := [1 − δ1, 1 + δ1] × [1 − δ1, 1 + δ1] and a map ξ : D→ X by

ξ(σ, τ) := σ(u∗)+ + τ(u∗)−,

where δ1 ∈ (0, 1
2 ) small enough such that ‖ξ(σ, τ) − u∗‖X ≤ 3δ for all (σ, τ) ∈ D̄. Thus, by virtue of

Lemma 4.1, we can see that

I(ξ(1, 1)) = m, I(ξ(σ, τ)) < m for all (σ, τ) ∈ D\{(1, 1)}.

Therefore,
β := max

(σ,τ)∈∂D
I(ξ(σ, τ)) < m.

By using [36, Theorem 2.3] with

Sδ := {v ∈ X : ‖v − u∗‖X ≤ δ}

and c := m. By choosing ε := min
{

m−β
4 , κδ8

}
, we deduce that there exists a deformation η ∈ C([0, 1] ×

X, X) such that:

(i) η(t, v) = v if v < I−1 ([m − 2ε,m + 2ε]);
(ii) I(η(1, v)) ≤ m − ε for each v ∈ X with ‖v − u∗‖X ≤ δ and I(v) ≤ m + ε;

(iii) I(η(1, v)) ≤ I(v) for all u ∈ X.

By (ii) and (iii) we conclude that
max

(σ,τ)∈D
I(η(1, ξ(σ, τ))) < m. (4.9)

Therefore, to complete the proof of this Lemma, it suffices to prove that

η(1, ξ(D)) ∩M , ∅. (4.10)

Indeed, if (4.10) holds true, then by the definition of m and (4.9), we get a contradiction.
In the following, we will prove (4.10). To this end, let us define Ψu∗ : [0,+∞) × [0,+∞)→ R2 by

Ψu∗(σ, τ) :=
(
Ψu∗

1 (σ, τ),Ψu∗
2 (σ, τ)

)
=

(〈
I′

(
σ(u∗)+ + τ(u∗)−

)
, (u∗)+〉 , 〈I′

(
σ(u∗)+ + τ(u∗)−

)
, (u∗)−

〉)
.

Furthermore, for (σ, τ) ∈ D, we define

Ψ̃(σ, τ) :=
(

1
σ

〈
I′(η(1, ξ(σ, τ))), η+(1, ξ(σ, τ))

〉
,

1
τ

〈
I′(η(1, ξ(σ, τ))), η−(1, ξ(σ, τ))

〉)
.

Since η(1, ξ(σ, τ)) = ξ(σ, τ) on ∂D, by the Brouwer degree theory (see Theorem D.9 [36]), we have

deg(Ψ̃,D, 0) = deg(Ψu∗ ,D, 0). (4.11)
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Now, we assert that deg(Ψu∗ ,D, 0) = 1. If this assertion holds true, then Ψ̃(σ0, τ0) = 0 for some
(σ0, τ0) ∈ D. Thus, there exists u0 := η(1, ξ(σ0, τ0)) ∈ M and (4.10) follows.

In fact, let us first define

Ap :=
∫
R2N

|u∗(x) − u∗(y)|p−2|(u∗)+(x) − (u∗)+(y)|2

|x − y|N+ps dxdy +

∫
RN

V(x)|(u∗)+|pdx,

Bp :=
∫
R2N

|u∗(x) − u∗(y)|p−2|(u∗)−(x) − (u∗)−(y)|2

|x − y|N+ps dxdy +

∫
RN

V(x)|(u∗)−|pdx,

Cp :=
∫
R2N

|u∗(x) − u∗(y)|p−2((u∗)−(x) − (u∗)−(y))((u∗)+(x) − (u∗)+(y))
|x − y|N+ps dxdy,

Dp :=
∫
R2N

|u∗(x) − u∗(y)|p−2((u∗)+(x) − (u∗)+(y))((u∗)−(x) − (u∗)−(y))
|x − y|N+ps dxdy,

a1 :=
∫
RN

f ′((u∗)+)|(u∗)+|2dx, a2 :=
∫
RN

f ((u∗)+)(u∗)+dx,

b1 :=
∫
RN

f ′((u∗)−)|(u∗)−|2dx, b2 :=
∫
RN

f ((u∗)−)(u∗)−dx.

Clearly, Cp = Dp > 0, Ap, Bp > 0. Notice that u ∈ M, and we can see that

Ap + Cp = a2, Bp + Dp = b2. (4.12)

Moreover, ( f5) guarantees

a1 > (p − 1)a2, b1 > (p − 1)b2. (4.13)

Then, by a direct computation, we have

∂Ψu∗
1

∂σ
(1, 1) = (p − 1)Ap − a1 < 0, (4.14)

and
∂Ψu∗

2

∂τ
(1, 1) = (p − 1)Bp − b1 < 0. (4.15)

In addition,
∂Ψu∗

1

∂τ
(1, 1) =

∂Ψu∗
2

∂σ
(1, 1) = (p − 1)Cp = (p − 1)Dp. (4.16)

Taking advantage of (4.12)–(4.16), we deduce that

det
(
Ψu∗

)′
(1, 1) =

[
(p − 1)Ap − a1

] [
(p − 1)Bp − b1

]
− (p − 1)2CpDp

>
[
(p − 1)a2 − (p − 1)Ap

] [
(p − 1)b2 − (p − 1)Bp

]
− (p − 1)2CpDp

= (p − 1)2CpDp − (p − 1)2CpDp
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= 0. (4.17)

Notice that u∗ ∈ M, and thanks to Lemmas 3.3 and 3.5, it holds that

deg(Ψu∗ ,D, 0) = sgn(det(Ψu∗)′(1, 1)) = 1,

which together with (4.11) implies deg(Ψu∗ ,D, 0) = 1. This completes our proof. �

Lemma 4.2. For any v ∈ M, there exist σ̃v, τ̃v ∈ (0, 1) such that σ̃vv+, τ̃vv− ∈ N .

Proof. We just prove σ̃v ∈ (0, 1). The other case can be obtained by similar arguments. Since v ∈ M,
i.e., 〈I′(v), v+〉 = 0, by Lemma 2.6, we obtain∥∥∥v+

∥∥∥p

X
<

∫
RN

f (v+)v+dx. (4.18)

On the other hand, by Lemma 3.2, there exists σ̃v > 0 such that σ̃vv+ ∈ N , which implies that

σ̃p
v

∥∥∥v+
∥∥∥p

X
=

∫
RN

f (σ̃vv+)σ̃vv+dx. (4.19)

Taking into account (4.18) and (4.19), we deduce that∫
RN

[
f (v+)

(v+)p−1 −
f (σ̃vv+)

(σ̃vv+)p−1

]
(σ̃vv+)pdx > 0.

Thus, it follows from ( f4) that σ̃v < 1. �

Proof of Theorem 1.2. Using a similar idea from the proof of Lemma 4.1, we find ū ∈ N such that
I(ū) = c > 0, where c := inf

u∈N
I(u). Furthermore, utilizing the same steps of the proof of Theorem 1.1,

we show that I′(ū) = 0. Thus, ū is a ground state solution of problem (1.1). Hence, to complete the
proof of Theorem 1.2, we need to study the energy behavior of I(u∗), where u∗ is the sign-changing
solution of (1.1) obtained in Theorem 1.1.

In fact, by Lemma 4.2, there exist 0 < σ̃u∗ , τ̃u∗ < 1 such that σ̃u∗(u∗)+, τ̃u∗(u∗)− ∈ N . Therefore, we
deduce from ( f5) and Lemma 3.2 that

m = I(u∗) = I(u∗) −
1
p
〈I′(u∗), u∗〉

=

∫
RN

(
1
p

f (u∗)u∗ − F(u∗)
)

dx

>

∫
RN

(
1
p

f (σ̃u∗(u∗)+)σ̃u∗(u∗)+ − F(σ̃u∗(u∗)+)
)

dx +

∫
RN

(
1
p

f (τ̃u∗(u∗)−)τ̃u∗(u∗)− − F(τ̃u∗(u∗)−)
)

dx

= I(σ̃u∗(u∗)+) −
1
p

〈
I′(σ̃u∗(u∗)+), σ̃u∗(u∗)+〉 + I(τ̃u∗(u∗)−) −

1
p

〈
I′(τ̃u∗(u∗)−), τ̃u∗(u∗)−

〉
= I(σ̃u∗(u∗)+) + I(τ̃u∗(u∗)−) ≥ 2c,

which completes the proof of Theorem 1.2. �
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5. Conclusions

This manuscript has employed the variational method to study the fractional p-Laplacian equation
involving Trudinger-Moser nonlinearity. By using the constrained variational methods, quantitative
Deformation Lemma and Brouwer degree theory, we prove the existence of least energy sign-changing
solutions for the problem.
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