Research article

Variational approach to p-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses

  • Received: 10 April 2022 Revised: 16 June 2022 Accepted: 20 June 2022 Published: 19 July 2022
  • MSC : 34A08, 34B37

  • In this paper, we examine the existence of solutions of p-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses. New criteria guaranteeing the existence of infinitely many solutions are established for the considered problem. The problem is reduced to an equivalent form such that the weak solutions of the problem are defined as the critical points of an energy functional. The main result of the present work is established by using a variational approach and a mountain pass lemma. Finally, an example is given to illustrate our main result.

    Citation: Zhilin Li, Guoping Chen, Weiwei Long, Xinyuan Pan. Variational approach to p-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses[J]. AIMS Mathematics, 2022, 7(9): 16986-17000. doi: 10.3934/math.2022933

    Related Papers:

  • In this paper, we examine the existence of solutions of p-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses. New criteria guaranteeing the existence of infinitely many solutions are established for the considered problem. The problem is reduced to an equivalent form such that the weak solutions of the problem are defined as the critical points of an energy functional. The main result of the present work is established by using a variational approach and a mountain pass lemma. Finally, an example is given to illustrate our main result.



    加载中


    [1] A. A. Hamoud, K. P. Ghadle, Some new uniqueness results of solutions for fractional Volterra-Fredholm integro-differential equations, Iran. J. Math. Sci. Info., 17 (2022), 135–144. https://doi.org/10.52547/ijmsi.17.1.135 doi: 10.52547/ijmsi.17.1.135
    [2] V. Gupta, F. Jarad, N. Valliammal, C. Ravichandran, K. S. Nisar, Existence and uniqueness of solutions for fractional nonlinear hybrid impulsive system, Numer. Meth. Part. D. E., 38 (2022), 359–371. https://doi.org/10.1002/num.22628 doi: 10.1002/num.22628
    [3] X. Zuo, W. Wang, Existence of solutions for fractional differential equation with periodic boundary condition, AIMS Math., 7 (2022), 6619–6633. https://doi.org/10.3934/math.2022369 doi: 10.3934/math.2022369
    [4] L. Xu, X. Chu, H. Hu, Exponential ultimate boundedness of non-autonomous fractional differential systems with time delay and impulses, Appl. Math. Lett., 99 (2020), 106000. https://doi.org/10.1016/j.aml.2019.106000 doi: 10.1016/j.aml.2019.106000
    [5] L. Xu, J. Li, S. S. Ge, Impulsive stabilization of fractional differential systems, Isa T., 70 (2017), 125–131. https://doi.org/10.1016/j.isatra.2017.06.009 doi: 10.1016/j.isatra.2017.06.009
    [6] D. He, L. Xu, Exponential stability of impulsive fractional switched systems with time delays, IEEE T. Circuits II, 68 (2021), 1972–1976. https://doi.org/10.1109/TCSII.2020.3037654 doi: 10.1109/TCSII.2020.3037654
    [7] J. Yan, A. Zhao, Oscillation and stability of linear impulsive delay differential equations, J. Math. Anal. Appl., 227 (1998), 187–194. https://doi.org/10.1006/jmaa.1998.6093 doi: 10.1006/jmaa.1998.6093
    [8] G. E. Chatzarakis, T. Raja, V. Sadhasivam, On the oscillation of impulsive vector partial conformable fractional differential equations, J. Crit. Rev., 8 (2021), 524–535.
    [9] A. Kumar, R. K. Vats, A. Kumar, D. N. Chalishajar, Numerical approach to the controllability of fractional order impulsive differential equations, Demonstr. Math., 53 (2020), 193–207. https://doi.org/10.1515/dema-2020-0015 doi: 10.1515/dema-2020-0015
    [10] X. J. Ran, M. Z. Liu, Q. Y. Zhu, Numerical methods for impulsive differential equation, Math. comput. model., 48 (2008), 46–55. https://doi.org/10.1016/j.mcm.2007.09.010 doi: 10.1016/j.mcm.2007.09.010
    [11] E. A. Dads, M. Benchohra, S. Hamani, Impulsive fractional differential inclusions involving the Caputo fractional derivative, Fract. Calc. Appl. Anal., 12 (2009), 15–38.
    [12] T. Ke, D. Lan, Decay integral solutions for a class of impulsive fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 17 (2014), 96–121. https://doi.org/10.2478/s13540-014-0157-5 doi: 10.2478/s13540-014-0157-5
    [13] M. Belmekki, J. J. Nieto, R. Rodriguez-Lopez, Existence of periodic solution for a nonlinear fractional differential equation, Bound. Value Probl., 2009 (2009), 324561. https://doi.org/10.1155/2009/324561 doi: 10.1155/2009/324561
    [14] J. Wang, H. Xiang, Upper and lower solutions method for a class of singular fractional boundary value problems with p-Laplacian operator, Abstr. Appl. Anal., 2010 (2010), 971824. https://doi.org/10.1155/2010/971824 doi: 10.1155/2010/971824
    [15] R. E. Gaines, J. L. Mawhin, Coincidence degree and nonlinear differential equations, Springer, 2006.
    [16] F. Jiao, Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 62 (2011), 1181–1199. https://doi.org/10.1016/j.camwa.2011.03.086 doi: 10.1016/j.camwa.2011.03.086
    [17] M. Ruzicka, Electrorheological fluids: modeling and mathematical theory, Lect. Notes Math., 1748 (2000), 16–38.
    [18] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383–1406. https://doi.org/10.1137/050624522 doi: 10.1137/050624522
    [19] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv., 29 (1987), 33.
    [20] L. Bai, B. Dai, Existence and multiplicity of solutions for an impulsive boundary value problem with a parameter via critical point theory, Math. Comput. Model., 53 (2011), 1844–1855. https://doi.org/10.1016/j.mcm.2011.01.006 doi: 10.1016/j.mcm.2011.01.006
    [21] T. Chen, W. Liu, An anti-periodic boundary value problem for the fractional differential equation with a p-Laplacian operator, Appl. Math. Lett., 25 (2012), 1671–1675. https://doi.org/10.1016/j.aml.2012.01.035 doi: 10.1016/j.aml.2012.01.035
    [22] T. Chen, W. Liu, Solvability of fractional boundary value problem with p-Laplacian via critical point theory, Bound. Value Probl., 2016 (2016), 75. https://doi.org/10.1186/s13661-016-0583-x doi: 10.1186/s13661-016-0583-x
    [23] D. Min, F. Chen, Variational methods to the p-Laplacian type nonlinear fractional order impulsive differential equations with Sturm-Liouville boundary-value problem, Fract. Calc. Appl. Anal., 24 (2021), 1069–1093. https://doi.org/10.1515/fca-2021-0046 doi: 10.1515/fca-2021-0046
    [24] D. Li, F. Chen, Y. An, Existence of solutions for fractional differential equation with p-Laplacian through variational method, J. Appl. Anal. Comput., 8 (2018), 1778–1795. https://doi.org/10.11948/2018.1778 doi: 10.11948/2018.1778
    [25] Y. Qiao, F. Chen, Y. An, Nontrivial solutions of a class of fractional differential equations with p-Laplacian via variational methods, Bound. Value Probl., 2020 (2020), 67. https://doi.org/10.1186/s13661-020-01365-w doi: 10.1186/s13661-020-01365-w
    [26] J. Xu, Z. Wei, Y. Ding, Existence of weak solution for p-Laplacian problem with impulsive effects, Taiwan. J. Math., 17 (2013), 501–515. https://doi.org/10.11650/tjm.17.2013.2081 doi: 10.11650/tjm.17.2013.2081
    [27] J. R. Graef, S. Heidarkhani, L. Kong, S. Moradi, Three solutions for impulsive fractional boundary value problems with p-Laplacian, Bull. Iran. Math. Soc., 2021 (2021), 1–21. https://doi.org/10.1007/s41980-021-00589-5 doi: 10.1007/s41980-021-00589-5
    [28] M. M. Matar, M. I. Abbas, J. Alzabut, Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives, Adv. Differ. Equ., 2021 (2021), 68. https://doi.org/10.1186/s13662-021-03228-9 doi: 10.1186/s13662-021-03228-9
    [29] W. Zhang, W. Liu, Variational approach to fractional Dirichlet problem with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 99 (2020), 105993. https://doi.org/10.1016/j.aml.2019.07.024 doi: 10.1016/j.aml.2019.07.024
    [30] J. Zhou, Y. Deng, Y. Wang, Variational approach to p-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 104 (2020), 106251. https://doi.org/10.1016/j.aml.2020.106251 doi: 10.1016/j.aml.2020.106251
    [31] A. Khaliq, M. ur Rehman, On variational methods to non-instantaneous impulsive fractional differential equation, Appl. Math. Lett., 83 (2018), 95–102. https://doi.org/10.1016/j.aml.2018.03.014 doi: 10.1016/j.aml.2018.03.014
    [32] Y. Qiao, F. Chen, Y. An, Variational method for p-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses, Math. Method. Appl. Sci., 44 (2021), 8543–8553. https://doi.org/10.1002/mma.7276 doi: 10.1002/mma.7276
    [33] A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [34] F. Jiao, Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 62 (2011), 1181–119. https://doi.org/10.1016/j.camwa.2011.03.086 doi: 10.1016/j.camwa.2011.03.086
    [35] Y. Zhou, J. R. Wang, L. Zhang, Basic theory of fractional differential equations, World scientific, 2016.
    [36] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, American Mathematical Society, 1986.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1291) PDF downloads(77) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog