Research article Special Issues

Computational study on encapsulation of 5-fluorouracil drug in nanotubes

  • Received: 01 June 2022 Revised: 07 July 2022 Accepted: 11 July 2022 Published: 19 July 2022
  • MSC : 92-XX, 92-10

  • Cancer remains a major health concern worldwide, causing high rates of morbidity and mortality. Although chemotherapy with antitumor drugs is the most common treatment for cancer, certain disadvantages limit its usage, such as the damage caused to healthy cells, side effects, and toxicity. Owing to their geometric and mechanical properties, nanotubes are promising nanocarriers of anticancer drugs. Here, the interaction energies of the encapsulation of an anticancer drug by single-walled nanotubes were calculated through the application of the 6–12 Lennard-Jones function with a continuous approach. In particular, the interaction energies of the 5-fluorouracil drug entering three different nanotubes (carbon, silicon and boron nitride) and the offset equilibria inside the nanotubes were obtained. This study aimed at determining the appropriate type and favorable size of nanotubes that can be used to encapsulate the 5-fluorouracil drug. The results showed that the optimal radii of nanotubes for encapsulating the 5-fluorouracil drug were approximately 6.08, 6.05 and 5.98 Å for carbon, boron nitride and silicon nanotubes, corresponding to -16.55, -18.20 and -17.81 kcal/mol, respectively.

    Citation: Mansoor H. Alshehri. Computational study on encapsulation of 5-fluorouracil drug in nanotubes[J]. AIMS Mathematics, 2022, 7(9): 16975-16985. doi: 10.3934/math.2022932

    Related Papers:

  • Cancer remains a major health concern worldwide, causing high rates of morbidity and mortality. Although chemotherapy with antitumor drugs is the most common treatment for cancer, certain disadvantages limit its usage, such as the damage caused to healthy cells, side effects, and toxicity. Owing to their geometric and mechanical properties, nanotubes are promising nanocarriers of anticancer drugs. Here, the interaction energies of the encapsulation of an anticancer drug by single-walled nanotubes were calculated through the application of the 6–12 Lennard-Jones function with a continuous approach. In particular, the interaction energies of the 5-fluorouracil drug entering three different nanotubes (carbon, silicon and boron nitride) and the offset equilibria inside the nanotubes were obtained. This study aimed at determining the appropriate type and favorable size of nanotubes that can be used to encapsulate the 5-fluorouracil drug. The results showed that the optimal radii of nanotubes for encapsulating the 5-fluorouracil drug were approximately 6.08, 6.05 and 5.98 Å for carbon, boron nitride and silicon nanotubes, corresponding to -16.55, -18.20 and -17.81 kcal/mol, respectively.



    加载中


    [1] M. Z. Dehaghani, F. Yousefi, S. M. Sajadi, M. T. Munir, O. Abida, S. Habibzadeh, et al., Theoretical encapsulation of fluorouracil (5-FU) anti-cancer chemotherapy drug into carbon nanotubes (CNT) and boron nitride nanotubes (BNNT), Molecules, 26 (2021), 4920. https://doi.org/10.3390/molecules26164920 doi: 10.3390/molecules26164920
    [2] M. Belcastro, T. Marino, T. Mineva, N. Russo, E. Sicilia, M. Toscano, Density functional theory as a tool for the prediction of the properties in molecules with biological and pharmacological significance, Theo. Comput. Chem., 4 (1996), 743–772. https://doi.org/10.1016/S1380-7323(96)80102-6 doi: 10.1016/S1380-7323(96)80102-6
    [3] A. Shah, W. MacDonald, J. Goldie, 5-FU infusion in advanced colorectal cancer: A comparison of three dose schedules, Cancer Treat. Rep., 69 (1985), 739–742.
    [4] G. A. Caballero, R. K. Ausma, E. J. Quebbema, Longterm, ambulatory, continuous infusion of 5-FU for the treatment of advanced adenocarcinoma, Cancer Treat. Rev., 69 (1985), 13–16.
    [5] H. Mizutani, S. Oikawa, Y. Hiraku, M. Murata, M. Kojima, S. Kawanishi, Distinct mechanisms of site-specific oxidative DNA damage by doxorubicin in the presence of copper (II) and NADPH-cytochrome P450 reductase, Cancer Sci., 94 (2003), 686–691. https://doi.org/10.1111/j.1349-7006.2003.tb01503.x doi: 10.1111/j.1349-7006.2003.tb01503.x
    [6] D. Baowan, B. J. Cox, T. A. Hilder, J. M. Hill, N. Thamwattana, Modelling and mechanics of carbon-based nanostructured materials, 1 ed., William Andrew, 2017.
    [7] M. S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon nanotubes: synthesis, structure, properties and applications, 80 (2001). https://doi.org/10.1007/3-540-39947-X
    [8] B. J. Cox, J. M. Hill, Geometric polyhedral models for nanotubes comprising hexagonal lattices, J. Com. App. Math., 235 (2011), 3943–3952. https://doi.org/10.1016/j.cam.2011.01.040 doi: 10.1016/j.cam.2011.01.040
    [9] K. Shayan, A. Nowroozi, Boron nitride nanotubes for delivery of 5-fluorouracil as anticancer drug: A theoretical study, Appl. Surf. Sci., 428 (2018), 500–513. https://doi.org/10.1016/j.apsusc.2017.09.121 doi: 10.1016/j.apsusc.2017.09.121
    [10] A. Soltani, M. T. Baei, T. Lemeski, S. Kaveh, H. Balakheyli, A DFT study of 5-fluorouracil adsorption on the pure and doped BN nanotubes, J. Phys. Chem. Solids, 86 (2015), 57–64. https://doi.org/10.1016/j.jpcs.2015.06.008 doi: 10.1016/j.jpcs.2015.06.008
    [11] M. J. Alanber, N. A. Al-Masoudi Theoretical model of carbon nanotubes as delivery to fluorouracil (Anticancer), Rev. Colomb. Quim., 41 (2012), 299–310.
    [12] S. Roosta, S. M. Hashemianzadeh, S. Ketabi, Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation, Mater. Sci. Eng. C, 67 (2016), 9–103. https://doi.org/10.1016/j.msec.2016.04.100 doi: 10.1016/j.msec.2016.04.100
    [13] C. Tripisciano, K. Kraemer, A. Taylor, E. Borowiak-Palen, Single-wall carbon nanotubes based anticancer drug delivery system, Chem. Phys. Lett., 478 (2009), 200–205. https://doi.org/10.1016/j.cplett.2009.07.071 doi: 10.1016/j.cplett.2009.07.071
    [14] H. Ali-Boucetta, K. T. Al-Jamal, D. McCarthy, M. Prato, A. Bianco, K. Kostarelos, Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics, Chem. Commun., 4 (2008), 459–461. https://doi.org/10.1039/b712350g doi: 10.1039/b712350g
    [15] L. Meng, X. Zhang, Q. Lu, Z. Fei, P. J. Dyson, Single walled carbon nanotubes as drug delivery vehicles: Targeting doxorubicin to tumors, Biomaterials, 33 (2012), 1689–1698. https://doi.org/10.1016/j.biomaterials.2011.11.004 doi: 10.1016/j.biomaterials.2011.11.004
    [16] M. E. Khalifi, E. Duverger, H. Boulahdoura, F. Picaud, Theoretical study of the interaction between carbon nanotubes and carboplatin anticancer molecules, Anal. Methods, 7 (2015), 10145. https://doi.org/10.1039/C5AY00748H doi: 10.1039/C5AY00748H
    [17] R. A. Al-Thawabeia, H. A. Hodali, Use of zeolite ZSM-5 for loading and release of 5-fluorouracil, J. Chem., 2015 (2015), 403597. https://doi.org/10.1155/2015/403597 doi: 10.1155/2015/403597
    [18] Y. Wang, Z. Xu, Interaction mechanism of doxorubicin and SWCNT: Protonation and diameter effects on the drug loading and releasing, RSC Adv., 6 (2016), 314–322. https://doi.org/10.1039/C5RA20866A doi: 10.1039/C5RA20866A
    [19] M. A. Nejad, P. Umstatter, H. M. Urbassek, Boron nitride nanotubes as containers for targeted drug delivery of doxorubicin, J. Mol. Model., 26 (2020), 54. https://doi.org/10.1007/s00894-020-4305-z doi: 10.1007/s00894-020-4305-z
    [20] T. A. Hilder, J. M. Hill, Modelling the encapsulation of the anticancer drug cisplatin into carbon nanotubes, Nanotechnology, 18 (2007), 275704. http://doi.org/10.1088/0957-4484/18/27/275704 doi: 10.1088/0957-4484/18/27/275704
    [21] T. A. Hilder, J. M. Hill, Theoretical comparison of nanotube materials for drug delivery, Micro Nano Lett., 3 (2008), 18–24. https://doi.org/10.1049/mnl:20070070 doi: 10.1049/mnl:20070070
    [22] T. A. Hilder, J. M. Hill, Probability of encapsulation of paclitaxel and doxorubicin into carbon nanotubes, Micro Nano Lett., 3 (2008), 41–49. http://doi.org/10.1049/mnl:20080008 doi: 10.1049/mnl:20080008
    [23] T. A. Hilder, J. M. Hill, Carbon nanotubes as drug delivery nanocapsules, Curr. Appl. Phys., 8 (2008), 258–261. https://doi.org/10.1016/j.cap.2007.10.011 doi: 10.1016/j.cap.2007.10.011
    [24] T. A. Hilder, J. M. Hill, Modeling the loading and unloading of drugs into nanotubes, Small, 5 (2009), 300–308. https://doi.org/10.1002/smll.200800321 doi: 10.1002/smll.200800321
    [25] M. Ferrari, Cancer nanotechnology: Opportunities and challenges, Nat. Rev. Cancer, 5 (2005), 161–171. https://doi.org/10.1038/nrc1566 doi: 10.1038/nrc1566
    [26] A. K. Rappi, C. J. Casewit, K. S. Colwell, W. A. Goddard III, W. M. Skid, UFF, a full periodic table force field formolecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc., 114 (1992), 10024–10035. https://doi.org/10.1021/ja00051a040 doi: 10.1021/ja00051a040
    [27] J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular theory of gases and liquids, John Wiley & Sons, 1964.
    [28] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series and products, 6 Eds., Academic Press, 2000.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(880) PDF downloads(46) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog