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1. Introduction

In this paper, we consider the following system of p-Laplacian fractional differential equations with
instantaneous and non-instantaneous impulses:

D3 (@, (D)) + a)®, (u(®) = A1, u®), 1€ (situil, i=0,1,2,,m

ADY (@, (§Dru))) = Iu(®)) | i=1,2, o, m,

Dy (@, (SDfu®)) = Dy (@, (SDFue)). 1€ (sl i=1,2, -+, m, (1.1)
D5 (@, CDau(s ))) = D% (q)p (gD,“u(sj))), i=1,2, . m,

u(0) =uw(T) =

where (D and ,Df. are the left Caputo fractional derivative and the right Riemann-Liouville fractional
derivative of order a, respectively. Additionally, 1 < p < 400 and % <a<1.OQys) = Is|P2s(s # 0) is
the p-Laplacian operator and ®,(0) = 0. Furthermore, 1 > 0,0 = 5o < #; <51 <fh < -+ < §, <
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t,+1 = T and a € C([0,T],R). There are two positive constants a; and a, such that 0 < a; < a(?) < a,.
I, € C(R,R) and f; € C([s;, ti+1] X R, R); also

ADY (@, (SDFur))) = Dy (@, (SDFur))) - D5 (@, (§ Dy u(y))) .
D (0 (D7) = i (0 5 70)
D5 (@, (D u(sp))) = lim D" (@, (§ Dyu())).

It is generally known that the impulsive effect is a common phenomenon in many evolutionary
processes, that it describes the abrupt disturbance phenomenon at certain moments in the evolutionary
process of the system. Impulsive differential equations, as a good tool to describe impulsive
phenomena in systems, have become popular in recent years; for example the existence of
solutions [1, 2, 3], stability of solutions [4, 5, 6], oscillation of solutions [7, 8] and numerical
solutions [9, 10] of impulsive differential equations have been extensively studied. In particular, the
existence of solutions is the premise of the quantitative and qualitative research on the solutions of
differential equations. Since significant applications in various sciences include the population
dynamics, pharmacology and optimal control [11, 12], some important methods have been obtained
for the study of solutions of fractional differential equations. Fix point theorems [13], upper and lower
solutions method [14], coincidence degree theory [15] and variational methods [16] have been viable
tools to study the existence of solutions of differential equations. The variational methods are applied
to study the existence of solution of fractional differential equations, which can be traced back to
Reference [16]. The key to studying the existence of solutions of differential equations via the
variational method is to define a suitable functional space and transform the boundary value problem
into an energy functional.

The p-Laplacian operator is a non-standard growth operator, which arises from nonlinear
electrorheological fluids [17], image restoration [18], elasticity theory [19], etc. Fractional differential
equations with a p-Laplacian operator have been widely applied for in many physical phenomena,
such as nonlinear diffusion and filtration, non-fluids and flows in porous media [20, 21, 22]. The
literature on p-Laplacian fractional differential equations with impulsive conditions include
References [23, 24, 25, 26, 27, 28, 29, 30]. We are interested in the existence of infinitely many
solutions when the p-Laplacian operator is added to the fractional impulsive differential equations. To
the best of our knowledge, to date, the existence of infinitely many solutions of p-Laplacian fractional
differential equations with instantaneous and non-instantaneous impulses has been rarely investigated.
The main contributions of this work include the following: (i) new criteria are introduced to verify the
existence of infinitely many solutions of fractional order nonlinear systems; (if) an example is given to
ensure the validity of our conclusion.

In a recent paper [31], the authors discussed the following system of non-instantaneous impulsive
fractional differential equations:

Dy (oCD?M(f)) = fi(1), re(sitinl, i=0,1,2,--- ,n,
Dy ((SDfu@)) =i rets) i=1,2, . n,
D (SDu(sy)) = D57 ((SDeucs))). i=1, 2, -+, m,
DF”! ((SD?”(O))) =cp,  w(0)=u(T)=0.

(1.2)
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The authors gave sufficient conditions for the existence and uniqueness of weak solutions of the
fractional system by using the Lax-Milgram theorem.

In [32], the authors discussed the following system of p-Laplacian fractional differential equations
with instantaneous and non-instantaneous impulses:

ZD(; ((Dp ((():D?u(t))) + (DP (u(1) = Afi(t, u(1)), te(s;,tiv], i=0,1,2,--- ,m

ADE (@, (§Dru(e))) = Lu(®)) i=1,2, . m,

D5 (0, (SDpu)) = Dy~ (@, (SDYu))). 1€ (s, i=1,2, -, m, (1.3)
D' (@ CDau(s ))) = D27 (q)p (gD;’u(sj))),i =1,2, . m,

u(0) = M(T) =

The authors proved that System (1.3) has infinitely many solutions by applying variational methods
and the critical theory. The main result of [32] is as follows.

Theorem 1.1. (/32] Theorem 3.1) Suppose that the following conditions hold:

(A)) Fori=1,--- ,m, there exist a; > 0 and 0 < 1; < p — 1 such that
I;
lim sup M < a;, ueR.
|u] o0 |7
(A2)
zf max F(t, u)dt zf“Faam
S Julg 1
lim inf = lim sup ,
E—+00 fp 7—'1\17 E—+00 é—‘P
where F;(t,u) = fou fi(t, s)ds.
U max F;(t,u)dt
Then, for 1 € (A;,4;), where A, = p—TB and 1, = pAA,,, A = glirfio 1nf% and

5 [ Fiegdr
i=0 %

B = hm sup

E—+00 &

, also, given the definition of A in Remark (2.6), the System (1.3) possesses

infinitely many solutions.

Motivated by the fact above, the main aim of this work was to establish infinitely many solutions
for System (1.1) under different assumptions and show that our results are totally different from those
above. Now, we will state our main result.

Theorem 1.2. Suppose that the following conditions hold:
(Hy) There exists a constant v > p such that I;(w)u < v fou I;(s)ds < 0 for Yu € Eg’p\{O},
i=1,2,---,m
(H>) There exists a constant w € (p,v) such that 0 < wF(t,u) < fi(t,u)u for Yu € E;"\{0},
and givent € [0,T], i =0,1,2,--- ,m
(H3) There exist constants 6; > 0 such that fou Ii(s)ds > —6;|lu|” for Yu € Eg’p\{O},

i=1,2,---,m
Moreover, fi(t,u) and I(u) are odd about u, i = 0,1,2,3,---,m. Then, problem (1.1) admits
infinitely many solutions when A € (0, ————).

» (m+)BTA®p
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The main ideas of this work are organized as follows. In Section 2, some preliminaries and results
that are applied later in the paper are presented. In Section 3, we focus on the proof of the existence of
infinitely many solutions of the p-Laplacian fractional impulsive differential system. In Section 4, an
example is given to illustrate our main result.

2. Preliminaries

Definition 2.1. (/33]) (left and right Rimann-Liouville fractional derivatives) Let u be a function
defined on [a, b]. The left and right Rimann-Liouville fractional derivatives of order 0 < a < 1 for a
Jfunction u denoted by D} u(t) and Dy u(t), respectively, are defined by

a _ i a—1 _ 1 i ' o\
D7utt) = D) = Fr s ( f (t—s) u(s)ds),

d 1 d((
tD(bll/l(t) = —EtDz_ll/t(l‘) = —ma (I (S - t)_alxl(S)dS) s
where t € [a, b].

Definition 2.2. (/33]) (left and right Caputo fractional derivatives) Let 0 < a < 1 and u €
AC([a,b),RY); then the left and right Caputo fractional derivatives of order a for a function u
denoted by { D*u(r) and £ DY u(t), respectively, exist almost everywhere on [a, b. $ D{u(t) and € D} u(r)
are respectively represented by

Cna _ a—1_’ _ 1 ft o\,
Diu) = Dy u(t)_F(l—a)( a(t s) u(s)ds),

, 1 b
cDYu(t) = =Dy (1) = -0 (f (s — t)_“u'(s)ds),

where t € [a, b].

Let us recall that, for any fixed 7 € [0,7] and 1 < p < oo,
llullee = max |u(t)], u € C([0,T],RY),
t€[0,T]

T ;
llullzr = (f Iu(S)I”dS) , u€ LP([0,T],RY),
0

1
i ’
llull e o.m = (f |M(S)|pdS) , u € L([0,1],RY),
0

lit1 P
N .
”u”Lp([siJiH]) = (f |M(S)|pds) , U€ Lp([si9 ti+l]’R ),l = ()9 1’ 29 cec o, m.
si

Definition 2.3. Let a € (i, 1] and p € (1,00), the fractional derivative space E;" is defined as the
closure of Cy'([0.T1;R), that is, Ey" = Cy([0, T1, R) with the norm

1
T T 7
llulle,p = ( f lu(n)|Pdt + f |gD?u(t)|pdt) , YueEy".
0 0
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Proposition 2.1. ([34]) Let0 < a < 1and 1 < p < co. Then
E," = {u 210, T] —» R|u, OCD?u(t) e L7([0, T],R), u(0) = uw(T) = O},

and the space E" is a reflexive and separable Banach space.

Proposition 2.2. (/35]) Let 0 < @ < 1 and 1 < p < co. Then for Yu € E;”, we have

T ! ’
llullr < m (ﬁ |gD;1u(t)|p dl) ;

moreover, if a > % and i + Ll] =1, then

a—]lj T ll)
llulloo < d 1 (f |5 D un)|” dt) .
F(@)[g(a - 1) + 1]s \Jo

Remark 2.1. It is easy to check that if a € C([0,T],R) and 0 < a; < a(t) < a,, then an equivalent
norm in Eg’p is as follows

m fiv1 T » %
||u||a:[2 f aOlDPdr + f S Dru) dr]
i=0 Vi 0

1
T(Y—ﬁ

and ||ullw < Allulle, where N = ———.
L(@)[g(a-1)+1]4

Proposition 2.3. ([16]) Assume that % <a <land1 < p < oo; then, the sequence {u;} converges
weakly to u in Eg’p, ie. up — u; then, upy — uin C([0,T],R), i.e. |lux — ul|lo = 0 as k — co.

Definition 2.4. A function

ti+1
ue{ueAC([o,TD: f (lu(t)|p+|gD?|p)dl<+0<>,i:0,1,2,~--,m}

is a classical solution of Problem (1.1) if u satisfies the following conditions: (i) u satisfies the first
equation of Problem (1.1); (ii) the limit ,D‘TV‘I(DP (gD;’u(tii)) and limit ,D(;‘lq)p (OCD?u(sii)) exist; (iii)
u satisfies the impulsive conditions of Problem (1.1); (iv) u satisfies the boundary value condition

u(0)=u(T)=0.

Lemma 2.1. (/36]) Let X be an infinite dimensional Banach space, I € C'(X,R) be even, thereby
satisfying the Palais-Smale condition, and let I(0) = 0. Suppose that X = Y P Z, where Y is finite
dimensional and I satisfies the following conditions:
(i) there exists constants p, y > 0 such that 1 | 08,17 >,
(ii) for each finite dimensional subspace W C X, there is an p' = p' (W) such that I(u) < 0

on E 1\Bp/ oy then, I has an unbounded sequence of critical values.
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Proposition 2.4. (/35])
(i) Leta >0, p > 1and%+é <l+alp#l,qg+1; inthecasewheni+$: 1 +a),if
u€ LP(a,b) andv € L(a,b), then
b b
f (oD; “u()) v(t)dt = f u(t) (D, V(D)) dt.
(@) LetO <a <1, ue AC([a,b]) and v € LP(a,b)(1 < p < ), then,
b b
_ =b "
f u(o) (SDIv()) dr = (D5 u(®) v)| ) + f (:Du(0)) v(r)dt.

For ¥v € EX”, by Proposition 2.10, we have
f ' D5 (@, (§Dfu(r))) virydt
_Z f D5 (@, (D7 u()) v(t)dt+z f D5 (@, (SDu(o))) vin)de
:_2 f " jt(pa (@, (§Deu))) viodr - Z f (057" (@, (D u())) v
= Z,D‘“ » (6D7u@)) vl +Z f D5 (@, (§Dru()) v ()t
=
—ZtD“‘ (6 Dru)) vl +Z f Dy (@, (SDrum)) v ()t
—j D (@, (§D7u))) vt = D5 (@, (§DF () v

+ Z[D" @, (SDrutsh)) visy) = D5 (@, (D2 u(s))) (s

+ D“l CD“u(t) v(t)dt+ f D”l CD“u(t) Vv (1)dt
I RO > )
m T
= > () vty + f @, (§Dfu(®)) § DI v(o)dt.
i=1 0
On the other hand, we have

T
f D5, (5D u(r) v(r)dt
0

=1, f o ZONOLEDY f OO u(vdr
i=0 VS

i=0 Vi

= f 'jt(m (@, (§Dru))) v
i=1 Yl
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tit1

=1 f e TONGEEDY f a(Olu@P2u(O)v(b)dt.
i=0 % i=0 Vi

Hence, we have

tit1

T m
fo @, (SD?u(r))SD?v(r)dH; f aOluOIu(tyv(r)dt

=1 f g u(@OW(Odt = ) Liu(E)v(E). (2.1)
i=0 VSi i—1

Definition 2.5. A function u € Ej” is a weak solution of problem (1.1), if Eq (2.1) holds for ¥v € E;".

Remark 2.2. (/30]) u € Eg’p is a weak solution of Problem (1.1) if and only if u is a classical solution
of Problem (1.1).

In order to study the existence of infinitely many solutions of problem (1.1), we consider the
function ¢ : E;” — R as follows

m

u(t;) m liv]
Li(s)ds — A Fi(t, dt, 2.2
Z j(; (s)ds ; j: (¢, u(t))dt (2.2)

i=1

1
@(u) = —|lullf +
p

where Fi(t,u) = [* fi(t, s)ds. Now let

1 m u(t;) m ti+1
ot = g, o0 = Y [ nds =2y [ Fsuos
i=1 i=0 YSi

then, ¢ = y + ¢. It is easy to get that ¢ ,i and ¢ are Fréchet differentials at any point u € E;” and that

Tit1

T m
¢ W) = f ®, (§Dyu() § Dy vyt + ) f OO u(Ov(e)d (2.3)
0 i=0 Si

lit1

+ Z‘ Lu(t)v(t) — A Z(:‘ f flt,u(e)v(ddt, for¥ve ECP.

3. Main results

Now, we will illustrate Theorem 1.1.

It is easy to know that ¢(0) = 0 and ¢(u) about u is even. Next we shall illustrate the other conditions
of Lemma 2.9 by describing the following three steps.
Step 1 We illustrate that ¢ satisfies the Palais-Smale condition. Assume that u; C E;” is a sequence
such that ¢(u;) is bounded, i.e., there exists a constant ¢ > 0 such that |¢(u;)| < ¢ and l}l_)rg ¢ () = 0.

We first prove that {u,}, k € N is bounded in E”. By Condition (H,), we have
ui (1) ui (1)
a)f Li(s)ds — Li(ui (t)u(t;) > (w — v)f Ii(s)ds > 0, (v > w). (3.1
0 0
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From Condition (H,), we have that
fi(t, u(®))u(t) — wF(t, u(t)) = 0. 3.2)

Thus, together (2.2), (2.3), (3.1) and (3.2), we have

uy(t;) 1i+1

, w m m
xplur) = ¢ e =l + @ ) f Ii(s)ds = wd )| f Filt, u(t))dt
i=1 J0 i=0 */Si
lit1

— Nl — Z Ti(ui ()i (1) + A Z f Jilt, () w (H)dt
i=1 i=0 VY Si

m

ur(ti)
D [ f Ii(s)ds — 1i<uk<n->)uk(r,~>]
1 0

i=

=(9 - 1)||uk||g +w
p

m fi+1

FAD | il @) - wFile, (1)

i=0 Vi
w
Z(— - 1)|Iukllf§,
p

which implies that {u} is bounded in E” .
Since Eg’p is a reflexive Banach space, going if necessary to a subsequence, we can assume that
uy — win Ej” and that u; — u uniformly in ([0, T, R); hence,

> f i) — (e 1) () — (@)t — O,
i=0 VS

D Uiut)) = L)) (lr) = u(t)) = 0

i=1

as k — oo. Moreover, by go’ (u;) — 0 as k — oo, we have
<@ ) — ¢ W, ug = u >< g~ ull gory g = ullgrr— < @ (@), u —u > 0,
as k — co. On the other hand, for Yu,v € E;”, we have
< () = (), — u >
= fo ' (¢ (5 D7 ua0) = @, (§ D ((e))) (§ D (ua£)) =§ DY (1))

m

£ f a0) (6 0(0)) = @) (e) = u)ar

i=0

From the well-known inequality

(172 = 172y (x = ), if pz2,
lx—y” < ) ) 5 ETI
(bl = 1y1r2y) (=) el + 91D, if 1< p <2,

AIMS Mathematics Volume 7, Issue 9, 16986—17000.
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for all x,y € R, we can show that there exist constants C; > 0(i = 1, 2) such that

<y (w) — ¥ (W), u — u >

T m
f S D7 - §Dpuco | dr+ f
i=0 Vsi

' Pat) = D M(t)' U a()u(t) — u())? :
G fo (‘()CD?Mk(l‘)' + ‘gD?M(I)‘)Z p Zf (up ()] + |u(t)|)2_pdt if 1< p<2.

lit1

C

—

a(t)’uk(t) - u(r)1”dt) ifp=2,

W%

(3.3)

When 1 < p < 2, using the Holder inequality, we have

fo ' (|5 Dt = §Dpucol)

p
T 'gD?uk(t) - ngu(t)' . o i
B L) (‘0 D, ”k(t)| + ‘o Dj M(l)‘) dt
2

(JsDrusto| + [s Druce)])

o [spra - oo Vi
s{[ L ”(é’”] dz} [ fo (|5 Drwtorar] + |§ Deuo

(|5 Drusco] + [s Druce) )

2 » .
:» fT 'th (1) = D u(t)‘(z_p) dtr[ fT ('ngyuk(t)dt‘ ) |OCD?M([)DPdt] 2
| Jo ('OCDguk(t)' + 'OCD;*u(t)‘) 0

2—p
2

ML
) = dt]

IA

2y
(p— l)(2 P) C na C na P\ 2
] 275 [sormaol] + oo, )

» fr D =§ Dru”
(IS D2 uo)| + 5 Druto)])”

Thus, we have

fT ‘nguk(t) - ng’u(t)'2
0
(

2-p
$Dpu(o)| + [ Dpuce) )

>0 (HCD“uk(t)H +[spruen| p”( f S Dyt = § Druo|| dt).

Similarly, we have

ftiﬂ
i

2

li+1 ‘uk(t) - I/t(l)' (p-1)2-p) ZTP

< ar| 27 (fwoo| o] )
) (Z—P) LP[sitiv1] LP[stiv1]
o) + uto)

P
 (£) — u(t)' di
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and

nﬂ‘mm—mﬂz
f i —dr

W@+u@D

<

(p 2)(/7 D
(o,

Further, when 1 < p < 2, we have

=2 Zit1
)4
Lr[si, t1+1]) fs:

el

P
mm—mﬂdd.

LP[sitis1]

<Y (1)) — ¥ u(t), w () — u(t) >

(p— 2)(1) 9]

>C|2

Z) ( fo ' 'gD?ukm - SD?u(r){”dr)’z’
p=2 fivl ;
o] H ()Hms‘ m) ’ (fs a(l)|uk(l)—u(f)‘ dz) ]

(e

A (T
i=0

1=l

Let

. p
my = min (”uk@”% o,

[At]

)2
P\ »p (P=2)(p—-1)
) ,21”(m+Dm}.
L/’

C Nna
+ HODI

M = min {z(p 2)(p ) (HcDa

Thus, we have
< w’(uk) - lp/(u), Up —u >> C2M||uk - u”z

This means that ||uk - u”a -0 ask - +oo.
Moreover, in view of Eq (3.3), when p > 2 we have

<Y () = W), e = u > Cl|uye = uff].

Thus ||uk - u”a — 0 as k — +oo. In summary, ¢(u) satisfies the Palais-Smale condition.
Step 2 We illustrate that ¢ satisfies Condition (i) of Lemma 2.9. Applying condition (H,), we have that
for VYR, >0

Filt,u(t) < = f(t,u(®), u(t) >Ry,
w
Fi(t,u(®) < 2 f(t,u()), u(r) < —R).
w
Further, we have the following

w _ Jilt,u®)
7 S Faamy Ok (3.4)

AIMS Mathematics Volume 7, Issue 9, 16986—17000.



16996

< Sl u@®)

F(t )’ u(t) < —Ry. (3.5)

Then, by integrating Eqgs (3.4) and (3.5) from R, to u(¢) and u(¢) to —R;, respectively, we obtain the

following:
fu(t) W, fu(t) f(t S)
RS g Fit, S)

—-R —R
[ s [0,

upy S wp  Fi(t,s)

R R
Y
ut) S un Filt, S)

u(t) u(t)
f . fie.s)

ds.
-R; S —-R F(t S)

Moreover, we have

By calculation, we have
Fi(t,u(t)) > Ailu()|”, ()] = Ry, Fi(t,u(®)) < Bilu(®)|“, 0 <|u(t)] <Ry,
where

A; =R min {F(t,R)), Fi(t,—R;)} >0

1€ sitir1]

B; = R” max {Fi(t,R)), Fi(t,—R;)} >0

1€ sitir1]

Since F;(t, u(t)) is continuous, there exist constants D; > 0 such that
Fi(t,u(t)) > Aiu(t)|” — D;, u(t) € Eg”.
By applying the inequalities F;(¢, u(¢)) < B;lu|“ and O < |u| < R;, we have that

tit1 tit+1
f Fi(t, u()) < f Bilu()* < B;TA®||ull; .

Since E;;” is a reflexive and separable Banach space, there exists e; € E;” , i = 1,2,3,- -, such that
E,” = spanfe; :i=1,2,---}. Fork = 1,2,--- , denote

X; = spanfe;}, Yif = @X,, Z _@X

Then E P =Y, @ Zy. For Yu € Z; with ||ul|, < 1, and together with Condition (H3), we have

tit1

1 m u(t;) m
o(u) = —|lull? + f Li(s)ds — A f Fit, u(t)dt
p ; 0 ; S;

AIMS Mathematics Volume 7, Issue 9, 16986—17000.
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1 m m

> —[lull? = 6 Y @ = A > BTAllully
p i=1 i=0
1

> —||ull? = mON||lull), — A(m + 1)BT A®||ull;
p

>[= - Am + l)BTA“’) N

—_—
N |-

where 6 = max{d, 6, ,6,,} and B = max{B,, B,,--- , B,,}. Since v > p, when A € (0, m),
there exists a constant p > 0 and such that when ||u||, = p, ¢(u) = n > 0.
Step 3 We illustrate that ¢ satisfies Condition (ii) of Lemma 2.9. From Condition (H;) we have

m u(t;)
Z f I(s)ds < 0.
i-1 V0

Thus
1 m Sult;) m fi=1
el = el + ) f I()ds— 2 f Fi(t, €u(t))dr
i=1 VY0 i=0 VSi
1 m tiv1
< —llgully -2 f Ao - Didt
p i=0 Vi
1 m ti+1
< —|léull? + Am + 1)DT — A Z f Ajléu(n))dt
p i=0 Vi
1 m
= —llgull? + AGm + DDT = 2 > A'\ull,
P =0 Lsitiz1]
where D = max{Dy, D;, D,, ---, D,}. Since y > p, the above inequality implies that for any
finite dimensional space E; C E;” for Yu(t) € E; there exists a sufficiently large constant £ such that
l€ulla > p and @(u) < 0. O
4. Example

In this section, we give a simple example to prove our main result. Consider the following equation:

D7y (¢% (SD?”(I))) +a(gs () = A2 + cosHud(t), te€ (sitipy),i=0,1,2,--- ,m,

ADy! (¢g (SDsu))) = -2 . i=1,2, -, m,

D57 (95 (SDIu®)) = D57 (63 (§DYuE))), te,s], i=1,2, -, m, (4.1)
Dy (63 (§DeuGs))) = D (63 (SDSuCs))). i=1.2, -, m,

u(0) =u(T) =0,

where p = 1.5 and fi(t, u) = (2t*+cos N’ () and [;(u) = —2u° are odd about u. Take v = 6, w = 4,6; = 3
and R; = 1. By simple computation, Conditions (H;) — (H3) are satisfied and B < }1(2T2 + 1). Thus,
from Theorem 1.1, when A € (O, m) (A is defined in Remark 2.6), Problem (4.1) admits
infinitely many solutions.
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5. Conclusions

In this paper, we explored the existence of solutions of p-Laplacian fractional differential
equations with instantaneous and non-instantaneous impulses; the corresponding result has been
presented. Based on the variational method and a mountain pass lemma, sufficient conditions for the
existence of infinitely many solutions were obtained. The uniqueness and stability of solutions of the
initial value problem of the systems should be considered, this may be our future work.
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