In this paper, we consider an extension of the classical discrete-time dual risk model, in which the first-order integer-valued autoregressive (INAR(1)) process with Poisson distributed innovations is utilized to fit the temporal dependence between the number of gains for each period. We derive the explicit expression for a function that allows us to find the Lundberg adjustment coefficient and obtain the Lundberg approximation formula for ruin probability. Some numerical examples are provided to illustrate our main results.
Citation: Lihong Guan, Xiaohong Wang. A discrete-time dual risk model with dependence based on a Poisson INAR(1) process[J]. AIMS Mathematics, 2022, 7(12): 20823-20837. doi: 10.3934/math.20221141
In this paper, we consider an extension of the classical discrete-time dual risk model, in which the first-order integer-valued autoregressive (INAR(1)) process with Poisson distributed innovations is utilized to fit the temporal dependence between the number of gains for each period. We derive the explicit expression for a function that allows us to find the Lundberg adjustment coefficient and obtain the Lundberg approximation formula for ruin probability. Some numerical examples are provided to illustrate our main results.
[1] | S. Asmussen, H. Albrecher, Ruin probabilities, 2 Eds., Singapore: World Scientiffic, 2010. https://doi.org/10.1142/7431 |
[2] | B. Avanzi, H. U. Gerber, E. S. W. Shiu, Optimal dividends in the dual model, Insur. Math. Econ., 41 (2007), 111–123. https://doi.org/10.1016/j.insmatheco.2006.10.002 doi: 10.1016/j.insmatheco.2006.10.002 |
[3] | C. Mazza, D. Rullière, A link between wave governed random motions and ruin processes, Insur. Math. Econ., 35 (2004), 205–222. https://doi.org/10.1016/j.insmatheco.2004.07.014 doi: 10.1016/j.insmatheco.2004.07.014 |
[4] | H. Cramér, Collective risk theory: A survey of the theory from the point of view of the theory of stochastic processes, Stockholm: Ab Nordiska Bokhandeln, 1955. |
[5] | H. Albrecher, A. Badescu, D. Landriault, On the dual risk model with tax payments, Insur. Math. Econ., 42 (2008), 1086–1094. https://doi.org/10.1016/j.insmatheco.2008.02.001 doi: 10.1016/j.insmatheco.2008.02.001 |
[6] | H. U. Gerber, H. Smith, Optimal dividends with incomplete information in the dual model, Insur. Math. Econ., 43 (2008), 227–233. https://doi.org/10.1016/j.insmatheco.2008.06.002 doi: 10.1016/j.insmatheco.2008.06.002 |
[7] | A. C. Y. Ng, On a dual model with a dividend threshold, Insur. Math. Econ., 44 (2009), 315–324. https://doi.org/10.1016/j.insmatheco.2008.11.011 doi: 10.1016/j.insmatheco.2008.11.011 |
[8] | O. Boxma, E. Frostig, The dual risk model with dividends taken at arrival, Insur. Math. Econ., 83 (2018), 83–92. https://doi.org/10.1016/j.insmatheco.2018.09.005 doi: 10.1016/j.insmatheco.2018.09.005 |
[9] | Y. Chen, Y. J. Liao, Q. Zhang, W. P. Zhang, Ruin probabilities for the phase-type dual model perturbed by diffusion, Commun. Stat. Theor. M., 50 (2021), 5634–5651. https://doi.org/10.1080/03610926.2020.1737126 doi: 10.1080/03610926.2020.1737126 |
[10] | S. S. Liu, Z. Y. Liu, G. X. Liu, Optimal dividend strategy for the dual model with surplus-dependent expense, Commun. Stat. Theor. M., in press. https://doi.org/10.1080/03610926.2021.1917614 |
[11] | A. Fahim, L. J. Zhu, Asymptotic analysis for optimal dividends in a dual risk model, Stoch. Models, in press. https://doi.org/10.1080/15326349.2022.2080709 |
[12] | C. Gourieroux, J. Jasiak, Heterogeneous INAR(1) model with application to car insurance, Insur. Math. Econ., 34 (2004), 177–192. https://doi.org/10.1016/j.insmatheco.2003.11.005 doi: 10.1016/j.insmatheco.2003.11.005 |
[13] | H. Cossette, E. Marceau, V. Maume-Deschamps, Discrete-time risk models based on time series for count random variables, Astin Bull., 40 (2010), 123–150. https://doi.org/10.2143/AST.40.1.2049221 doi: 10.2143/AST.40.1.2049221 |
[14] | H. Cossette, E. Marceau, F. Toureille, Risk models based on time series for count random variables, Insur. Math. Econ., 48 (2011), 19–28. https://doi.org/10.1016/j.insmatheco.2010.08.007 doi: 10.1016/j.insmatheco.2010.08.007 |
[15] | H. F. Shi, D. H. Wang, An approximation model of the collective risk model with INAR(1) claim process, Commun. Stat. Theor. M., 43 (2014), 5305–5317. https://doi.org/10.1080/03610926.2012.729636 doi: 10.1080/03610926.2012.729636 |
[16] | L. Z. Zhang, X. Hu, B. G. Duan, Optimal reinsurance under adjustment coefficient measure in a discrete risk model based on Poisson MA(1) process, Scand. Actuar. J., 2015 (2015), 455–467. https://doi.org/10.1080/03461238.2013.849615 doi: 10.1080/03461238.2013.849615 |
[17] | X. Hu, L. Z. Zhang, W. W. Sun, Risk model based on the first-order integer-valued moving average process with compound Poisson distributed innovations, Scand. Actuar. J., 2018 (2018), 412–425. https://doi.org/10.1080/03461238.2017.1371067 doi: 10.1080/03461238.2017.1371067 |
[18] | M. Chen, X. Hu, Risk aggregation with dependence and overdispersion based on the compound Poisson INAR(1) process, Commun. Stat. Theor. M., 49 (2020), 3985–4001. https://doi.org/10.1080/03610926.2019.1594297 doi: 10.1080/03610926.2019.1594297 |
[19] | G. H. Guan, X. Hu, On the analysis of a discrete-time risk model with INAR(1) processes, Scand. Actuar. J., 2022 (2022), 115–138. https://doi.org/10.1080/03461238.2021.1937305 doi: 10.1080/03461238.2021.1937305 |
[20] | D. S. Dimitrina, V. K. Kaishev, S. Q. Zhao, On finite-time ruin probabilities in a generalized dual risk model with dependence, Eur. J. Oper. Res., 242 (2015), 134–148. https://doi.org/10.1016/j.ejor.2014.10.007 doi: 10.1016/j.ejor.2014.10.007 |
[21] | Z. Li, K. P. Sendova, C. Yang, On a perturbed dual risk model with dependence between inter-gain times and gain sizes, Commun. Stat. Theor. M., 46 (2017), 10507–10517. https://doi.org/10.1080/03610926.2016.1236959 doi: 10.1080/03610926.2016.1236959 |
[22] | M. A. Al-Osh, A. A. Alzaid, First-order integer-valued autoregressive INAR(1) process, J. Time Ser. Anal., 8 (1982), 261–275. https://doi.org/10.1111/j.1467-9892.1987.tb00438.x doi: 10.1111/j.1467-9892.1987.tb00438.x |
[23] | C. H. Weiß, Thinning operations for modeling time series counts – a survey, Adv. Stat. Anal., 92 (2008), 319–341. https://doi.org/10.1007/s10182-008-0072-3 doi: 10.1007/s10182-008-0072-3 |
[24] | A. Müller, G. Pflug, Asymptotic ruin probabilities for risk processes with dependent increments, Insur. Math. Econ., 28 (2001), 381–392. https://doi.org/10.1016/S0167-6687(01)00063-4 doi: 10.1016/S0167-6687(01)00063-4 |
[25] | H. Albrecher, J. Kantor, Simulation of ruin probabilities for risk processes of Markovian type, Monte Carlo Methods Appl., 8 (2002), 111–127. https://doi.org/10.1515/mcma.2002.8.2.111 doi: 10.1515/mcma.2002.8.2.111 |
[26] | S. Schweer, C. H. Weiß, Compound Poisson INAR(1) processes: stochastic properties and testing for overdispersion, Comput. Stat. Data. Anal., 77 (2014), 267–284. https://doi.org/10.1016/j.csda.2014.03.005 doi: 10.1016/j.csda.2014.03.005 |
[27] | X. H. Qi, Q. Li, F. K. Zhu, Modeling time series of count with excess zeros and ones based on INAR(1) model with zero-and-one inflated Poisson innovations, J. Comput. Appl. Math., 346 (2019), 572–590. https://doi.org/10.1016/j.cam.2018.07.043 doi: 10.1016/j.cam.2018.07.043 |
[28] | J. Y. Zhang, F. K. Zhu, N. Mamode Khan, A new INAR model based on Poisson-BE2 innovations, Commun. Stat. Theor. M., in press. https://doi.org/10.1080/03610926.2021.2024571 |
[29] | H. Nobanee, G. B. Alqubaisi, A. Alhameli, H. Alqubaisi, N. Alhammadi, S. A. Almasahli, et al., Green and sustainable life insurance: A bibliometric review, J. Risk Financial Manag., 14 (2021), 563. https://doi.org/10.3390/jrfm14110563 doi: 10.3390/jrfm14110563 |
[30] | Q. P. Chen, B. Ning, Y. Pan, J. L. Xiao, Green finance and outward foreign direct investment: evidence from a quasi-natural experiment of green insurance in China, Asia Pac. J. Manag., 39 (2022), 899–924. https://doi.org/10.1007/s10490-020-09750-w doi: 10.1007/s10490-020-09750-w |