Let 0<α<n and b be a locally integrable function. In this paper, we obtain the characterization of compactness of the iterated commutator (TΩ,α)mb generated by the function b and the fractional integral operator with the homogeneous kernel TΩ,α on ball Banach function spaces. As applications, we derive the characterization of compactness via the commutator (TΩ,α)mb on weighted Lebesgue spaces, and further obtain a necessary and sufficient condition for the compactness of the iterated commutator (Tα)mb generated by the function b and the fractional integral operator Tα on Morrey spaces. Moreover, we also show the necessary and sufficient condition for the compactness of the commutator [b,Tα] generated by the function b and the fractional integral operator Tα on variable Lebesgue spaces and mixed Morrey spaces.
Citation: Heng Yang, Jiang Zhou. Compactness of commutators of fractional integral operators on ball Banach function spaces[J]. AIMS Mathematics, 2024, 9(2): 3126-3149. doi: 10.3934/math.2024152
[1] | Saif Ur Rehman, Arjamand Bano, Hassen Aydi, Choonkil Park . An approach of Banach algebra in fuzzy metric spaces with an application. AIMS Mathematics, 2022, 7(5): 9493-9507. doi: 10.3934/math.2022527 |
[2] | Hasanen A. Hammad, Hassen Aydi, Maryam G. Alshehri . Solving hybrid functional-fractional equations originating in biological population dynamics with an effect on infectious diseases. AIMS Mathematics, 2024, 9(6): 14574-14593. doi: 10.3934/math.2024709 |
[3] | Zhiyu Lin, Xiangxing Tao, Taotao Zheng . Compactness for iterated commutators of general bilinear fractional integral operators on Morrey spaces with non-doubling measures. AIMS Mathematics, 2022, 7(12): 20645-20659. doi: 10.3934/math.20221132 |
[4] | Jing Liu, Kui Li . Compactness for commutators of Calderón-Zygmund singular integral on weighted Morrey spaces. AIMS Mathematics, 2024, 9(2): 3483-3504. doi: 10.3934/math.2024171 |
[5] | Stevo Stević . Note on a new class of operators between some spaces of holomorphic functions. AIMS Mathematics, 2023, 8(2): 4153-4167. doi: 10.3934/math.2023207 |
[6] | Yanlong Shi, Xiangxing Tao . Rough fractional integral and its multilinear commutators on p-adic generalized Morrey spaces. AIMS Mathematics, 2023, 8(7): 17012-17026. doi: 10.3934/math.2023868 |
[7] | Ateq Alsaadi, Manochehr Kazemi, Mohamed M. A. Metwali . On generalization of Petryshyn's fixed point theorem and its application to the product of n-nonlinear integral equations. AIMS Mathematics, 2023, 8(12): 30562-30573. doi: 10.3934/math.20231562 |
[8] | Yan-fu Xue, Zhi-jie jiang, Hui-ling Jin, Xiao-feng Peng . Logarithmic Bergman-type space and a sum of product-type operators. AIMS Mathematics, 2023, 8(11): 26682-26702. doi: 10.3934/math.20231365 |
[9] | Keun Young Lee, Gwanghyun Jo . The dual of a space of compact operators. AIMS Mathematics, 2024, 9(4): 9682-9691. doi: 10.3934/math.2024473 |
[10] | Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139 |
Let 0<α<n and b be a locally integrable function. In this paper, we obtain the characterization of compactness of the iterated commutator (TΩ,α)mb generated by the function b and the fractional integral operator with the homogeneous kernel TΩ,α on ball Banach function spaces. As applications, we derive the characterization of compactness via the commutator (TΩ,α)mb on weighted Lebesgue spaces, and further obtain a necessary and sufficient condition for the compactness of the iterated commutator (Tα)mb generated by the function b and the fractional integral operator Tα on Morrey spaces. Moreover, we also show the necessary and sufficient condition for the compactness of the commutator [b,Tα] generated by the function b and the fractional integral operator Tα on variable Lebesgue spaces and mixed Morrey spaces.
In 1961, John and Nirenberg [1] introduced the space of functions of bounded mean oscillation BMO(Rn), which is defined as the set of all locally integrable functions f on Rn such that
‖f‖BMO(Rn):=supB1|B|∫B|f(x)−fB|dx<∞, |
where the supremum is taken over all balls in Rn and fB:=1|B|∫Bf(x)dx. In 1976, Coifman et al. [2] stated that b∈BMO(Rn) if and only if the commutator
[b,T]f(x)=bTf(x)−T(bf)(x) |
is bounded on Lp(Rn) for 1<p<∞, where T is the classical singular integral operator. In 1978, Uchiyama [3] proved that b∈BMO(Rn) if and only if the commutator generated by the locally integrable function b and the singular integral operator with the homogeneous kernel is bounded on Lp(Rn) for 1<p<∞. Later, the characterization of BMO(Rn) was also established for various function spaces including by Karlovich and Lerner [4] on variable exponent Lebesgue spaces and Di Fazio and Ragusa [5] on Morrey spaces.
In 1978, Uchiyama [3] refined the boundedness results on the commutator [b,T] to compactness. This is achieved by requiring the symbol b∈CMO(Rn), which is the closure of C∞c(Rn) in the BMO(Rn). In 2012, Chen et al. [6] showed that b∈CMO(Rn) if and only if the commutator generated by the locally integrable function b and the singular integral operator with the homogeneous kernel is compact on the Morrey spaces. Recently, Tao et al. [7] obtained that b∈CMO(Rn) if and only if the commutator generated by the locally integrable function b and the singular integral operator with the homogeneous kernel is compact on ball Banach function spaces. The purpose of this paper is to prove the characterization of compactness of the iterated commutator generated by the locally integrable function and the fractional integral operator with the homogeneous kernel on ball Banach function spaces.
In this paper, we establish the characterization of compactness of the iterated commutator (TΩ,α)mb generated by the locally integrable function b and the fractional integral operator with the homogeneous kernel TΩ,α on ball Banach function spaces. As applications, we show that b∈CMO(Rn) if and only if the iterated commutator (TΩ,α)mb is compact from Lpωp(Rn) to Lqωq(Rn), where 1<p,q<∞, 1q=1p−αn and ω is a weight, and we obtain that b∈CMO(Rn) if and only if the iterated commutator (Tα)mb generated by the locally integrable function b and the fractional integral operator is compact from Mpq(Rn) to Mst(Rn), where 0<p≤q<∞, 1<t≤s<∞, 1s=1p−αn and ts=qp. Moreover, we obtain that b∈CMO(Rn) if and only if the commutator [b,Tα] generated by the locally integrable function b and the fractional integral operator is compact from Lp(⋅)(Rn) to Lq(⋅)(Rn), where 1q(x)=1p(x)−αn. We also obtain that b∈CMO(Rn) if and only if the commutator [b,Tα] generated by the locally integrable function b and the fractional integral operator is compact from Mp0→p(Rn) to Mq0→q(Rn), where →p=(p1,⋯,pn), →q=(q1,⋯,qn), np0≤∑nj=11pj, nq0≤∑nj=11qj, 1q0=1p0−αn and →pp0=→qq0.
To state our main results, we begin with the definition of the ball Banach function spaces introduced in [8].
The symbol U(Rn) is denoted as the set of all measurable functions on Rn. For any x∈Rn and 0<r<∞, let B(x,r):={y∈Rn:|x−y|<r} and
B:={B(x,r):x∈Rn and 0<r<∞}. | (1.1) |
Definition 1.1. A quasi-Banach space X⊂U(Rn) is called a ball quasi-Banach function space if it satisfies the following conditions:
(i) ‖f‖X=0 implies that f=0 almost everywhere;
(ii) |g|≤|f| almost everywhere implies that ‖g‖X≤‖f‖X;
(iii) 0≤fm↑f almost everywhere implies that ‖fm‖X↑‖f‖X;
(iv) B∈B implies that χB∈X, where B is as in (1.1).
The ball quasi-Banach function space X is called the ball Banach function space if the norm of X satisfies the triangle inequality: for all f,g∈X,
‖f+g‖X≤‖f‖X+‖g‖X | (1.2) |
and, for any B∈B, there exists a positive constant C(B) that is dependent on B, such that, for all f∈X,
∫B|f(x)|dx≤C(B)‖f‖X. |
The following notion of the associate space of the ball Banach function space can be found in [9, Chapter 1, Definitions 2.1 and 2.3].
Definition 1.2. For any a ball Banach function space X, the associate space X′ is defined by
X′:={f∈U(Rn):‖f‖X′<∞}, |
where, for any f∈U(Rn),
‖f‖X′:=sup{g∈X:‖g‖X=1}‖fg‖L1(Rn), |
and ‖⋅‖X′ is called the associate norm of ‖⋅‖X.
The theory of commutators plays an important role in harmonic analysis (see, for example, [10,11,12,13,14,15,16]) and partial differential equations (see, for example, [17,18,19]).
Let 0<α<n. Recall that the fractional integral operator with the homogeneous kernel is defined by
TΩ,αf(x):=∫RnΩ(x−y)|x−y|n−αf(y)dy, | (1.3) |
where the function Ω satisfies the following conditions:
Ω(λx′):=Ω(x′) for any 0<λ<∞ and x′∈Sn−1, | (1.4) |
∫Sn−1Ω(x′)dσ(x′)=0, | (1.5) |
|Ω(x′)−Ω(y′)|≤|x′−y′| for any x′,y′∈Sn−1, | (1.6) |
where Sn−1:={x∈Rn:|x|=1} denotes the unit sphere in Rn and dσ is the area measure on Sn−1.
We suppose that m∈N; the iterated commutator of the operator TΩ,α is defined by
(TΩ,α)mb(f)(x):=[b,(TΩ,α)m−1b](f)(x),(TΩ,α)0bf(x):=TΩ,α(f)(x). |
Put Tα:=T1,α, where Tα is a classical fractional integral operator, which is defined by
Tαf(x):=∫Rnf(y)|x−y|n−αdy. |
In 2014, Pérez et al. [20] introduced the iterated commutator generated by the locally integrable function b and the multilinear singular integral operator, and they studied the boundedness of these operators on product Lebesgue spaces. Bényi and Torres [21] studied the compactness of the iterated commutator generated by two locally integrable functions b1,b2 and the bilinear singular integral operator on the Lebesgue spaces. Later, Bényi et al. [22] extended the work of Bényi and Torres [21] to weighted Lebesgue spaces. Wang et al. [23] studied the characterization of compactness of the iterated commutator generated by two locally integrable functions b1,b2 as well as the bilinear fractional integral operator on the Lebesgue spaces. Hytönen and Lappas [24] studied the compactness of the iterated commutator generated by two locally integrable functions b1,b2 and the bilinear singular integral operator, the bilinear fractional integral operator and the bilinear Fourier multiplier on the weighted Lebesgue spaces. Recently, Guo et al. [25] studied the compactness of the iterated commutator generated by the locally integrable function b and the singular integral operator with the homogeneous kernel on the weighted Lebesgue spaces. In this paper, we consider the characterization of compactness of the iterated commutator (TΩ,α)mb generated by the locally integrable function b and the fractional integral operator with the homogeneous kernel on ball Banach function spaces.
To show our main results, we need some assumptions.
Let 0<α<n. For a locally integrable function f on Rn, the fractional maximal operator Mα is defined by
Mα(f)(x):=supB∋x1|B|1−α/n∫B|f(y)|dy, | (1.7) |
where the supremum is taken over all balls B∈B containing x. For a locally integrable function f on Rn, the Hardy-Littlewood maximal operator M is defined by
M(f)(x):=supB∋x1|B|∫B|f(y)|dy, |
where the supremum is taken over all balls B∈B containing x.
Assumption 1.1. Let X be a ball Banach function space. Suppose that the Hardy-Littlewood maximal operator M is bounded on X and X′.
Assumption 1.2. Let X and Y be ball Banach function spaces. Then the following statements are true:
(i) The operator Tα is bounded from X to Y.
(ii) Let χB be a characteristic function on the ball B. For any ball B, then
‖χB‖X‖χB‖Y′|B|1+α/n≲1. |
(iii) The iterated commutator of the operator TΩ,α is bounded from X to Y, that is,
‖(TΩ,α)mb‖Y≲‖bi‖mBMO||f||X. |
We also need the condition of the L∞-Dini condition (see, for example, [26]).
Definition 1.3. A function Ω∈L∞(Sn−1) is said to satisfy the L∞−Dini condition if
∫10ω∞(τ)τdτ<∞, | (1.8) |
where, for any 0<τ<1,
ω∞(τ):=sup{x,y∈Sn−1:|x−y|<τ}|Ω(x)−Ω(y)|. |
Theorem 1.1. Let 0<α<n. Let X and Y be ball Banach function spaces satisfying Assumptions 1, 2 (i) and (iii) and TΩ,α be the fractional integral operator with the homogeneous kernel Ω, where Ω∈L∞(Sn−1) satisfies (1.3), (1.4) and (1.8). If b∈CMO(Rn), then (TΩ,α)mb is compact from X to Y.
Theorem 1.2. Let 0<α<n and b∈L1loc(Rn). Let X and Y be ball Banach function spaces satisfying Assumptions 1 and 2(i) and (ii). Let TΩ,α be the fractional integral operator with the homogeneous kernel Ω, where Ω∈L∞(Sn−1) satisfies that there exists an open set Γ⊂Sn−1 such that Ω never vanishes and never changes sign on Γ. If (TΩ,α)mb is compact from X to Y, then b∈CMO(Rn).
Corollary 1.1. Let 0<α<n and b∈L1loc(Rn). Let X and Y be ball Banach function spaces satisfying Assumptions 1 and 2 and TΩ,α be the fractional integral operator with the homogeneous kernel Ω, where Ω satisfies (1.3), (1.4) and (1.5). Then (TΩ,α)mb is compact from X to Y if and only if b∈CMO(Rn).
We end this section by stating some conventions on notation. Let N:={1,2,…}. We always denote by C a positive constant which is independent of the main parameters, but it may vary from line to line. We also use C(α,β,…) to denote a positive constant that is dependent on the indicated parameters α,β,…. The symbol f≲g means that f≤Cg. If f≲g and g≲f, we then write f∼g. If E is a subset of Rn, we denote by χE its characteristic function and by Ec the set Rn∖E. Furthermore, for any t∈(0,∞) and any ball B:=B(x,r) in Rn, with x∈Rn and r∈(0,∞), we let tB:=B(x,tr). For any q∈[1,∞], we denote by q′ its conjugate exponent, namely, 1q+1q′=1.
We present some necessary lemmas and notions in this section, which is very important to prove our main results.
For any f∈U(Rn), the non-increasing rearrangement is defined by
f∗(t):=inf{ζ>0:|{x∈Rn:|f(x)|>ζ}|<t},0<t<∞, |
for any f∈L1loc(Rn), 0<λ<1 and B⊂Rn, the local mean oscillation of f on B is defined by
aλ(f;B):=infc∈R((f−c)χB)∗(λ|B|). |
Lemma 2.1. [27, Lemma 2.1] Let 0<λ≤12. For any real-valued function b, we write
‖b‖BMOλ:=supB⊂Rnaλ(b;B). |
Then there exists a positive constant C such that
C−1‖b‖BMO≤‖b‖BMOλ≤C‖b‖BMO. |
Lemma 2.2. [25, Theorem 3.3] Let 0<λ<12 and b∈BMO(Rn). Then b∈CMO(Rn) if and only if the function b satisfies the following conditions:
(i) limr→0sup|B|=raλ(b;B)=0;
(ii) limr→∞sup|B|=raλ(b;B)=0;
(iii) limd→∞supB∩B(0,d)=∅aλ(b;B)=0.
Lemma 2.3. [28, Theorem 1.2] Let X be the ball Banach function space such that M is bounded on X′. For any b∈L1loc(Rn), we denote
‖b‖BMOX:=supB⊂Rn1‖χB‖X‖(b−bB)χB‖X. |
Then there exists a positive constant C such that, for all b∈BMO(Rn),
C−1‖b‖BMO≤C‖b‖BMOX≤C‖b‖BMO. |
Lemma 2.4. [7, Lemma 2.6] Let X be a ball quasi-Banach function space satisfying the triangle inequality as in (1.2). If f∈X and g∈X′, then f and g are integrable and
∫Rn|f(x)g(x)|dx≤‖f‖X‖g‖X′. |
Lemma 2.5. [8, Definition 2.6] Let 0<p<∞ and X be a ball Banach function space. The p-convexification Xp of X is defined by
Xp:={f∈U(Rn):|f|p∈X} |
equipped with the quasi-norm ‖f‖Xp=‖|f|p‖1pX.
For any 0<θ<∞, f∈L1loc(Rn) and x∈Rn, the powered Hardy-Littlewood maximal operator M(θ) is defined by
M(θ)(f)(x):={M(|f|θ)(x)}1θ. | (2.1) |
Lemma 2.6. [29, Remark 2.19] Let 0<θ<∞ and X be a ball quasi-Banach function space. Assume that there exists a positive constant C such that, for any f∈U(Rn),
‖M(θ)(f)‖X≤C‖f‖X. |
Then there exists a positive constant C0 such that, for any ball B∈B and 1≤β<∞,
‖χβB‖X≤C0βnθ‖χB‖X, | (2.2) |
where the positive constant C0 is independent of B∈B and β.
Next, let us recall the following lemma introduced by Tao et al.in [7, Theorem 3.6], which is a sufficient condition for subsets of ball Banach function spaces to be totally bounded and a generalization in ball Banach function spaces of the well-known Fréchet-Kolmogorov theorem in Lp(Rn) with 1≤p<∞.
Lemma 2.7. Let X be a ball Banach function space. Then a subset A of X is totally bounded if the set A satisfies the following conditions:
(i) A is bounded, namely,
supf∈A‖f‖X<∞; |
(ii) For any given ϵ∈(0,∞), there exists a positive constant N such that, for any f∈A,
‖fχ{x∈Rn:|x|>N}‖X<ϵ; |
(iii) A is uniformly vanishes equicontinuous, namely, for any given ϵ∈(0,∞), there exists a positive constant ρ such that, for any f∈A and z∈Rn with |z|∈[0,ρ),
‖f(⋅+z)−f(⋅)‖X<ϵ. |
Conversely, assume that X satisfies the following additional asumptions that Cc(Rn) is dense in X and that, for any f∈X and y∈Rn,
‖f‖X=‖f(⋅+y)‖X. |
If a subset A of X is totally bounded, then A satisfies (ⅰ)–(ⅲ) of Lemma 2.7.
Lemma 2.8. [7, Proposition 3.8] If X is a ball Banach function space with an absolutely continuous norm, then Cc(Rn) is dense in X.
The following lemma can be seen in [27, Proposition 4.1].
Lemma 2.9. Let λ∈(0,1) and b∈L1loc(Rn). Let Ω∈L∞(Sn−1) satisfy that there exists an open set Γ⊂Sn−1 such that Ω never vanishes and never changes sign on Γ. There exist ϵ0>0 and k0>10√n depending only on Ω and n such that, for any ball B(x0,r0)⊂Rn with x0∈Rn and r0∈(0,∞), there exist another ball B(x1,r0) and measurable sets E⊂B(x0,r0) with |E|=λ2|B(x0,r0)| as well as F⊂B(x1,r0) with |x0−x1|=2k0r0 and |F|=λ2|B(x1,r0)| and G⊂E×F with |G|≥λ8|B(x0,r0)|2 such that they satisfy the following properties:
(i) for any x∈E and y∈F, aλ(b;B)≤|b(x)−b(y)|;
(ii) Ω(x−y|x−y|) and b(x)−b(y) do not change sign on E×F;
(iii) for any (x,y)∈G, |Ω(x−y|x−y|)|≥ϵ0.
In this section, we first recall the following smooth truncated technique in [30] (see also [7,31]). Let φ∈C∞([0,∞)) satisfy
0≤φ≤1 and φ(x)={1,x∈[0,12],0,x∈[1,∞]. |
Let 0<α<n and Ω∈L∞(Sn−1) satisfy (1.4), (1.5) and the L∞-Dini condition. For any ϵ∈(0,∞) and any x,y∈Rn, define Kϵ(x,y):=Ω(x−y)|x−y|n−α[1−φ(|x−y|ϵ)]. Let X be the ball Banach function space satisfying Assumption 1.1. Using [7, Lemma 2.12] and [32, Lemma 7.4.5], we know that, for any f∈X,ϵ∈(0,∞) and x∈Rn,
T(ϵ)Ω,αf(x):=∫RnKϵ(x,y)f(y)dy<∞. |
Proposition 3.1. Let 0<α<n and Ω∈L∞(Sn−1) satisfy (1.4), (1.5) and (1.8). Then, for any given ϵ∈(0,∞), Kϵ satisfies the following smoothness condition: there exists a positive constant C which is independent of ϵ,x,y and z for any x,y,z∈Rn with |z|≤|x−y|2 such that
|Kϵ(x,y)−Kϵ(x+z,y)|≤C[1|x−y|n−αω∞(4|z||x−y|)+|z||x−y|n−α+1]. |
Proof. For any x,y,z∈Rn with |z|≤|x−y|2, applying (1.4), we know that
|Ω(x−y)−Ω(x+z−y)|=|Ω(x−y|x−y|)−Ω(x+ξ−y|x+z−y|)|≤ω∞(4|z||x−y|). |
Using the mean value theorem, for any x,y,z∈Rn with |z|≤|x−y|2, we have
∣Kϵ(x,y)−Kϵ(x+z,y)∣≤|Ω(x−y)|x−y|n−α−Ω(x+z−y)|x+z−y|n−α||1−φ(|x−y|ϵ)|+|Ω(x+z−y)|x+z−y|n−α||φ(|x+z−y|ϵ)−φ(|x−y|ϵ)|≲|Ω(x−y)−Ω(x+z−y)|x−y|n−α|+|1|x+z−y|n−α−1|x−y|n−α|+‖φ′‖L∞(R+)|x+z−y|n−α||x+z−y|ϵ−|x−y|ϵ|χ{(x,y)∈Rn×Rn:13ϵ≤|x−y|≤2ϵ}(x,y)≲1|x−y|n−αω∞(4|z||x−y|)+|z||x−y|n−α+1+1ϵ|z||x+z−y|n−αχ{(x,y)∈Rn×Rn:13ϵ≤|x−y|≤2ϵ}(x,y)≲1|x−y|n−αω∞(4|z||x−y|)+|z||x−y|n−α+1, |
Thus, the proof of Proposition 3.1 is complete.
Proposition 3.2. Let 0<α<n and b∈C∞c(Rn). Let X and Y be ball Banach function spaces and TΩ,α be the fractional integral operator with homogeneous kernel Ω, where Ω∈L∞(Sn−1) satisfies (1.3), (1.4) and (1.8). Then there exists a positive constant C such that, for any ϵ>0, f∈X and x∈Rn,
|(T(ϵ)Ω,α)mb(f)(x)−(TΩ,α)mb(f)(x)|≤Cϵ‖∇b‖mL∞(Rn)Mα(f)(x). |
Moreover, if Mα is bounded from X to Y, then
limϵ→0+‖(T(ϵ)Ω,α)mb−(TΩ,α)mb‖X→Y=0. |
Proof. For f∈X and x∈Rn, using the mean value theorem, we have
|(T(ϵ)Ω,α)mb(f)(x)−(TΩ,α)mb(f)(x)|≤|∫{y∈Rn:|x−y|<ϵ}|b(x)−b(y)|mΩ(x−y)|x−y|n−αφ(|x−y|ϵ)f(y)dy|≤∫{y∈Rn:|x−y|<ϵ}|b(x)−b(y)|m|Ω(x−y)||x−y|n−α|f(y)|dy≤‖Ω‖L∞(Sn−1)‖∇b‖mL∞(Rn)∞∑j=0∫{y∈Rn:ϵ2j+1<|x−y|≤ϵ2j}|x−y|m|f(y)||x−y|n−αdy≤‖Ω‖L∞(Sn−1)‖∇b‖mL∞(Rn)∞∑j=0ϵ2mj⋅1|2−jϵ|n−α∫{y∈Rn:|x−y|≤ϵ2j}|f(y)|dy≲ϵ‖Ω‖L∞(Sn−1)‖∇b‖mL∞(Rn)∞∑j=012mjMα(f)(x)≲ϵ‖∇b‖mL∞(Rn)Mα(f)(x). |
Applying Assumption 1.2(ⅰ), we have
‖(T(ϵ)Ω,α)mb(f)−(TΩ,α)mb(f)‖Y≲ϵ‖Mα(f)‖Y≲ϵ‖f‖X, |
which implies that limϵ→0+‖(T(ϵ)Ω,α)mb−(TΩ,α)mb‖X→Y=0. The proof of Proposition 3.2 is complete.
Proof of Theorem 1.1. Let b∈CMO(Rn). We know that, for any given κ∈(0,∞), there exists a b(κ)∈C∞c(Rn) such that ‖b−b(κ)‖BMO(Rn)<κ. Then, by the boundedness of (TΩ,α)mb−b(κ) from X to Y, we obtain the following, for any given κ∈(0,∞) and for any f∈X;
‖(TΩ,α)mb(f)−(TΩ,α)mb(κ)(f)‖Y=‖(TΩ,α)mb−b(κ)(f)‖Y≲‖b−b(κ)‖mBMO(Rn)‖f‖X≲κm‖f‖X. |
By Proposition 3.2, it suffices to show that, for any b∈C∞c(Rn) and any ϵ∈(0,∞) small enough, the operator (T(ϵ)Ω,α)mb is compact from X to Y. Thus, we only need to prove that
Aϵ:={(T(ϵ)Ω,α)mb(f):‖f‖X≤1} |
satisfies (ⅰ)–(ⅲ) of Lemma 2.7 respectively.
For ϵ<1, applying Proposition 3.2 and Assumption 1.2(ⅲ), we have
‖(T(ϵ)Ω,α)mb(f)‖Y≤‖(TΩ,α)mb(f)‖Y+‖(TΩ,α)mb(f)−(T(ϵ)Ω,α)mb(f)‖Y≲(1+ϵ)‖f‖X≤2‖f‖X. |
This proves that Aϵ satisfies (i) of Lemma 2.7.
For (ⅱ) of Lemma 2.7, we suppose that there exists a positive constant R0 such that supp(b) ⊂B(0,R0). For any y∈B(0,R0) and x∈Rn with |x|∈(2R0,∞), we have that |x−y|∼|x|. Thus, for any f∈A, x∈Rn with |x|∈(2R0,∞) and Ω∈L∞(Sn−1), using Lemma 2.6, we have
|(T(ϵ)Ω,α)mb(f)(x)|≤∫Rn|b(x)−b(y)|m|Ω(x−y)||x−y|n−α|f(y)|dy≲∫B(0,R0)|f(y)||x−y|n−αdy≲1|x|n−α‖f‖X‖χB(0,R0)‖X′≲1|x|n−α. |
Applying Lemma 2.6 and [8, Lemma 2.15], we deduce that there exists η∈(1,∞) such that
‖(T(ϵ)Ω,α)mb(f)χ{x∈Rn:|x|>N}‖Y≲∞∑j=0‖1|⋅|n−αχ{x∈Rn:2jN≤|x|<2j+1N}‖Y≲∞∑j=0‖χ{x∈Rn:2jN≤|x|<2j+1N}‖Y(2jN)n−α≲∞∑j=01(2jN)n−α−n/η≲1Nn−α−n/η. |
Thus, Aϵ satisfies the condition (ⅱ) of Lemma 2.7.
Next, we prove that Aϵ satisfies (ⅲ) of Lemma 2.7. For any f∈A and z∈Rn∖{0} with |z|≤ϵ8, we see that
(T(ϵ)Ω,α)mb(f)(x+z)−(T(ϵ)Ω,α)mb(f)(x)≤∫Rn(b(x)−b(y))mKϵ(x,y)f(y)dy−∫Rn(b(x+z)−b(y))mKϵ(x+z,y)f(y)dy≤∫{y∈Rn:|x−y|>ϵ/4}(b(x+z)−b(y))m(Kϵ(x+z,y)−Kϵ(x,y))f(y)dy+∫{y∈Rn:|x−y|>ϵ/4}((b(x+z)−b(y))m−(b(x)−b(y))m)Kϵ(x,y)f(y)dy=:I1(x,z)+I2(x,z). |
For I1(x,z), applying Proposition 3.1, if |z|≤|x−y|2, we have
I1(x,z)≤∫|x−y|>ϵ/4|b(x+z)−b(y)|m|Kϵ(x+z,y)−Kϵ(x,y)||f(y)|dy≲∫{y∈Rn:|x−y|>ϵ/4}|b(x+z)−b(y)|mω∞(4|z||x−y|)1|x−y|n−α|f(y)|dy+∫{y∈Rn:|x−y|>ϵ/4}|b(x+z)−b(y)|m1|x−y|1|x−y|n−α|f(y)|dy=:I11(x,z)+I12(x,z). |
For I_{11}(x, z) , by the L^{\infty} -Dini condition, we obtain that
\begin{align*} I_{11}(x, z) & = \int_{\{y\in {\mathbb R}^n:|x-y| > \epsilon/4\}}|b(x+z)-b(y)|^m\omega_{\infty}\left(\frac{4|z|}{|x-y|}\right)\frac{1}{|x-y|^{n-\alpha}}|f(y)|dy\\ &\lesssim|z|^{m}\|\nabla b\|^m_{L^{\infty}( {\mathbb R}^n)}\sum\limits_{j = 0}^{\infty}\omega_{\infty}\left(\frac{|z|}{2^{j-2}\epsilon}\right) \int_{\{y\in {\mathbb R}^n:2^{j-2}\epsilon < |x-y| < 2^{j-1}\epsilon\}}\frac{1}{|x-y|^{n-\alpha}}|f(y)|dy\\ &\lesssim|z|^{m}\|\nabla b\|^m_{L^{\infty}( {\mathbb R}^n)}\sum\limits_{j = 0}^{\infty}\omega_{\infty}\left(\frac{|z|}{2^{j-2}\epsilon}\right) \frac{1}{|2^{j-1}\epsilon|^{n-\alpha}}\int_{\{y\in {\mathbb R}^n:|x-y| < 2^{j-1}\epsilon\}}|f(y)|dy\\ &\le|z|^{m}\|\nabla b\|^m_{L^{\infty}( {\mathbb R}^n)}\sum\limits_{j = 0}^{\infty}\omega_{\infty}\left(\frac{|z|}{2^{j-2}\epsilon}\right)\mathcal{M}_{\alpha}(f)(x)\\ &\lesssim|z|^{m}\|\nabla b\|^m_{L^{\infty}( {\mathbb R}^n)}\mathcal{M}_{\alpha}(f)(x) \sum\limits_{j = 0}^{\infty}\omega_{\infty}\left(\frac{|z|}{2^{j-2}\epsilon}\right)\int^{2^{-j}}_{2^{-(j+1)}}\frac{dt}{t}\\ &\le|z|^{m}\|\nabla b\|^m_{L^{\infty}( {\mathbb R}^n)}\mathcal{M}_{\alpha}(f)(x)\int_0^1\omega\left(\frac{8|z|}{\epsilon}t\right)\frac{dt}{t}\\ &\le|z|^{m}\|\nabla b\|^m_{L^{\infty}( {\mathbb R}^n)}\mathcal{M}_{\alpha}(f)(x)\int_0^{\frac{8|z|}{\epsilon}}\omega\left(t\right)\frac{dt}{t}. \end{align*} |
For I_{12}(x, z) , by the mean value theorem,
\begin{align*} I_{12}(x, z) &\lesssim|z|^m\|\nabla b\|^m_{L^{\infty}( {\mathbb R}^n)}\sum\limits_{j = 1}^{\infty}\frac{1}{|2^{j-2}\epsilon|}\frac{1}{|2^{j-1}\epsilon|^{n-\alpha}} \int_{\{y\in {\mathbb R}^n:|x-y| < 2^{j-1}\epsilon\}}|f(y)|dy \lesssim|z|^m \mathcal{M}_{\alpha}(f)(x). \end{align*} |
Applying Assumption 1.2(ⅰ) and the L^{\infty}\text{-Dini condition} , we obtain that
\begin{align*} \left\|I_{1}(\cdot, z)\right\|_{Y} \lesssim|z|^{m} \cdot \left\|\mathcal{M}_{\alpha}f\right\|_{Y} \lesssim|z|^{m} \cdot\|f\|_{X} \lesssim|z|^{m}. \end{align*} |
Next, we write
\begin{align*} \left|(b(x+z)-b(y))^m-(b(x)-b(y))^m\right|& = \left|(b(x+z)-b(x)+b(x)-b(y))^m-(b(x)-b(y))^m\right|\\ & = \sum\limits_{j = 1}^{m}C_m^i(b(x+z)-b(x))^j(b(x)-b(y))^{m-j}\\ & = \sum\limits_{j = 1}^{m}C_m^i(b(x+z)-b(x))^j\sum\limits_{i = 0}^{m-j}C_{m-j}^{i}b(x)^{i}b(y)^{m-j-i}. \end{align*} |
Thus, for I_2(x, z) , we have
\begin{align*} \label{eq4.3} I_2(x, z) &\le\sum\limits_{j = 1}^{m}C_m^i|b(x+z)-b(x)|^j\sum\limits_{i = 0}^{m-j}C_{m-j}^{i}|b(x)|^{i} \left|\int_{|x-y| > \epsilon/2}b(y)^{m-j-i}\left[K_{\epsilon}(x, y)-\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}\right]f(y)dy\right|\\ &+\sum\limits_{j = 1}^{m}C_m^i|b(x+z)-b(x)|^j\sum\limits_{i = 0}^{m-j}C_{m-j}^{i}|b(x)|^{i} \left|\int_{|x-y| > \epsilon/2}b(y)^{m-j-i}\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}f(y)dy\right|\\ &\lesssim|z|\sum\limits_{i = 0}^{m-j}C_{m-j}^{i} \left|\int_{\{y \in \mathbb{R}^{n}: \epsilon \geq|x-y| \geq \epsilon/2\}}b(y)^{m-j-i}\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}f(y)d y+ \int_{|x-y| > \epsilon/2}b(y)^{m-j-i}\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}f(y)dy\right|\\ &\lesssim|z|\sum\limits_{i = 0}^{m-j}C_{m-j}^{i} \left[\mathcal{M}_{\alpha}(b^{m-j-i}f)(x)+ T_{\alpha}(b^{m-j-i}f)(x)\right]. \notag \end{align*} |
Assumption 1.2(ⅰ) yields
\begin{align*} \left\|I_{2}(\cdot, z)\right\|_{Y} \lesssim|z| \cdot \sum\limits_{i = 0}^{m-j}C_{m-j}^{i}\left\|\mathcal{M}_{\alpha}(b^{m-j-i}f)(x)+ T_{\alpha}(b^{m-j-i}f)(x)\right\|_{Y} \lesssim|z| \cdot\|f\|_{X} \lesssim|z|. \end{align*} |
Combining the estimates of I_1 and I_2 , we have
\lim\limits_{|z|\rightarrow0^+}\|(T^{(\epsilon)}_{\Omega, \alpha})_b^m(f)(\cdot+z)-(T^{(\epsilon)}_{\Omega, \alpha})_b^m(f)(\cdot)\|_{Y} = 0, |
which implies the condition (ⅲ) of Lemma 2.7. Thus, the iterated commutator (T^{(\epsilon)}_{\Omega, \alpha})_b^m is compact from X to Y for any given b\in C_c^{\infty}({\mathbb R}^n) and \epsilon\in(0, \infty) . The proof of Theorem 1.1 is complete.
In this section, we first show the lower and upper estimates of the iterated commutator of the fractional integral operator (T_{\Omega, \alpha})_{b}^{m} . Furthermore, we give the proof of Theorem 1.2.
Now, we begin to show the lower estimate of the iterated commutator of the fractional integral operator (T_{\Omega, \alpha})_b^m .
Proposition 3. Let 0 < \alpha < n and b\in L_{loc}^{1}(\mathbb{R}^{n}) . Let X and Y be ball Banach function spaces satisfying Assumption 1.2(ii) and T_{\Omega, \alpha} be the fractional integral operator with the homogeneous kernel \Omega , where \Omega \in L^{\infty}(\mathbb{S}^{n-1}) satisfies that there exists an open set \Gamma \subset \mathbb{S}^{n-1} such that \Omega never vanishes and never changes sign on \Gamma . Let B: = B(x_0, r_0) and k_0 , \epsilon_0 , G , E and F be as in Lemma 2.9. Then there exists a positive constant C that is independent of B and just depends on \alpha , \lambda , k_0 , \epsilon_0 and n such that, for any measurable set U\subset {\mathbb R}^n with |U|\le\frac{\lambda}{8}|B(x_0, r_0)| ,
\|(T_{\Omega, \alpha})_b^m(\chi_F)\chi_{E\backslash U}\|_{Y}\ge Ca_{\lambda}(b;B)^m\|\chi_F\|_{X}. |
Proof. Applying Lemma 2.9, we have
\begin{align*} a_\lambda(b;B)^m|2(k_0+1))B|^{-1+\frac\alpha n}|(E\backslash U\times F)\cap G| &\le\frac{1}{\epsilon_{0}}\int_{E\backslash U}\left|\int_F\frac{(b(x)-b(y))^m}{|x-y|^{n-\alpha}}\Omega(\frac{x-y}{|x-y|})dy\right|dx\\ &\le\frac{1}{\epsilon_{0}}\int_{E\backslash U}|(T_{\Omega, \alpha})_b^m(\chi_F)(x)|dx\\ &\le\frac{1}{\epsilon_{0}}\|(T_{\Omega, \alpha})_b^m(\chi_F)\chi_{E\backslash U}\|_{Y}\cdot\|\chi_{E\backslash U}\|_{Y'}. \end{align*} |
And using the facts that |U|\le\frac{\lambda}{8}|B(x_0, r_0)| and |F| = \frac{\lambda}{2}|B(x_1, r_0)| , |G|\ge\frac{\lambda}{8}|B(x_0, r_0)|^2 , we see
\begin{align*} |(E\backslash U\times F)\cap G|&\ge|G|-|U||F|\\ &\ge \frac{\lambda}{8}|B(x_0, r_0)|^2-\frac{\lambda}{8}|B(x_0, r_0)|\cdot\frac{\lambda}{2}|B(x_1, r_0)|\\ & = \frac{\lambda}{16}|B(x_0, r_0)|^2. \end{align*} |
We apply Assumption 1.2(ⅱ) and obtain that
\begin{align*} a_\lambda(b;B)^m\|\chi_F\|_{X} &\lesssim\frac{\|\chi_F\|_X\|\chi_{E\backslash U}\|_{Y'}}{|2(k_0+1)B|^{-1+\alpha/n}\cdot|B|^2} \cdot\|(T_{\Omega, \alpha})_b^m(\chi_F)\chi_{E\backslash U}\|_{Y}\\ &\lesssim\frac{\|\chi_F\|_X\|\chi_{E\backslash U}\|_{Y'}}{|2(k_0+1)B|^{1+\alpha/n}} \cdot\|(T_{\Omega, \alpha})_b^m(\chi_F)\chi_{E\backslash U}\|_{Y}\\ &\lesssim \frac{\|\chi_{2(k_0+1)B}\|_X\|\chi_{2(k_0+1)B}\|_{Y'}}{|2(k_0+1)B|^{1+\alpha/n}} \cdot\|(T_{\Omega, \alpha})_b^m(\chi_F)\chi_{E\backslash U}\|_{Y}\\ &\lesssim \|(T_{\Omega, \alpha})_b^m(\chi_F)\chi_{E\backslash U}\|_{Y}. \end{align*} |
The proof of Proposition 4.1 is complete.
Obviously, we have the following corollary.
Corollary 4.1. Let 0 < \alpha < n and b\in L_{loc}^{1}(\mathbb{R}^{n}) . Let X and Y be ball Banach function spaces satisfying Assumption 1.2(ii) and T_{\Omega, \alpha} be the fractional integral operator with the homogeneous kernel \Omega , where \Omega \in L^{\infty}(\mathbb{S}^{n-1}) satisfies that there exists an open set \Gamma \subset \mathbb{S}^{n-1} such that \Omega never vanishes and never changes sign on \Gamma . If (T_{\Omega, \alpha})_b^m is bounded from X to Y , then b\in BMO({\mathbb R}^n) .
Next, we give the upper estimate of the commutator (T_{\Omega, \alpha})_{b}^{m} .
Proposition 4.2. Let 0 < \alpha < n and b\in BMO({\mathbb R}^n) . Let X and Y be ball Banach function spaces satisfying Assumption 1.1 and Assumption 1.2(i) and T_{\Omega, \alpha} be the fractional integral operator with the homogeneous kernel \Omega , where \Omega \in L^{\infty}(\mathbb{S}^{n-1}) satisfies that there exists an open set \Gamma \subset \mathbb{S}^{n-1} such that \Omega never vanishes and never changes sign on \Gamma . Let B = B(x_0, r_0) and F and k_0 be as in Lemma 2.9. Then, there exist positive constants d_0 satisfying d_0 < d < \infty , \delta and C that is independent on d , B , d_0 and k_0 such that,
\|(T_{\Omega, \alpha})_b^m(\chi_F)\chi_{2^{d+1}B\backslash 2^dB}\|_{Y}\le C2^{-\delta dn}d\|b\|^m_{BMO( {\mathbb R}^n)}\|\chi_F\|. |
Proof. Let B = B(x_0, r_0) , B(x_1, r_0) , \epsilon_0 , k_0 , G , E , and F be as in Lemma 2.9. Taking d_0 > 0 such that 2^{d_0}\in (4k_0, \infty) , we get the following for any x\in 2^{d+1}B\backslash 2^dB and y\in F\subset B(x_1, r_0) :
|x-y|\sim 2^{d}r_0. |
By Lemma 2.4, for any x\in 2^{d+1}B\backslash 2^dB , we have
\begin{align*} |(T_{\Omega, \alpha})_b^m(\chi_F)(x)|& = \left|\int_{F}(b(x)-b(y))^m\frac{\Omega(\frac{x-y}{|x-y|})}{|x-y|^{n-\alpha}}dy\right|\\ &\le\int_{F}|b(x)-b_{B(x_1, r_0)}+b_{B(x_1, r_0)}-b(y)|^m\frac{\Omega(\frac{x-y}{|x-y|})}{|x-y|^{n-\alpha}}dy\\ &\le\sum\limits_{i = 0}^{m}C_m^i|b(x)-b_{B(x_1, r_0)}|^{m-i}\int_F|b_{B(x_1, r_0)}-b(y)|^{i}\frac{\Omega(\frac{x-y}{|x-y|})}{|x-y|^{n-\alpha}}dy\\ &\le\sum\limits_{i = 0}^{m}C_m^i|b(x)-b_{B(x_1, r_0)}|^{m-i}\frac{\|\Omega\|_{L^{\infty}(\mathbb{S}^{n-1})}}{|2^dB(x_1, r_0)|^{1-\alpha/n}}\int_F|b_{B(x_1, r_0)}-b(y)|^{i}dy\\ &\lesssim\sum\limits_{i = 0}^{m}C_m^i|b(x)-b_{B(x_1, r_0)}|^{m-i} \frac{1}{|2^dB(x_1, r_0)|^{1-\alpha/n}}\||b_{B(x_1, r_0)}-b|^{i}\chi_F\|_{X'}\|\chi_F\|_{X}. \end{align*} |
Applying Lemma 2.3 and the fact that F\subset B(x_1, r_0) , we have
\begin{align*} \||b_{B(x_1, r_0)}-b|^{i}\chi_F\|_{X'}&\lesssim\||b_{B(x_1, r_0)}-b|^{i}\chi_{B(x_1, r_0)}\|_{X'}\\ & = \||b_{B(x_1, r_0)}-b|\chi_{B(x_1, r_0)}\|^i_{(X')^{i}}\\ &\le\|b\|^i_{BMO}\|\chi_{B(x_1, r_0)}\|_{X'}. \end{align*} |
Hence
|(T_{\Omega, \alpha})_b^m(\chi_F)(x)|\lesssim\sum\limits_{i = 0}^{m}C_m^i|b(x)-b_{B(x_1, r_0)}|^{m-i} \frac{\|\chi_{B(x_1, r_0)}\|_{X'}\|\chi_F\|_{X}}{|2^dB(x_1, r_0)|^{1-\alpha/n}}\|b\|^i_{BMO}. | (4.1) |
Let \kappa\in\{2, 4, 6, \cdots\} , depending only on k_0 such that x_0\in 2^\kappa B(x_1, r_0) . Thus, for any y\in B(x_0, 2^{d+1}r_0) , we have
|y-x_1|\le|y-x_0|+|x_0-x_1|\le 2^{d+1}r_0+2^{\kappa}r_0\le 2^{d+\kappa}r_0, |
which implies that
B(x_0, 2^{d+1}r_0)\subset B(x_1, 2^{d+\kappa}r_0). |
Thus, we have
|b_{B(x_1, r_0)}-b_{2^{d+\kappa}B(x_1, r_0)}|\le(d+\kappa)2^n\|b\|_{BMO}. |
Using Lemma 2.6 and [8, Lemma2.15], we can see that
\|\chi_{\beta B}\|_{Y}\lesssim \beta^{n}\|\chi_B\|_{Y}. |
Applying Lemma 2.8, we have
\begin{align*} \quad\||b(x )-b_{B(x_1, r_0)}|^{m-i}\chi_{2^{d+1}B\backslash 2^dB}\|_{Y} &\le\||b(x)-b_{B(x_1, r_0)}|^{m-i}\chi_{2^{d+\kappa}B(x_1, r_0)}\|_{Y}\\ &\le 2^{nd/\eta}d\|b\|^{m-i}_{BMO}\|\chi_{B(x_1, r_0)}\|_{Y}. \end{align*} | (4.2) |
By Assumption 1.2(ⅰ), we obtain that
\frac{\|\chi_B\|_{Y}\|\chi_B\|_{X'}}{|B|^{1-\frac\alpha n}}\lesssim 1. | (4.3) |
In fact, it is easy to see that
\begin{equation} \label{eq3.4} \|\chi_{\{x\in {\mathbb R}^n:M_\alpha f(x)\ge \gamma\}}\|_{Y}\le \frac{1}{\gamma}\|\mathcal{M}_\alpha f\|_{Y}\le \frac{C}{\gamma}\|f\|_{X}. \notag \end{equation} |
Let f\in L^{1}_{{\text{loc}}}({\mathbb R}^n) . For almost every x\in {\mathbb R}^n and |f|_B\chi_B(x) = \frac{1}{|B|}\int_B|f(y)|dy\cdot\chi_B(x)\le |B|^{-\frac\alpha n}\mathcal{M}_\alpha(f\chi_B)(x), we obtain that \mathcal{M}_\alpha(f\chi_B) > \gamma for almost every x\in B and \gamma: = \frac{1}{2}|f|_B|B|^{\frac\alpha n} . Thus, we have
|f|_B\|\chi_B\|_{Y}\le|f|_B\|\chi_{\{x\in {\mathbb R}^n:M_\alpha f(x)\ge \gamma\}}\|_{Y}\le|f|_B\cdot C\gamma^{-1}\|f\chi_B\|_{X} = 2 C|B|^{-\frac\alpha n}\|f\chi_B\|_{X}. |
Further, we obtain that
\begin{align*} \frac{1}{|B|^{1-\alpha/n}}\|\chi_B\|_{Y}\|\chi_B\|_{X'} & = \frac{1}{|B|^{1-\alpha/n}}\|\chi_B\|_{Y}\sup\left\{\int_{B}|g(x)|dx:\|g\|_{X}\le 1\right\}\\ & = \sup\left\{|B|^{\alpha/n}|g|_B\|\chi_B\|_{Y}:\|g\|_{X}\le 1\right\}\\ &\le\sup\left\{2C\|g\chi_B\|_{X}:\|g\|_{X}\le 1\right\}\\ &\lesssim 1. \end{align*} |
Using (4.1)–(4.3), we have
\begin{align*} \|(T_{\Omega, \alpha})_b^m(\chi_F)\|_Y &\lesssim\sum\limits_{i = 0}^{m}C_m^i\||b(x)-b_{B(x_1, r_0)}|^{m-i}\chi_{2^{d+1}B\backslash 2^dB}\|_{Y} \frac{\|\chi_{B(x_1, r_0)}\|_{X'}\|\chi_F\|_{X}}{|2^dB(x_1, r_0)|^{1-\alpha/n}}\|b\|^i_{BMO}\\ &\le\sum\limits_{i = 0}^{m}C_m^i2^{nd}d\|b\|^{m-i}_{BMO}\|\chi_{B(x_1, r_0)}\|_{Y} \frac{\|\chi_{B(x_1, r_0)}\|_{X'}\|\chi_F\|_{X}}{|2^dB(x_1, r_0)|^{1-\alpha/n}}\|b\|^i_{BMO}\\ &\lesssim 2^{nd}d\|b\|^{m}_{BMO} \frac{\|\chi_{B(x_1, r_0)}\|_{X'}\|\chi_{B(x_1, r_0)}\|_{Y}}{|2^dB(x_1, r_0)|^{1-\alpha/n}}\|\chi_F\|_{X}\\ &\lesssim 2^{nd(\frac\alpha n-1)}d\|b\|^{m}_{BMO}\|\chi_F\|_{X}. \end{align*} |
Let \delta: = 1-\frac\alpha n > 0 . Then we complete the proof of Proposition 4.2.
Proof of Theorem 1.2. By Corollary 4.1, we conclude that b\in BMO({\mathbb R}^n) ; then, without loss of generality, we can assume that \|b\|_{BMO({\mathbb R}^n)} = 1 . To show that b\in CMO({\mathbb R}^n) , we use a contradiction argument via Lemma 2.2. Observe that, if b\notin CMO({\mathbb R}^n) , then b does not satisfy at least one condition among (ⅰ), (ⅱ) and (ⅲ) of Lemma 2.2. To finish the proof of this theorem, we only need to show that, if b does not satisfy at least one condition among (ⅰ), (ⅱ) and (ⅲ) of Lemma 2.2, then (T_{\Omega, \alpha})_b^m is not compact from X to Y . We prove this by three cases on b as follows.
Case 1: Suppose that b does not satisfy (i) of Lemma 2.2. Then, there exist a constant \epsilon_0\in(0, 1) and a sequence of balls \{B_j\}_{j\in \mathbb{N}} with |B_j|\rightarrow 0 as j\rightarrow \infty such that, for any j\in \mathbb{N} ,
a_\lambda(b;B_j)\ge\epsilon_0, | (4.4) |
where \lambda\in(0, 1 /2) . For any given ball B: = B(x_0, r_0) , let E and F be the set mentioned in Lemma 2.9,
f: = \|\chi_F\|_{X}^{-1}\chi_F |
and 2C_0: = C_{(\lambda, k_{0}, \varepsilon_{0}, n)} be as in Proposition 4.1. Then, by Proposition 4.1, we conclude that, for any measurable set U\subset {\mathbb R}^n with |U|\le\frac{\lambda}{8}|B| ,
\|(T_{\Omega, \alpha})_b^m(f)\chi_{E\backslash U}\|_{Y}\ge 2C_0a_{\lambda}(b;B)^m. | (4.5) |
For such chosen C_0 and \epsilon_0 , by Proposition 4.2, there exists a positive constant d_0 such that
\|(T_{\Omega, \alpha})_b^m(f)\chi_{ {\mathbb R}^n\backslash 2^{d_0}B}\|_{Y}\le\sum\limits_{k = 0}^{\infty}\|(T_{\Omega, \alpha})_b^m(f)\chi_{2^{d_0+k+1}B\backslash 2^{d_0+k}B}\|_{Y}\le C_0\epsilon_0^m. | (4.6) |
Take a subsequence of balls \{B_j\}_{j\in\mathbb{N}} , still denoted by \{B_j\}_{j\in\mathbb{N}} , such that, for any j\in\mathbb{N} ,
\frac{|B_{j}|}{|B_{j+1}|}\le \min\left\{\frac{\lambda^2}{64}, 2^{-2d_0n}\right\}. |
Let B^{*}_j: = (|B_{j}|/|B_{j-1}|)^{1/2n}B_j for any j\in\mathbb{N} and j\ge 2 . It is easy to see that, for any j\in\mathbb{N} and j\ge 2 ,
\left(\frac{|B_{j}|}{|B_{j-1}|}\right)^{\frac1 {2n}}\ge 2^{d_0}\; \; \text{and}\; \; |B^{*}_j|\le\frac{\lambda}{8}|B_{j-1}|. |
From this and the monotonicity of \{B_j\}_{j\in\mathbb{N}} , we deduce that, for any integers k and j with k > j\ge 2 ,
2^{d_0}B_k\subset B_k^{*}\; \; \text{and}\; \; |B^{*}_k|\le\frac{\lambda}{8}|B_{k-1}|\le\frac{\lambda}{8}|B_j|. | (4.7) |
Now, for any j \in \mathbb{N} , let E_{j} and F_{j} be the sets associated with B_{j} as in Lemma 2.9 with B replaced by B_{j} , and
f_j: = \|\chi_{F_j}\|_{X}^{-1}\chi_{F_j}. |
Then, for any integers k and j with k > j \geq 2 , by (4.4), (4.5), (4.6) and (4.7), we conclude that
\|(T_{\Omega, \alpha})_b^m(f_j)\chi_{E_j\backslash B^{*}_k}\|_{Y}\ge 2C_0a_{\lambda}(b;B_j)^m\ge 2C_0\epsilon_0^m |
and
\|(T_{\Omega, \alpha})_b^m(f_k)\chi_{E_j\backslash B^{*}_k}\|_Y\le\|(T_{\Omega, \alpha})_b^m(f_k)\chi_{ {\mathbb R}^n\backslash 2^{d_0}B_k}\|_{Y}\le C_0\epsilon_0^m, |
which further implies that
\begin{align*} \|(T_{\Omega, \alpha})_b^m(f_j)-(T_{\Omega, \alpha})_b^m(f_k)\|_{Y}&\ge\|\{(T_{\Omega, \alpha})_b^m(f_j)-(T_{\Omega, \alpha})_b^m(f_k)\}\chi_{E_j\backslash B^{*}_k}\|_Y\\ &\ge\|(T_{\Omega, \alpha})_b^m(f_j)\chi_{E_j\backslash B^{*}_k}\|_{Y}-\|(T_{\Omega, \alpha})_b^m(f_k)\chi_{E_j\backslash B^{*}_k}\|_{Y}\\ &\ge C_0\epsilon_0^m. \end{align*} |
Therefore, \{(T_{\Omega, \alpha})_b^m(f_j)\}_{j \in \mathbb{N}} is not relatively compact from X to Y , which leads to a contradiction with the compactness of (T_{\Omega, \alpha})_b^m from X to Y . This shows that b satisfies (ⅰ) of Lemma 2.2, which is the desired conclusion.
Case 2: Suppose that b does not satisfy (ⅱ) of Lemma 2.2. In this case, similarly to the above Case 1, there exist a constant \epsilon_0\in(0, 1) and a sequence of balls \{B_j\}_{j\in\mathbb{N}} with |B_j|\rightarrow \infty as j\rightarrow \infty such that, for any j\in\mathbb{N} ,
\begin{equation} a_\lambda(b;B_j)\ge\epsilon_0 \quad\text{ and }\quad \frac{|B_{j}|}{|B_{j+1}|}\le \min\left\{\frac{\lambda^2}{64}, 2^{-2d_0n}\right\}, \notag \end{equation} |
where C_{0} and d_{0} are as in Case 1 such that (4.5) and (4.6) hold true. For any j \in \mathbb{N} , let E_{j}, F_{j} and f_{j} be as in Case 1 and B^{*}_j: = (|B_{j}|/|B_{j-1}|)^{1/2n}B_j for any j\ge 2 . It is easy to see that, for any integers k and j with k > j\ge 2 ,
\begin{equation} 2^{d_0}B_k\subset B_k^{*}\; \; \text{and}\; \; |B^{*}_k|\le\frac{\lambda}{8}|B_j|. \notag \end{equation} |
Using a method similar to that used in Case 1, we conclude that
\begin{align*} \|(T_{\Omega, \alpha})_b^m(f_j)-(T_{\Omega, \alpha})_b^m(f_{k})\|_{Y} \ge C_0\epsilon_0^m; \end{align*} |
hence \{(T_{\Omega, \alpha})_b^m(f_j)\}_{j \in \mathbb{N}} is not relatively compact from X to Y , which is a contradiction. This shows that b satisfies (ⅱ) of Lemma 2.2, which is also the desired conclusion.
Case 3: Suppose that b does not satisfy (ⅲ) of Lemma 2.2. In this case, there exist a constant \epsilon_0\in (0, 1) and a sequence of balls \{B_{j}\}_{j\in\mathbb{N}} such that, for any j\in\mathbb{N} ,
a_\lambda(b;B_j)\ge\epsilon_0. | (4.8) |
From this and Cases 1 and 2, we deduce that there exist a constant d_{1} \in\left[d_{0}, \infty\right) with d_{0} as in Lemma 2.9 and a subsequence of balls \{B_{j}\}_{j \in \mathbb{N}} , still denoted by \{B_{j}\}_{j \in \mathbb{N}} , such that
|B_{j}| \sim 1, \quad \forall j \in \mathbb{N}, |
and
2^{d_{1}} B_{i} \cap 2^{d_{1}} B_{j} = \emptyset, \quad \forall i \neq j. |
For any j \in \mathbb{N} , let E_{j}, F_{j}, f_{j} and C_{0} be as in Case 1. Notice that, for any positive integers k and j ,
\left(2^{d_{0}} B_{k} \cap E_{j}\right) \subset\left(2^{d_{1}} B_{k} \cap 2^{d_{1}} B_{j}\right) = \emptyset . |
By this, Proposition 4.1 with U: = \emptyset and (4.8), we conclude that, for any positive integers k and j ,
\|(T_{\Omega, \alpha})_b^m(f_j)\chi_{E_j\backslash 2^{d_0}B_k}\|_{Y} = \|(T_{\Omega, \alpha})_b^m(f_j)\chi_{E_j}\|_{Y}\geq 2 C_{0} a_{\lambda}(b ; B)^{m}\ge 2C_0\epsilon_0^m. | (4.9) |
Moreover, by Proposition 4.2, we deduce that, for any positive integers k and j ,
\|(T_{\Omega, \alpha})_b^m(f_k)\chi_{E_j\backslash 2^{d_0}B_k}\|_{Y}\le\|(T_{\Omega, \alpha})_b^m(f_k)\chi_{ {\mathbb R}^n\backslash 2^{d_0}B_k}\|_{Y}\le C_0\epsilon_0^m. | (4.10) |
Combining (4.9) and (4.10), we obtain
\begin{align*} \|(T_{\Omega, \alpha})_b^m(f_j)-(T_{\Omega, \alpha})_b^m(f_{k})\|_{Y} &\ge\|\{(T_{\Omega, \alpha})_b^m(f_j)-(T_{\Omega, \alpha})_b^m(f_{k})\}\chi_{E_j\backslash 2^{d_0}B_k}\|_Y\\ &\ge\|(T_{\Omega, \alpha})_b^m(f_j)\chi_{E_j\backslash 2^{d_0}B_k}\|_{Y}-\|(T_{\Omega, \alpha})_b^m(f_{k})\chi_{E_j\backslash 2^{d_0}B_k}\|_{Y}\\ &\ge C_0\epsilon_0^m; \end{align*} |
hence \{(T_{\Omega, \alpha})_b^m(f_j)\}_{j \in \mathbb{N}} is not relatively compact from X to Y , which is a contradiction. This shows that b satisfies (ⅲ) of Lemma 2.2, which completes the proof of Theorem 1.2.
We begin this section with the definition of Muckenhoupt weights A_p({\mathbb R}^n) . A weight will always mean a positive function which is locally integrable. Also, for a weight \omega and a measurable set E , we define \omega(E): = \int_{E} \omega(y) dy .
Definition 5.1. For 1 < p < \infty , a weight \omega is said to be of class A_p({\mathbb R}^n) if
\sup\limits_{B\subset {\mathbb R}^n}\left(\frac{1}{|B|}\int_B\omega(x)dx\right)^{\frac1 p}\left(\frac{1}{|B|} \int_B\omega(x)^{1-p'}dx\right)^{\frac1 {p'}} < \infty. |
Definition 5.2. For 1 < p, q < \infty , a weight \omega is said to be of class A_{p, q}({\mathbb R}^n) if
\sup\limits_{B\subset {\mathbb R}^n}\left(\frac{1}{|B|}\int_B\omega(x)^qdx\right)^{\frac1 q}\left(\frac{1}{|B|} \int_B\omega(x)^{-p'}dx\right)^{\frac1 {p'}} < \infty. |
Next, let us recall the weighted Lebesgue spaces which are defined as follows.
Definition 5.3. Let 1 < p < \infty and \omega be a weight. The weighted Lebesgue space L_{\omega}^p({\mathbb R}^n) denotes the set of all locally integrable functions f on {\mathbb R}^n such that
\|f\|_{L_{\omega}^p( {\mathbb R}^n)}: = \left(\int_{ {\mathbb R}^n}|f(x)|^p\omega(x) dx\right)^{1/p} < \infty. |
Theorem 5.1. Let 0 < \alpha < n , 1 < p, q < \infty and \frac1q = \frac1p-\frac\alpha n . Let \omega\in A_{p, q}({\mathbb R}^n) and T_{\Omega, \alpha} be a fractional integral operator with the homogeneous kernel \Omega , where \Omega \in L^{\infty}(\mathbb{S}^{n-1}) satisfies (1.3), (1.4) and (1.8). If b\in CMO({\mathbb R}^n) , then (T_{\Omega, \alpha})_b^m is compact from L_{\omega^p}^p({\mathbb R}^n) to L_{\omega^q}^q({\mathbb R}^n) .
Theorem 5.2. Let 0 < \alpha < n , 1 < p, q < \infty and \frac1 q = \frac1 p-\frac\alpha n . Let \omega\in A_{p, q}({\mathbb R}^n) , b\in L_{{\mathit{\text{loc}}}}^{1}(\mathbb{R}^{n}) and T_{\Omega, \alpha} be a fractional integral operator with the homogeneous kernel \Omega , where \Omega \in L^{\infty}(\mathbb{S}^{n-1}) satisfies that there exists an open set \Gamma \subset \mathbb{S}^{n-1} such that \Omega never vanishes and never changes sign on \Gamma . If (T_{\Omega, \alpha})_b^m is compact from L_{\omega^p}^p({\mathbb R}^n) to L_{\omega^q}^q({\mathbb R}^n) , then b\in CMO({\mathbb R}^n) .
Corollary 5.1. Let 0 < \alpha < n , 1 < p, q < \infty and \frac1 q = \frac1 p-\frac\alpha n . Let \omega\in A_{p, q}({\mathbb R}^n) , b\in L_{{\mathit{\text{loc}}}}^{1}(\mathbb{R}^{n}) and T_{\Omega, \alpha} be a fractional integral operator with the homogeneous kernel \Omega , where \Omega satisfies (1.3)–(1.5). Then (T_{\Omega, \alpha})_b^m is compact from L_{\omega^p}^p({\mathbb R}^n) to L_{\omega^q}^q({\mathbb R}^n) if and only if b\in CMO({\mathbb R}^n) .
Proof. Let X: = L_{\omega^p}^p({\mathbb R}^n) and \omega\in A_{p, q}({\mathbb R}^n) . From [33], we then get that \omega^q\in A_q({\mathbb R}^n) and \omega^{-q'}\in A_{q'}({\mathbb R}^n) . By the fact that \mathcal{M} is bounded on L_{\omega^q}^q({\mathbb R}^n) and X^{\prime} , where X^{\prime} = L_{\omega^{-q^{\prime}}}^{q^{\prime}}({\mathbb R}^n) in [34, Theorem 3.1], T_{\Omega, \alpha}: L_{\omega^p}^p({\mathbb R}^n)\rightarrow L_{\omega^q}^q({\mathbb R}^n) in [35, Theorem 1] and the iterated commutator (T_{\Omega, \alpha})_{b}^m is bounded from L_{\omega^p}^p({\mathbb R}^n) to L_{\omega^q}^q({\mathbb R}^n) in [36, Theorem 1] for 1 < p, q < \infty , 0 < \alpha < n , \frac1 q = \frac1 p-\frac\alpha n and \omega\in A_{p, q}({\mathbb R}^n) , we then use Hölder's inequality to obtain that
\begin{align*} \frac{\|\chi_B\|_{Y'}\|\chi_B\|_{X}}{|B|^{1+\alpha/n}} & = \frac{\|\chi_B\|_{L_{\omega^{-q'}}^{q'}}\|\chi_B\|_{L_{\omega^p}^p}}{|B|^{1+\alpha/n}}\\ & = \left(\frac{1}{|B|}\int_B\omega(x)^{-q'}dx\right)^{1/q'}\left(\frac{1}{|B|}\int_B\omega(x)^{p}dx\right)^{1/p}\\ &\le\left(\frac{1}{|B|}\int_B\omega(x)^{-p'}dx\right)^{1/p'}\left(\frac{1}{|B|}\int_B\omega(x)^{q}dx\right)^{1/q}\\ &\lesssim 1. \end{align*} |
Thus, Theorems 1.1 and 1.2 and Corollary 1.1 are true with X replaced by L_{\omega^p}^p({\mathbb R}^n) and Y replaced by L_{\omega^q}^q({\mathbb R}^n) .
Recall that the definition of the Morrey space M_{p}^{q}(\mathbb{R}^{n}) holds for 0 < p \leq q < \infty and was introduced by Morrey in [39].
Definition 5.4. Let 0 < p \leq q < \infty . The Morrey space M_{p}^{q}\left(\mathbb{R}^{n}\right) is defined to be the set of all measurable functions f on \mathbb{R}^{n} such that
\|f\|_{M_{p}^{q}\left(\mathbb{R}^{n}\right)}: = \sup _{B \in \mathbb{B}}|B|^{1 / p-1 / r}\|f\|_{L^{r}(B)} < \infty, |
where \mathbb{B} is as in (1.1).
Theorem 5.3. Let 0 < \alpha < n , 1 < p \leq q < \infty , 1 < t \leq s < \infty , \frac{1}{s} = \frac{1}{p}-\frac{\alpha}{n} and \frac{t}{s} = \frac{q}{p} . Let b\in L_{{\mathit{\text{loc}}}}^{1}(\mathbb{R}^{n}) and T_{\alpha} be a fractional integral operator. Then (T_\alpha)_{b}^{m} is compact from M_{q}^{p}(\mathbb{R}^n) to M_{t}^{s}(\mathbb{R}^n) if and only if b\in CMO({\mathbb R}^n) .
Proof. We know that the Morrey space is the ball Banach function space in [8, P. 86]. Moreover, [b, T_\alpha] is bounded from M_{q}^{p}(\mathbb{R}^n) to M_{t}^{s}(\mathbb{R}^n) in [37, Theorem 3.1] for 1 < p \leq q < \infty , 1 < t \leq s < \infty , \frac{1}{s} = \frac{1}{p}-\frac{\alpha}{n} and \frac{t}{s} = \frac{q}{p} , and (T_\alpha)_{b}^{m} is bounded from M_{q}^{p}(\mathbb{R}^n) to M_{t}^{s}(\mathbb{R}^n) in [40, Corollary 3] for 1 < p \leq q < \infty , 1 < t \leq s < \infty , \frac{1}{s} = \frac{1}{p}-\frac{\alpha}{n} and \frac{t}{s} = \frac{q}{p} . It is easy to calculate that
\begin{align*} \frac{\|\chi_B\|_{X}\|\chi_B\|_{Y'}}{|B|^{1+\alpha/n}}& = \frac{\|\chi_B\|_{M_{q}^{p}}\|\chi_B\|_{(M_{t}^{s})'}}{|B|^{1+\alpha/n}} \lesssim \frac{|B|^{1/p+1/s'}}{|B|^{1+\alpha/n}} \lesssim 1. \end{align*} |
Thus, using Corollary 1.1, we complete the proof of Theorem 5.3.
In this section, we apply our results on variable Lebesgue spaces with X = L^{p(\cdot)}({\mathbb R}^n) , Y = L^{q(\cdot)}({\mathbb R}^n) and \frac{1}{p(x)}-\frac{1}{q(x)} = \frac{\alpha}{n} . We write p_-: = \mathop{\text{ess inf}}\limits_{x\in {\mathbb R}^n}p(x)\; \text{ and }\; p_+: = \mathop{\text{ess sup}}\limits_{x\in {\mathbb R}^n}p(x) . Recall the definition of the variable Lebesgue spaces.
Definition 5.5. Let p(\cdot): {\mathbb R}^n\mapsto[0, \infty) be a measurable function. Then the variable Lebesgue space L^{p(\cdot)}({\mathbb R}^n) is defined to be the set of all measurable functions f on {\mathbb R}^n such that
\|f\|_{L^{p(\cdot)}}: = \inf\left\{\lambda\in(0, \infty):\int_{ {\mathbb R}^n}\left(\frac{|f(x)|}{\lambda}\right)^{p(x)}dx\le1\right\} < \infty. |
Lemma 5.1. [38, Theorem 1.1] Let p(\cdot): {\mathbb R}^n\mapsto[0, \infty) be a measurable function satisfying that
|p(x)-p(y)|\le C\frac{1}{-\log(|x-y|)}\; \; \mathit{\text{if}}|x-y|\le\frac1 2 , | (5.1) |
and
|p(x)-p(y)|\le C\frac{1}{\log(e+|x|)}\; \; \mathit{\text{if}}\ |x|\le|y|; | (5.2) |
then \mathcal{M} is bounded in L^{p(\cdot)}({\mathbb R}^n) and L^{p(\cdot)'}({\mathbb R}^n) .
Lemma 5.2. [41, Lemma 2.5] Let p(x) satisfy (5.1) and (5.2), and let it satisfy that 1 < p_-\le p_+ < \infty . Then,
\|\chi_{B}\|_{L^{q(\cdot)}( {\mathbb R}^n)}\sim\left\{ \begin{array}{ll} |B|^{\frac{1}{p(x)}} & {if\ |B|\le2^n \ and \ x\in B ;}\\ |B|^{\frac{1}{p(\infty)}} & {if \ |B|\ge1 , } \end{array} \right. |
where p(\infty) = \lim\limits_{x\rightarrow \infty}p(x) .
Theorem 5.4. Let 0 < \alpha < min\{n, n/p_+\} , 1 < p_-\le p_+ < \infty and \frac1 {q(x)} = \frac1 {p(x)}-\frac\alpha n . Let b\in L_{{\mathit{\text{loc}}}}^{1}(\mathbb{R}^{n}) and T_{\alpha} be a fractional integral operator. Then [b, T_{\alpha}] is compact from L^{p(\cdot)}({\mathbb R}^n) to L^{q(\cdot)}({\mathbb R}^n) if and only if b\in CMO({\mathbb R}^n) .
Proof. If 1 < p_-\le p_+ < \infty , we know that the space L^{p(\cdot)}({\mathbb R}^n) is a ball Banach function space in [8]. If p(x) satisfies (5.1) and (5.2), 1 < p_-\le p_+ < \infty and \frac{1}{p(x)}-\frac{1}{q(x)} = \frac{\alpha}{n}, then q(x) also satisfies (5.1) and (5.2), 1 < q_-\le q_+ < \infty . Let 0 < \alpha < n/p_+ . We know that if p(x) satisfies (5.1) and (5.2) and 1 < p_-\le p_+ < \infty , T_\alpha is bounded from L^{p(\cdot)}(\mathbb{R}^n) to L^{q(\cdot)} in [42, theorem 2] for \frac1 {p(x)}-\frac1 {q(x)} = \frac\alpha n and [b, T_\alpha] is bounded from L^{p(\cdot)}(\mathbb{R}^n) to L^{q(\cdot)} in [37, Theorem 3.1] for \frac1 {p(x)}-\frac1{q(x)} = \frac\alpha n . If \frac{1}{p(x)}-\frac{1}{q(x)} = \frac{\alpha}{n} , then \frac{1}{p(x)}+\frac{1}{q(x)'} = 1+\frac{\alpha}{n} and \frac{1}{p(\infty)}+\frac{1}{q(\infty)'} = 1+\frac{\alpha}{n} . Thus, using Lemma 5.2, we have
\begin{align*} \frac{\|\chi_B\|_{X}\|\chi_B\|_{Y'}}{|B|^{1+\alpha/n}} = \frac{\|\chi_B\|_{L^{p(\cdot)}}\|\chi_B\|_{L^{q(\cdot)'}}}{|B|^{1+\alpha/n}} \lesssim 1. \end{align*} |
Applying Corollary 1.1, we have the desired result.
Let us begin with the definition of the mixed-norm Lebesgue spaces.
Definition 5.6. Let \vec{p}: = \left(p_{1}, \ldots, p_{n}\right) \in(0, \infty]^{n} . The mixed-norm Lebesgue space L^{\vec{p}}\left(\mathbb{R}^{n}\right) is defined to be the set of all measurable functions f on \mathbb{R}^{n} such that
\|f\|_{L^{\vec{p}}\left(\mathbb{R}^{n}\right)}: = \left\{\int_{\mathbb{R}} \cdots\left[\int_{\mathbb{R}}\left|f\left(x_{1}, \ldots, x_{n}\right)\right|^{p_{1}} d x_{1}\right]^{\frac{p_{2}}{p_{1}}} \cdots d x_{n}\right\}^{\frac{1}{p_{n}}} < \infty |
with the usual modifications made when p_{i} = \infty for some i \in\{1, \ldots, n\} .
Next, we recall the definition of the mixed Morrey spaces. In 2019, Nogayama [43,44] first introduced the mixed Morrey space \mathcal{M}_{\vec{p}}^{p_0}(\mathbb{R}^n) , which is defined as follows.
Definition 5.7. Let \vec{p} = (p_1, p_2, \cdots, p_n)\in (1, \infty)^n and p_0\in(1, \infty) satisfy
\frac{n}{p_0}\le\sum\limits_{j = 1}^{n}\frac{1}{p_j}. |
The mixed Morrey space \mathcal{M}_{\vec{p}}^{p_0}(\mathbb{R}^n) is defined to be the set of all measurable functions f such that
\|f\|_{\mathcal{M}_{\vec{p}}^{p_0}}: = \sup\limits_{Q}{|Q|^{\frac{1}{p_0} -\frac{1}{n}(\sum\limits_{j = 1}^n\frac{1}{p_j})}\|f\chi_Q\|_{L_{\vec{p}}}} < \infty. |
Let \vec{p} = (p_1, p_2, \cdots, p_n)\in (1, \infty)^n and p_0\in(1, \infty) satisfy
\frac{n}{p_0}\le\sum\limits_{j = 1}^{n}\frac{1}{p_j}. |
The mixed Morrey space is a ball Banach function space in [45, Remark 2.9]. Moreover, the space \mathcal{B}_{\vec{p}\, '}^{p'_0}(\mathbb{R}^n) is the associate space of the mixed Morrey space \mathcal{M}_{\vec{p}}^{p_0}(\mathbb{R}^n) and \mathcal{M} is bounded in \mathcal{B}_{\vec{q}\, '}^{q'_0}(\mathbb{R}^n) .
Definition 5.8. Let \vec{p} = (p_1, p_2, \cdots, p_n)\in (1, \infty)^n , p_0\in(1, \infty) and \frac{n}{p_0}\le\sum_{i = 1}^{n}\frac{1}{p_i} . A measurable function b(x) is said to be a (p'_0, \vec{p}\, ') -block if there exists a cube Q such that
\text{supp}\; b\subset Q, \; \|b\|_{L^{\vec{p}\, '}}\le |Q|^{\frac{1}{n}\sum\limits_{i = 1}^{n}\frac{1}{p_i}-\frac{1}{p_0}}. |
The block spaces \mathcal{B}_{\vec{p}\, '}^{p'_0}(\mathbb{R}^n) denote the measurable function set of f = \sum_{i = 1}^{\infty}\lambda_{i}b_i(x) , where \{\lambda_{i}\}_{i = 1}^{\infty}\in \ell^{1} and b_{i} is a (p'_0, \vec{p}\, ') -block for any i . The norm \|f\|_{\mathcal{B}_{\vec{p}\, '}^{p'_0}(\mathbb{R}^n)} for f\in \mathcal{B}_{\vec{p}\, '}^{p'_0}(\mathbb{R}^n) is defined as
\begin{align*} \|f\|_{\mathcal{B}_{\vec{p}\, '}^{p'_0}} = \inf\left\{\|\{\lambda_{i}\}_{i = 1}^{\infty}\|_{\ell^{1}}:f = \sum\limits_{i = 1}^{\infty}\lambda_{i}b_i(x), \{\lambda_{i}\}_{i = 1}^{\infty}\in \ell^{1}, b_{i}\; {is\ a}\; (p'_0, \vec{p}\, ')- {block\ for\ any }\ i\right\}. \end{align*} |
Theorem 5.5. Let 0 < \alpha < n , 1 < p_0, q_0 < \infty, 1 < \vec{p}, \vec{q} < \infty , \frac{n}{p_0}\le\sum_{j = 1}^{n}\frac{1}{p_j} , \frac{n}{q_0}\le\sum_{j = 1}^{n}\frac{1}{q_j} , \frac{1}{q_0} = \frac{1}{p_0}-\frac{\alpha}{n} and \frac{\vec{p}}{p_0} = \frac{\vec{q}}{q_0} . Let b\in L_{{\mathit{\text{loc}}}}^{1}(\mathbb{R}^{n}) and T_{\alpha} be a fractional integral operator. Then [b, T_{\alpha}] is compact from \mathcal{M}_{\vec{p}}^{p_0}(\mathbb{R}^n) to \mathcal{M}_{\vec{q}}^{q_0}(\mathbb{R}^n) if and only if b\in CMO({\mathbb R}^n) .
Proof. Given T_\alpha is bounded from \mathcal{M}_{\vec{p}}^{p_0}(\mathbb{R}^n) to \mathcal{M}_{\vec{q}}^{q_0}(\mathbb{R}^n) in [43, Theorem 1.11] for \frac{1}{q_0} = \frac{1}{p_0}-\frac{\alpha}{n} and \frac{\vec{p}}{p_0} = \frac{\vec{q}}{q_0} and [b, T_\alpha] is bounded from \mathcal{M}_{\vec{p}}^{p_0}(\mathbb{R}^n) to \mathcal{M}_{\vec{q}}^{q_0}(\mathbb{R}^n) in [44, Theorem 1.2] for \frac{1}{q_0} = \frac{1}{p_0}-\frac{\alpha}{n} and \frac{\vec{p}}{p_0} = \frac{\vec{q}}{q_0} , by [44, Example 2.8], it is easy to see that
\begin{align*} \frac{\|\chi_B\|_{X}\|\chi_B\|_{Y'}}{|B|^{1+\alpha/n}} = \frac{\|\chi_B\|_{\mathcal{M}_{\vec{p}}^{p_0}}\|\chi_B\|_{(\mathcal{M}_{\vec{q}}^{q_0})'}}{|B|^{1+\alpha/n}} \lesssim \frac{|B|^{1/p_0+1/q'_0}}{|B|^{1+\alpha/n}} \lesssim 1. \end{align*} |
Thus, using Corollary 1.1, we finish the proof of Theorem 5.4
In this work, we establish the characterization of compactness of the iterated commutator (T_{\Omega, \alpha})_{b}^{m} generated by the locally integrable function b and the fractional integral operator with the homogeneous kernel T_{\Omega, \alpha} on ball Banach function spaces. As applications, we show that b\in CMO({\mathbb R}^n) if and only if the iterated commutator (T_{\Omega, \alpha})_b^m is compact from L_{\omega^p}^p({\mathbb R}^n) to L_{\omega^q}^q({\mathbb R}^n) and we obtain that b\in CMO({\mathbb R}^n) if and only if the iterated commutator (T_{\alpha})_b^m generated by the locally integrable function b and the fractional integral operator is compact from M_{q}^{p}(\mathbb{R}^n) to M_{t}^{s}(\mathbb{R}^n) . Moreover, we obtain that b\in CMO({\mathbb R}^n) if and only if the commutator [b, T_{\alpha}] generated by the locally integrable function b and the fractional integral operator is compact from L^{p(\cdot)}({\mathbb R}^n) to L^{q(\cdot)}({\mathbb R}^n) . We also have that b\in CMO({\mathbb R}^n) if and only if the commutator [b, T_{\alpha}] generated by the locally integrable function b and the fractional integral operator is compact from \mathcal{M}_{\vec{p}}^{p_0}(\mathbb{R}^n) to \mathcal{M}_{\vec{q}}^{q_0}(\mathbb{R}^n) .
The authors declare that they have not used artificial intelligence tools in the creation of this article.
The authors want to express their sincere thanks to the referees for the valuable remarks and suggestions. This work was supported by the National Natural Science Foundation of China (No. 12061069).
The authors declare that there is no conflict of interest.
[1] |
F. John, L. Nirenberg, On functions of bounded mean oscillation, Commun. Pure Appl. Math., 14 (1961), 415–426. https://doi.org/10.1002/cpa.3160140317 doi: 10.1002/cpa.3160140317
![]() |
[2] |
R. R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103 (1976), 611–635. https://doi.org/10.2307/1970954 doi: 10.2307/1970954
![]() |
[3] |
A. Uchiyama, On the compactness of operators of Hankel type, Tôhoku Math. J., 30 (1978), 163–171. https://doi.org/10.2748/tmj/1178230105 doi: 10.2748/tmj/1178230105
![]() |
[4] | A. Karlovich, A. Lerner, Commutators of singular integrals on generalized L^p spaces with variable exponent, Publ. Mat., 49 (2005), 111–125. |
[5] | G. Di Fazio, M. A. Ragusa, Commutators and Morrey spaces, Boll. Unione Mat. Ital. A, 7 (1991), 323–332. |
[6] |
Y. Chen, Y. Ding, X. Wang, Compactness of commutators for singular integrals on Morrey spaces, Can. J. Math., 64 (2012), 257–281. https://doi.org/10.4153/CJM-2011-043-1 doi: 10.4153/CJM-2011-043-1
![]() |
[7] |
J. Tao, D. Yang, W. Yuan, Y. Zhang, Compactness characterizations of commutators on ball Banach function spaces, Potential Anal., 58 (2023), 645–679. https://doi.org/10.1007/s11118-021-09953-w doi: 10.1007/s11118-021-09953-w
![]() |
[8] |
Y. Sawano, K. P. Ho, D. Yang, S. Yang, Hardy spaces for ball quasi-Banach function spaces, Diss. Math., 525 (2017), 1–102. https://doi.org/10.4064/dm750-9-2016 doi: 10.4064/dm750-9-2016
![]() |
[9] | C. Bennett, R. Sharpley, Interpolation of operators, Academic Press, 1988. |
[10] |
H. Yang, J. Zhou, Commutators of parameter Marcinkiwicz integral with functions in Campanato spaces on Orlicz-Morrey spaces, Filomat., 37 (2023), 7255–7273. https://doi.org/10.2298/FIL2321255Y doi: 10.2298/FIL2321255Y
![]() |
[11] |
K. Ho, Fractional integral operators with homogeneous kernels on Morrey spaces with variable exponents, J. Math. Soc. Japan., 69 (2017), 1059–1077. https://doi.org/10.2969/jmsj/06931059 doi: 10.2969/jmsj/06931059
![]() |
[12] |
M. A. Ragusa, Commutators of fractional integral operators on vanishing-Morrey spaces, J. Glob. Optim., 40 (2008), 361–368. https://doi.org/10.1007/s10898-007-9176-7 doi: 10.1007/s10898-007-9176-7
![]() |
[13] |
A. Scapellato, Riesz potential, Marcinkiewicz integral and their commutators on mixed Morrey spaces, Filomat., 34 (2020), 931–944. https://doi.org/10.2298/FIL2003931S doi: 10.2298/FIL2003931S
![]() |
[14] |
H. Yang, J. Zhou, Some characterizations of Lipschitz spaces via commutators of the Hardy-Littlewood maximal operator on slice spaces, Proc. Ro. Acad. Ser. A., 24 (2023), 223–230. https://doi.org/10.59277/PRA-SER.A.24.3.03 doi: 10.59277/PRA-SER.A.24.3.03
![]() |
[15] |
J. Tan, J. Zhao, Rough fractional integrals and its commutators on variable Morrey spaces, C. R. Math., 353 (2015), 1117–1122. https://doi.org/10.1016/j.crma.2015.09.024 doi: 10.1016/j.crma.2015.09.024
![]() |
[16] |
J. Tan, Z. Liu, J. Zhao, On some multilinear commutators in variable Lebesgue spaces, J. Math. Inequal., 11 (2017), 715–734. https://doi.org/10.7153/jmi-2017-11-57 doi: 10.7153/jmi-2017-11-57
![]() |
[17] |
M. A. Ragusa, Local Hölder regularity for solutions of elliptic systems, Duke Math. J., 113 (2002), 385–397. https://doi.org/10.1215/S0012-7094-02-11327-1 doi: 10.1215/S0012-7094-02-11327-1
![]() |
[18] |
Y. Chen, Q. Deng, Y. Ding, Commutators with fractional differentiation for second-order elliptic operators on \mathbb{R}^{n}, Commun. Contemp. Math., 22 (2020), 1950010. https://doi.org/10.1142/S021919971950010X doi: 10.1142/S021919971950010X
![]() |
[19] |
Y. Chen, Y. Ding, G. Hong, Commutators with fractional differentiation and new characterizations of BMO-Sobolev spaces, Anal. PDE, 9 (2016), 1497–1522. https://doi.org/10.2140/apde.2016.9.1497 doi: 10.2140/apde.2016.9.1497
![]() |
[20] |
C. Pérez, G. Pradolini, R. H. Torres, R. Trujillo-González, End-points estimates for iterated commutators of multilinear singular integrals, Bull. London Math. Soc., 46 (2014), 26–42. https://doi.org/10.1112/blms/bdt065 doi: 10.1112/blms/bdt065
![]() |
[21] | A. Bényi, R. H. Torres, Compact bilinear operators and commutators, Proc. Amer. Math. Soc., 141 (2013), 3609–3621. |
[22] | A. Bényi, W. Damián, K. Moen, R. H. Torres, Compact bilinear commutators: the weighted case, Michigan Math. J., 64 (2015), 39–51. |
[23] |
D. Wang, J. Zhou, Z. Teng, Characterization of CMO via compactness of the commutators of bilinear fractional integral operators, Anal. Math. Phys., 9 (2019), 1669–1688. https://doi.org/10.1007/s13324-018-0264-2 doi: 10.1007/s13324-018-0264-2
![]() |
[24] |
T. Hytönen, S. Lappas, Extrapolation of compactness on weighted spaces: Bilinear operators, Indagat. Math., 33 (2022), 397–420. https://doi.org/10.1016/j.indag.2021.09.007 doi: 10.1016/j.indag.2021.09.007
![]() |
[25] |
W. Guo, H. Wu, D. Yang, A revised on the compactness of commutators, Can. J. Math., 73 (2021), 1667–1697. https://doi.org/10.4153/S0008414X20000644 doi: 10.4153/S0008414X20000644
![]() |
[26] | S. Lu, Y. Ding, D. Yan, Singular integrals and related topics, World Scientific, 2007. |
[27] |
A. K. Lerner, S. Ombrosi, I. P. Rivera-Ríos, Commutators of singular integrals revisited, Bull. London Math. Soc., 51 (2019), 107–119. https://doi.org/10.1112/blms.12216 doi: 10.1112/blms.12216
![]() |
[28] |
M. Izuki, T. Noi, Y. Sawano, The John-Nirenberg inequality in ball Banach function spaces and application to characterization of BMO, J. Inequal. Appl., 2019 (2019), 268. https://doi.org/10.1186/s13660-019-2220-6 doi: 10.1186/s13660-019-2220-6
![]() |
[29] |
Y. Zhang, S. Wang, D. Yang, W. Yuan, Weak Hardy-type spaces associated with ball quasi-Banach function spaces Ⅰ: Decompositions with applications to boundedness of Calderón-Zygmund operators, Sci. China Math., 64 (2021), 2007–2064. https://doi.org/10.1007/s11425-019-1645-1 doi: 10.1007/s11425-019-1645-1
![]() |
[30] |
A. Clop, V. Cruz, Weighted estimates for Beltrami equations, Ann. Fenn. Math., 38 (2013), 91–113. https://doi.org/10.5186/aasfm.2013.3818 doi: 10.5186/aasfm.2013.3818
![]() |
[31] |
S. G. Krantz, S. Y. Li, Boundedness and compactness of integral operators on spaces of homogeneous type and applications, Ⅱ, J. Math. Anal. Appl., 258 (2001), 642–657. https://doi.org/10.1006/jmaa.2000.7403 doi: 10.1006/jmaa.2000.7403
![]() |
[32] | L. Grafakos, Classical Fourier analysis, New York: Springer, 2014. |
[33] | J. Garcia-Cuerva, J. L. R. de Francia, Weighted norm inequalities and related topics, North-Holland mathematics studies, 1985. |
[34] |
K. Andersen, R. John, Weighted inequalities for vecter-valued maximal functions and singular integrals, Stud. Math., 69 (1981), 19–31. https://doi.org/10.4064/sm-69-1-19-31 doi: 10.4064/sm-69-1-19-31
![]() |
[35] |
B. Muckenhoupt, R. L. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261–274. https://doi.org/10.1090/S0002-9947-1974-0340523-6 doi: 10.1090/S0002-9947-1974-0340523-6
![]() |
[36] |
Y. Ding, S. Lu, Higher order commutators for a class of rough operators, Ark. Mat., 37 (1999), 33–44. https://doi.org/10.1007/BF02384827 doi: 10.1007/BF02384827
![]() |
[37] |
D. R. Adams, A note on Riesz potentials, Duke Math. J., 42 (1975), 765–778. https://doi.org/10.1215/S0012-7094-75-04265-9 doi: 10.1215/S0012-7094-75-04265-9
![]() |
[38] |
C. Capone, D. Cruz-Uribe, A. SFO Fiorenza, The fractional maximal operator and fractional integrals on variable L^p spaces, Rev. Mat. Iberoamericana, 23 (2007), 743–770. https://doi.org/10.4171/RMI/511 doi: 10.4171/RMI/511
![]() |
[39] |
C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938) 126–166. https://doi.org/10.2307/1989904 doi: 10.2307/1989904
![]() |
[40] |
T. Iida, Weighted estimates of higher order commutators generated by BMO-functions and the fractional integral operator on Morrey spaces, J. Inequal. Appl., 2016 (2016), 4. https://doi.org/10.1186/s13660-015-0953-4 doi: 10.1186/s13660-015-0953-4
![]() |
[41] |
H. Wang, Commutators of singular integral operator on herz-type hardy spaces with variable exponent, J. Korean Math. Soc., 54 (2017), 713–732. https://doi.org/10.4134/JKMS.j150771 doi: 10.4134/JKMS.j150771
![]() |
[42] |
M. Izuki, Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59 (2010), 461–472. https://doi.org/10.1007/s12215-010-0034-y doi: 10.1007/s12215-010-0034-y
![]() |
[43] |
T. Nogayama, Mixed Morrey spaces, Positivity, 23 (2019), 961–1000. https://doi.org/10.1007/s11117-019-00646-8 doi: 10.1007/s11117-019-00646-8
![]() |
[44] |
T. Nogayama, Boundedness of commutators of fractional integral operators on mixed Morrey spaces, Integr. Transf. Spec. F., 30 (2019), 790–816. https://doi.org/10.1080/10652469.2019.1619718 doi: 10.1080/10652469.2019.1619718
![]() |
[45] | H. Zhang, J. Zhou, The Köthe dual of mixed Morrey spaces and applications, 2022. https://doi.org/10.48550/arXiv.2204.00518 |
1. | Heng YANG, Jiang ZHOU , Necessary and sufficient conditions for boundedness of commutators of parametric Marcinkiewicz integrals with weighted Lipschitz functions, 2024, 25, 14549069, 277, 10.59277/PRA-SER.A.25.4.03 |