Research article

Note on a new class of operators between some spaces of holomorphic functions

  • Received: 10 August 2022 Revised: 02 October 2022 Accepted: 09 October 2022 Published: 02 December 2022
  • MSC : 47B33, 47B38

  • The boundedness and compactness of a new class of linear operators from the weighted Bergman space to the weighted-type spaces on the unit ball are characterized.

    Citation: Stevo Stević. Note on a new class of operators between some spaces of holomorphic functions[J]. AIMS Mathematics, 2023, 8(2): 4153-4167. doi: 10.3934/math.2023207

    Related Papers:

  • The boundedness and compactness of a new class of linear operators from the weighted Bergman space to the weighted-type spaces on the unit ball are characterized.



    加载中


    [1] W. Rudin, Function theory in the unit ball of $ {\mathbb C}^n$, Springer, 1980.
    [2] Z. Guo, Y. Shu, On Stević-Sharma operators from Hardy spaces to Stević weighted spaces, Math. Inequal. Appl., 23 (2020), 217–229. http://doi.org/10.7153/mia-2020-23-17 doi: 10.7153/mia-2020-23-17
    [3] Z. T. Guo, L. L. Liu, Y. L. Shu, On Stević-Sharma operator from the mixed-norm spaces to Zygmund-type spaces, Math. Inequal. Appl., 24 (2021), 445–461. http://doi.org/10.7153/mia-2021-24-31 doi: 10.7153/mia-2021-24-31
    [4] Q. H. Hu, X. L. Zhu, Compact generalized weighted composition operators on the Bergman space, Opuscula Math., 37 (2017), 303–312. http://doi.org/10.7494/OpMath.2017.37.2.303 doi: 10.7494/OpMath.2017.37.2.303
    [5] S. X. Li, Volterra composition operators between weighted Bergman spaces and Bloch type spaces, J. Korean Math. Soc., 45 (2008), 229–248. https://doi.org/10.4134/JKMS.2008.45.1.229 doi: 10.4134/JKMS.2008.45.1.229
    [6] S. X. Li, Some new characterizations of weighted Bergman spaces, Bull. Korean Math. Soc., 47 (2010), 1171–1180. https://doi.org/10.4134/BKMS.2010.47.6.1171 doi: 10.4134/BKMS.2010.47.6.1171
    [7] S. X. Li, On an integral-type operator from the Bloch space into the $Q_k(p, q)$ space, Filomat, 26 (2012), 331–339. http://doi.org/10.2298/FIL1202331L doi: 10.2298/FIL1202331L
    [8] S. X. Li, Differences of generalized composition operators on the Bloch space, J. Math. Anal. Appl., 394 (2012), 706–711. https://doi.org/10.1016/j.jmaa.2012.04.009 doi: 10.1016/j.jmaa.2012.04.009
    [9] S. X. Li, S. Stević, Integral-type operators from Bloch-type spaces to Zygmund-type spaces, Appl. Math. Comput., 215 (2009), 464–473. https://doi.org/10.1016/j.amc.2009.05.011 doi: 10.1016/j.amc.2009.05.011
    [10] S. Stević, Products of integral-type operators and composition operators from the mixed norm space to Bloch-type spaces, Siberian Math. J., 50 (2009), 726–736. https://doi.org/10.1007/S11202-009-0083-7 doi: 10.1007/S11202-009-0083-7
    [11] S. Stević, Composition followed by differentiation from $H^\infty$ and the Bloch space to $n$th weighted-type spaces on the unit disk, Appl. Math. Comput., 216 (2010), 3450–3458. https://doi.org/10.1016/j.amc.2010.03.117 doi: 10.1016/j.amc.2010.03.117
    [12] S. Stević, On operator $P_{\varphi}^g$ from the logarithmic Bloch-type space to the mixed-norm space on unit ball, Appl. Math. Comput., 215 (2010), 4248–4255. https://doi.org/10.1016/j.amc.2009.12.048 doi: 10.1016/j.amc.2009.12.048
    [13] S. Stević, Weighted differentiation composition operators from the mixed-norm space to the $n$th weigthed-type space on the unit disk, Abstr. Appl. Anal., 2010 (2010), 246287. https://doi.org/10.1155/2010/246287 doi: 10.1155/2010/246287
    [14] S. Stević, A. K. Sharma, A. Bhat, Essential norm of products of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput., 218 (2011), 2386–2397. https://doi.org/10.1016/j.amc.2011.06.055 doi: 10.1016/j.amc.2011.06.055
    [15] S. Stević, A. K. Sharma, A. Bhat, Products of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. Math. Comput., 217 (2011), 8115–8125. https://doi.org/10.1016/j.amc.2011.03.014 doi: 10.1016/j.amc.2011.03.014
    [16] S. Stević, A. K. Sharma, R. Krishan, Boundedness and compactness of a new product-type operator from a general space to Bloch-type spaces, J. Inequal. Appl., 2016 (2016), 219. https://doi.org/10.1186/s13660-016-1159-0 doi: 10.1186/s13660-016-1159-0
    [17] W. F. Yang, Products of composition and differentiation operators from $Q_k(p, q)$ spaces to Bloch-type spaces, Abstr. Appl. Anal., 2009 (2009), 741920. https://doi.org/10.1155/2009/741920 doi: 10.1155/2009/741920
    [18] W. F. Yang, Generalized weighted composition operators from the $F(p, q, s)$ space to the Bloch-type space, Appl. Math. Comput., 218 (2012), 4967–4972. https://doi.org/10.1016/j.amc.2011.10.062 doi: 10.1016/j.amc.2011.10.062
    [19] W. F. Yang, W. R. Yan, Generalized weighted composition operators from area Nevanlinna spaces to weighted-type spaces, Bull. Korean Math. Soc., 48 (2011), 1195–1205. https://doi.org/10.4134/BKMS.2011.48.6.1195 doi: 10.4134/BKMS.2011.48.6.1195
    [20] W. F. Yang, X. L. Zhu, Generalized weighted composition operators from area Nevanlinna spaces to Bloch-type spaces, Taiwanese J. Math., 16 (2012), 869–883. https://doi.org/10.11650/twjm/1500406662 doi: 10.11650/twjm/1500406662
    [21] X. L. Zhu, Multiplication followed by differentiation on Bloch-type spaces, Bull. Allahbad Math. Soc., 23 (2008), 25–39.
    [22] X. L. Zhu, Generalized weighted composition operators on weighted Bergman spaces, Numer. Funct. Anal. Optim., 30 (2009), 881–893. https://doi.org/10.1080/01630560903123163 doi: 10.1080/01630560903123163
    [23] X. L. Zhu, Generalized weighted composition operators from Bloch spaces into Bers-type spaces, Filomat, 26 (2012), 1163–1169. https://doi.org/10.2298/FIL1206163Z doi: 10.2298/FIL1206163Z
    [24] X. L. Zhu, A new characterization of the generalized weighted composition operator from $H^\infty$ into the Zygmund space, Math. Inequal. Appl., 18 (2015), 1135–1142. https://doi.org/10.7153/mia-18-87 doi: 10.7153/mia-18-87
    [25] X. L. Zhu, Essential norm and compactness of the product of differentiation and composition operators on Bloch type spaces, Math. Inequal. Appl., 19 (2016), 325–334. https://doi.org/10.7153/mia-19-24 doi: 10.7153/mia-19-24
    [26] N. Dunford, J. T. Schwartz, Linear operators I, New York: Jon Willey and Sons, 1958.
    [27] W. Rudin, Functional analysis, New York: McGraw-Hill Book Campany, 1991.
    [28] K. L. Avetisyan, Integral representations in general weighted Bergman spaces, Complex Var., 50 (2005), 1151–1161. http://doi.org/10.1080/02781070500327576 doi: 10.1080/02781070500327576
    [29] F. Beatrous, J. Burbea, Holomorphic Sobolev spaces on the ball, Dissertationes Math., 1989.
    [30] G. Benke, D. C. Chang, A note on weighted Bergman spaces and the Cesáro operator, Nagoya Math. J., 159 (2000), 25–43. https://doi.org/10.1017/S0027763000007406 doi: 10.1017/S0027763000007406
    [31] S. Stević, Weighted composition operators from weighted Bergman spaces to weighted-type spaces on the unit ball, Appl. Math. Comput., 212 (2009), 499–504. https://doi.org/10.1016/j.amc.2009.02.057 doi: 10.1016/j.amc.2009.02.057
    [32] K. D. Bierstedt, W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Aust. Math. Soc., 54 (1993), 70–79. https://doi.org/10.1017/S1446788700036983 doi: 10.1017/S1446788700036983
    [33] L. A. Rubel, A. L. Shields, The second duals of certain spaces of analytic functions, J. Aust. Math. Soc., 11 (1970), 276–280. https://doi.org/10.1017/S1446788700006649 doi: 10.1017/S1446788700006649
    [34] S. Stević, Weighted radial operator from the mixed-norm space to the $n$th weighted-type space on the unit ball, Appl. Math. Comput., 218 (2012), 9241–9247. https://doi.org/10.1016/j.amc.2012.03.001 doi: 10.1016/j.amc.2012.03.001
    [35] S. Stević, Weighted iterated radial composition operators between some spaces of holomorphic functions on the unit ball, Abstr. Appl. Anal., 2010 (2010), 801264. https://doi.org/10.1155/2010/801264 doi: 10.1155/2010/801264
    [36] S. Stević, Weighted iterated radial operators between different weighted Bergman spaces on the unit ball, Appl. Math. Comput., 218 (2012), 8288–8294. https://doi.org/10.1016/j.amc.2012.01.052 doi: 10.1016/j.amc.2012.01.052
    [37] S. Stević, C. S. Huang, Z. J. Jiang, Sum of some product-type operators from Hardy spaces to weighted-type spaces on the unit ball, Math. Methods Appl. Sci., 45 (2022), 11581–-11600. https://doi.org/10.1002/mma.8467 doi: 10.1002/mma.8467
    [38] H. J. Schwartz, Composition operators on $H^{p}$, University of Toledo, 1969.
    [39] K. Madigan, A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc., 347 (1995), 2679–2687. https://doi.org/10.1090/S0002-9947-1995-1273508-X doi: 10.1090/S0002-9947-1995-1273508-X
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1280) PDF downloads(100) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog