In this paper, the concepts of $ (\ell, \jmath) $-symmetrical functions and the concept of $ q $-calculus are combined to define a new subclasses defined in the open unit disk. In particular. We look into a convolution property, and we'll use the results to look into our task even more, we deduce the sufficient condition, coefficient estimates investigate related neighborhood results for the class $ \mathcal{S}^{\ell, \jmath}_q(\lambda) $ and some interesting convolution results are also pointed out.
Citation: Samirah Alzahrani, Fuad Alsarari. Geometric properties of $ q $-spiral-like with respect to $ (\ell, \jmath) $-symmetric points[J]. AIMS Mathematics, 2023, 8(2): 4141-4152. doi: 10.3934/math.2023206
In this paper, the concepts of $ (\ell, \jmath) $-symmetrical functions and the concept of $ q $-calculus are combined to define a new subclasses defined in the open unit disk. In particular. We look into a convolution property, and we'll use the results to look into our task even more, we deduce the sufficient condition, coefficient estimates investigate related neighborhood results for the class $ \mathcal{S}^{\ell, \jmath}_q(\lambda) $ and some interesting convolution results are also pointed out.
[1] | F. Jackson, On $q$-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46 (1909), 253–281. http://dx.doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751 |
[2] | F. Jackson, On $q$-definite integrals, Pure Applied Mathematics, 41 (1910), 193–203. |
[3] | M. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables, Theory and Application: An International Journal, 14 (1990), 77–84. http://dx.doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407 |
[4] | M. Naeem, S. Hussain, S. Khan, T. Mahmood, M. Darus, Z. Shareef, Janowski type $q$-convex and q-close-to-convex functions associated with $q$-conic domain, Mathematics, 8 (2020), 440. http://dx.doi.org/10.3390/math8030440 doi: 10.3390/math8030440 |
[5] | H. Srivastava, M. Tahir, B. Khan, Q. Ahmad, N. Khan, Some general classes of $q$-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 292. http://dx.doi.org/10.3390/sym11020292 doi: 10.3390/sym11020292 |
[6] | F. Alsarari, S. Alzahrani, Convolution properties of q-Janowski-type functions associated with $(x, y)$-symmetrical functions, Symmetry, 14 (2022), 1406. http://dx.doi.org/10.3390/sym14071406 doi: 10.3390/sym14071406 |
[7] | M. Govindaraj, S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math., 43 (2017), 475–487. http://dx.doi.org/10.1007/s10476-017-0206-5 doi: 10.1007/s10476-017-0206-5 |
[8] | B. Khan, G. Liu, T. Shaba, S. Araci, N. Khan, M. Khan, Applications of $q$-derivative operator to the subclass of bi-univalent functions involving q-Chebyshev polynomials, J. Math., 2022 (2022), 8162182. http://dx.doi.org/10.1155/2022/8162182 doi: 10.1155/2022/8162182 |
[9] | H. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 327–344. http://dx.doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0 |
[10] | H. Srivastava, M. Arif, M. Raza, Convolution properties of meromorphically harmonic functions defined by a generalized convolution $q$-derivative operator, AIMS Mathematics, 6 (2021), 5869–5885. http://dx.doi.org/10.3934/math.2021347 doi: 10.3934/math.2021347 |
[11] | M. Raza, H. Srivastava, M. Arif, K. Ahmed, Coefficient estimates for a certain family of analytic functions involving a $q$-derivative operator, Ramanujan J., 55 (2021), 53–71. http://dx.doi.org/10.1007/s11139-020-00338-y doi: 10.1007/s11139-020-00338-y |
[12] | M. Ul-Haq, M. Raza, M. Arif, Q. Khan, H. Tang, $q$-analogue of differential subordinations, Mathematics, 7 (2019), 724. http://dx.doi.org/10.3390/math7080724 doi: 10.3390/math7080724 |
[13] | P. Liczberski, J. Połubiński, On $(j, k)$-symmetrical functions, Math. Bohem., 120 (1995), 13–28. http://dx.doi.org/10.21136/MB.1995.125897 doi: 10.21136/MB.1995.125897 |
[14] | F. Alsarari, Certain subclass of Janowski functions associated with symmetrical functions, Ital. J. Pure Appl. Math., 46 (2021), 91–100. |
[15] | P. Gochhayat, A. Prajapat, Geometric properties on $(j, k)$-symmetric functions related to starlike and convex function, Commun. Korean Math. Soc., 37 (2022), 455–472. |
[16] | F. Al-Sarari, S. Latha, T. Bulboac$\check{a}$, On Janowski functions associated with $(n, m)$-symmetrical functions, J. Taibah Univ. Sci., 13 (2019), 972–978. http://dx.doi.org/10.1080/16583655.2019.1665487 doi: 10.1080/16583655.2019.1665487 |
[17] | F. Al-Sarari, S. Latha, B. Frasin, A note on starlike functions associated with symmetric points, Afr. Mat., 29 (2018), 945–953. http://dx.doi.org/10.1007/s13370-018-0593-1 doi: 10.1007/s13370-018-0593-1 |
[18] | K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959), 72–75. http://dx.doi.org/10.2969/jmsj/01110072 doi: 10.2969/jmsj/01110072 |
[19] | A. Goodman, Univalent functions and nonanalytic curves, Proc. Am. Math. Soc., 8 (1957), 598–601. http://dx.doi.org/10.1090/S0002-9939-1957-0086879-9 doi: 10.1090/S0002-9939-1957-0086879-9 |
[20] | S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Am. Math. Soc., 81 (1981), 521–527. |
[21] | K. Padmanabhan, M. Ganesan, Convolution conditions for certain classes of analytic functions, Indian J. Pure Appl. Math., 15 (1984), 777–780. |
[22] | H. Silverman, E. Silvia, D. Telage, Convolution conditions for convexity, starlikeness and spiral-likeness, Math. Z., 162 (1978), 125–130. http://dx.doi.org/10.1007/BF01215069 doi: 10.1007/BF01215069 |