In this paper, making use of the $ q $-analogue of Carlson-Shaffer operator $ L_{q}\left(a, c\right) $ we introduce a new subclass of spiral-like functions and discuss some subordination results and Fekete-Szego problem for this generalized function class. Further, some known and new results which follow as special cases of our results are also mentioned.
Citation: Tamer M. Seoudy, Amnah E. Shammaky. Certain subclasses of spiral-like functions associated with $ q $-analogue of Carlson-Shaffer operator[J]. AIMS Mathematics, 2021, 6(3): 2525-2538. doi: 10.3934/math.2021153
In this paper, making use of the $ q $-analogue of Carlson-Shaffer operator $ L_{q}\left(a, c\right) $ we introduce a new subclass of spiral-like functions and discuss some subordination results and Fekete-Szego problem for this generalized function class. Further, some known and new results which follow as special cases of our results are also mentioned.
[1] | M. H. Annaby, Z. S. Mansour, $q$-Fractional calculus and equations, Springer-Verlag Berlin Heidelberg, 2012. |
[2] | M. K. Aouf, T. M. Seoudy, Convolution properties for classes of bounded analytic functions with complex order defined by $q$-derivative operator, RACSAM, 113 (2019), 1279-1288. doi: 10.1007/s13398-018-0545-5 |
[3] | A. Aral, V. Gupta, R. P. Agarwal, Applications of $q$-calculus in operator theory, New York: Springer, 2013. |
[4] | T. Bulboacǎ, Differential subordinations and superordinations, new results, Cluj-Napoca: House of Scientific Boook Publ., 2005. |
[5] | B. C. Carlson, S. B. Shaffer, Starlike and prestarlike hypergrometric functions, SIAM J. Math. Anal., 15 (2002), 737-745. |
[6] | G. Gasper, M. Rahman, Basic hypergeometric series, Cambridge: Cambridge University Press, 1990. |
[7] | V. G. Kac, P. Cheung, Quantum calculus, New York: Springer-Verlag, 2002. |
[8] | S. Kanas, D. Raducanu, Some subclass of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183-1196. doi: 10.2478/s12175-014-0268-9 |
[9] | F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, P. Am. Math. Soc., 20 (1969), 8-12. doi: 10.1090/S0002-9939-1969-0232926-9 |
[10] | R. J. Libera, Univalent a-spiral functions, Can. J. Math., 19 (1967), 449-456. doi: 10.4153/CJM-1967-038-0 |
[11] | S. S. Miller, P. T. Mocanu, Differential subordinations: theory and applications, New York: Marcel Dekker Inc., 2000. |
[12] | Z. Nehari, Conformal mapping, New-York: McGraw-Hill, 1952. |
[13] | H. Orhan, D. Raducanu, M. Caglar, M. Rayram, Coefficient estimates and other properties for a class of spirallike functions associated with a differential operator, Abstr. Anal. Appl., 2013 (2013), 1-7. |
[14] | S. Ruscheweyh, New criteria for univalent functions, P. Am. Math. Soc., 49 (1975), 109-115. doi: 10.1090/S0002-9939-1975-0367176-1 |
[15] | T. M. Seoudy, M. K. Aouf, Convolution properties for certain classes of analytic functions defined by $q$-derivative operator, Abstr. Anal. Appl., 2014 (2014), 1-7. |
[16] | T. M. Seoudy, M. K. Aouf, Coefficient estimates of new classes of $q$-starlike and $q$-convex functions of complex order, J. Math. Inequal., 10 (2016), 135-145. |
[17] | L. Špaček, Contribution à la theorie des fonctions univalents, Cas. Mat. Fys., 62 (1932), 12-19. |
[18] | H. M. Srivastava, A. K. Mishra, M. K. Das, The Fekete-Szego problem for a subclass of close-to-convex functions, Complex Var. Theory Appl., 44 (2001), 145-163. |
[19] | H. S. Wilf, Subordinating factor sequence for convex maps of the unit circle, P. Am. Math. Soc., 12 (1961), 689-693. doi: 10.1090/S0002-9939-1961-0125214-5 |