Research article Special Issues

Hankel and Toeplitz determinant for a subclass of multivalent $ q $-starlike functions of order $ \alpha $

  • Received: 30 December 2020 Accepted: 05 March 2021 Published: 15 March 2021
  • MSC : Primary: 05A30, 30C45; Secondary: 11B65, 47B38

  • In this paper our aim is to study some valuable problems dealing with newly defined subclass of multivalent $ q $-starlike functions. These problems include the initial coefficient estimates, Toeplitz matrices, Hankel determinant, Fekete-Szego problem, upper bounds of the functional $ \left \vert a_{p+1}-\mu a_{p+1}^{2}\right \vert $ for the subclass of multivalent $ q $-starlike functions. As applications we study a $ q $-Bernardi integral operator for a subclass of multivalent $ q $-starlike functions. Furthermore, we also highlight some known consequence of our main results.

    Citation: Huo Tang, Shahid Khan, Saqib Hussain, Nasir Khan. Hankel and Toeplitz determinant for a subclass of multivalent $ q $-starlike functions of order $ \alpha $[J]. AIMS Mathematics, 2021, 6(6): 5421-5439. doi: 10.3934/math.2021320

    Related Papers:

  • In this paper our aim is to study some valuable problems dealing with newly defined subclass of multivalent $ q $-starlike functions. These problems include the initial coefficient estimates, Toeplitz matrices, Hankel determinant, Fekete-Szego problem, upper bounds of the functional $ \left \vert a_{p+1}-\mu a_{p+1}^{2}\right \vert $ for the subclass of multivalent $ q $-starlike functions. As applications we study a $ q $-Bernardi integral operator for a subclass of multivalent $ q $-starlike functions. Furthermore, we also highlight some known consequence of our main results.



    加载中


    [1] Q. Z. Ahmad, N. Khan, M. Raza, M. Tahir, B. Khan, Certain $q$-difference operators and their applications to the subclass of meromorphic $q$-starlike functions, Filomat, 33 (2019), 3385–3397. doi: 10.2298/FIL1911385A
    [2] M. F. Ali, D. K. Thomas, A. Vasudevarao, Toeplitz determinants whose element are the coefficients of univalent functions, Bull. Aust. Math. Soc., 97 (2018), 253–264. doi: 10.1017/S0004972717001174
    [3] M. Arif, O. Barkub, H. M. Srivastava, S. Abdullah, S. A. Khan, Some Janowski type harmonic $q$-starlike functions associated with symmetrical points, Mathematics, 8 (2020), 629. doi: 10.3390/math8040629
    [4] M. Arif, H. M. Srivastava, S. Uma, Some applications of a $q$ -analogue of the Ruscheweyh type operator for multivalent functions, Rev. Real Acad. Cienc. Exactas Fis. Natur. Ser. A Mat. (RACSAM), 113 (2019), 1211–1221.
    [5] K. O. Babalola, On $H_{3}(1)$ Hankel determinant for some classes of univalent functions, Inequal. Theory Appl., 6 (2007), 1–7.
    [6] S. D. Bernardi, Convex and starlike univalent functions, Trans. Am. Math. Soc., 135 (1969), 429–446. doi: 10.1090/S0002-9947-1969-0232920-2
    [7] C. Charlier, A. Deano, Asymptotics for Hankel determinants associated to a Hermite weight with a varying discontinuity, SIGMA, 14 (2018), 018.
    [8] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Springer: New York, NY, USA, 1983.
    [9] I. Efraimidis, A generalization of Livingston's coefficient inequalities for functions with positive real part, J. Math. Anal. Appl., 435 (2016), 369–379. doi: 10.1016/j.jmaa.2015.10.050
    [10] G. Gasper, M. Rahman, Basic Hpergeometric series, vol. 35 of Encyclopedia of Mathematics and its applications, Ellis Horwood, Chichester, UK, 1990.
    [11] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Theory Appl., 14 (1990), 77–84.
    [12] T. Hayami, S. Owa, Hankel determinant for $p$-valently starlike and convex functions of order $\alpha, $ Gen. Math., 17 (2009), 29–44.
    [13] S. Hussain, S. Khan, G. Roqia, M. Darus, Hankel Determinant for certain classes of analytic functions, J. Comput. Theoret. Nanosci., 13 (2016), 9105–9110. doi: 10.1166/jctn.2016.6288
    [14] F. H. Jackson, On $q$-functions and a certain difference operator, Trans. R. Soc. Edinburgh, 46 (1908), 253–281.
    [15] F. H. Jackson, On $q$-definite integrals, Pure Appl. Math. Q., 41 (1910), 193–203.
    [16] A. Janteng, A. S. Halim, M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 2007 (2007), 619–625.
    [17] S. Kanas, D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196.
    [18] Q. Khan, M. Arif, M. Raza, G. Srivastava, H. Tang, Some applications of a new integral operator in $q$-analog for multivalent functions, Mathematics, 7 (2019), 1–13.
    [19] B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, A study of some families of multivalent $q$-starlike functions involving higher-order $q$-Derivatives, Mathematics, 8 (2020), 1470. doi: 10.3390/math8091470
    [20] B. Khan, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Q. Z. Ahmad, Coefficient estimates for a subclass of analytic functions associated with a certain leaf-like domain, Mathematics, 8 (2020), 1334. doi: 10.3390/math8081334
    [21] B. Khan, H. M Srivastava, M. Tahir, M. Darus, Q. Z. Ahmad, N. Khan, Applications of a certain -integral operator to the subclasses of analytic and bi-univalent functions, AIMS Math., 6 (2020), 1024–1039.
    [22] N. Khan, M. Shafiq, M. Darus, B. Khan, Q. Z. Ahmad, Upper bound of the third Hankel determinant for a subclass of $q$-starlike functions associated with Lemniscate of Bernoulli, J. Math. Inequal., 14 (2020), 51–63.
    [23] S. Mahmood, H. M. Srivastava, N. Khan, Q. Z. Ahmad, B. Khan, I. Ali, Upper bound of the third Hankel determinant for a subclass of $q$ -Starlike functions, Symmetry, 11 (2019), 347. doi: 10.3390/sym11030347
    [24] S. Mahmood, Q. Z. Ahmad, H. M. Srivastava, N. Khan, B. Khan, M. Tahir, A certain subclass of meromorphically $q$-starlike functions associated with the Janowski functions, J. Inequal. Appl., 2019 (2019), 88. doi: 10.1186/s13660-019-2020-z
    [25] S. Mahmood, M. Raza, E. S. AbuJarad, G. Srivastava, H. M. Srivastava, S. N. Malik, Geometric properties of certain classes of analytic functions associated with a $q$-integral operator, Symmetry, 11 (2019), 1–14.
    [26] C. Min, Y. Chen, Painlevé V and the Hankel determinant for a singularly perturbed Jacobi weight, Nucl. Phys., 961 (2020), 115221. doi: 10.1016/j.nuclphysb.2020.115221
    [27] C. Min, Y. Chen, Painlevé VI, Painlevé III, and the Hankel determinant associated with a degenerate Jacobi unitary ensemble, Math. Methods Appl. Sci., 43 (2020), 9169–9184. doi: 10.1002/mma.6609
    [28] C. Min, Y. Chen, Painlevé transcendents and the Hankel determinants generated by a discontinuous Gaussian weight, Math. Methods Appl. Sci., 42 (2019), 301–321. doi: 10.1002/mma.5347
    [29] J. W. Noonan, D. K. Thomas, On the second Hankel derminant of areally mean $p$-valent functions, Trans. Am. Math. Soc., 233 (1976), 337–346.
    [30] K. I. Noor, S. Riaz, M. A. Noor, On $q$-Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3–11.
    [31] M. S. Rehman, Q. Z. Ahmad, H. M. Srivastava, B. Khan, N. Khan, Partial sums of generalized $q$-Mittag-Leffler functions, AIMS Math., 5 (2019), 408–420.
    [32] M. S. Rehman, Q. Z. Ahmad, H. M. Srivastava, N. Khan, M. Darus, B Khan, Applications of higher-order $q$-derivatives to the subclass of $q$-starlike functions associated with the Janowski functions, AIMS Math., 6 (2020), 1110–1125.
    [33] M. S. Rehman, Q. Z. Ahmad, B. Khan, M. Tahir, N. Khan, Generalisation of certain subclasses of analytic and univalent functions, Maejo Int. J. Sci. Technol., 13 (2019), 1–9.
    [34] M. Shafiq, N. Khan, H. M. Srivastava, B. Khan, Q. Z. Ahmad, M. Tahir, Generalisation of close-to-convex functions associated with Janowski functions, Maejo Int. J. Sci. Technol., 14 (2020), 141–155.
    [35] L. Shi, Q. Khan, G. Srivastava, J. L. Liu, M. Arif, A study of multivalent $q$-starlike functions connected with circular domain, Mathematics, 7 (2019), 670. doi: 10.3390/math7080670
    [36] G. Singh, On the second Hankel determinant for a new subclass of analytic functions, J. Math. Sci. Appl., 2 (2014), 1–3. doi: 10.11648/j.sjams.20140201.11
    [37] H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: H. M. Srivastava, S. Owa, Editors, Univalent Functions$, $ Fractional Calculus$, $ and Their Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989,329–354.
    [38] H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran J. Sci. Technol. Trans. A: Sci., 44 (2020), 327–344. doi: 10.1007/s40995-019-00815-0
    [39] H. M. Srivastava, M. K. Aouf, A. O. Mostafa, Some properties of analytic functions associated with fractional $q$-calculus operators, Miskolc Math. Notes, 20 (2019), 1245–1260. doi: 10.18514/MMN.2019.3046
    [40] H. M. Srivastava, S. Khan, Q. Z. Ahmad, N. Khan, S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain $q$-integral operator, Stud. Univ. Babes-Bolyai Math., 63 (2018), 419–436. doi: 10.24193/subbmath.2018.4.01
    [41] H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for $q$-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407–425. doi: 10.14492/hokmj/1562810517
    [42] H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, M. Tahir, A generalized conic domain and its applications to certain subclasses of analytic functions, Rocky Mountain J. Math., 49 (2019), 2325–2346. doi: 10.1216/RMJ-2019-49-7-2325
    [43] H. M. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad, N. Khan, Upper bound of the third Hankel determinant for a subclass of $q$-starlike functions associated with the $q$-exponential function, Bull. Sci. Math., 167 (2021), 102942. doi: 10.1016/j.bulsci.2020.102942
    [44] H. M. Srivastava, N. Khan, M. Darus, S. Khan, Q. Z. Ahmad, S. Hussain, Fekete-Szegö type problems and their applications for a subclass of $q$-starlike functions with respect to symmetrical points, Mathematics, 8 (2020), 842. doi: 10.3390/math8050842
    [45] H. M. Srivastava, M. Raza, E. S. A. AbuJarad, G. Srivastava, M. H. AbuJarad. Fekete-Szegö inequality for classes of ($p, q$)-starlike and ($p, q$)-convex functions, Rev. Real Acad. Cienc. Exactas Fis. Natur. Ser. A Mat. (RACSAM), 113 (2019), 3563–3584.
    [46] H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of $q$-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 1–14.
    [47] H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general families of $q$-starlike functions associated with the Janowski functions, Filomat, 33 (2019), 2613–2626. doi: 10.2298/FIL1909613S
    [48] Z. G. Wang, M. Raza, M. Ayaz, M. Arif, On certain multivalent functions involving the generalized Srivastava-Attiya operator, J. Nonlinear Sci. Appl., 9 (2016), 6067–6076. doi: 10.22436/jnsa.009.12.14
    [49] X. B. Wu, S. X. Xu, Y. Q. Zhao, Gaussian unitary ensemble with boundary spectrum singularity and sigma-form of the Painlevé II equation, Stud. Appl. Math., 140 (2018), 221–251. doi: 10.1111/sapm.12197
    [50] X. Zhang, S. Khan, S. Hussain, H. Tang, Z. Shareef, New subclass of $q$-starlike functions associated with generalized conic domain, AIMS Math., 5 (2020), 4830–4848. doi: 10.3934/math.2020308
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3076) PDF downloads(330) Cited by(28)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog