This paper considers a class of delayed Cohen-Grossberg-type bi-directonal associative memory neural networks with impulses. By using Mawhin continuation theorem and constructing a new Lyapunov function, some sufficient conditions are presented to guarantee the existence and stability of periodic solutions for the impulsive neural network systems. A simulation example is carried out to illustrate the efficiency of the theoretical results.
Citation: Shuting Chen, Ke Wang, Jiang Liu, Xiaojie Lin. Periodic solutions of Cohen-Grossberg-type Bi-directional associative memory neural networks with neutral delays and impulses[J]. AIMS Mathematics, 2021, 6(3): 2539-2558. doi: 10.3934/math.2021154
This paper considers a class of delayed Cohen-Grossberg-type bi-directonal associative memory neural networks with impulses. By using Mawhin continuation theorem and constructing a new Lyapunov function, some sufficient conditions are presented to guarantee the existence and stability of periodic solutions for the impulsive neural network systems. A simulation example is carried out to illustrate the efficiency of the theoretical results.
[1] | G. Carpenter, Neural network models for pattern recognition and associative memory, Neural Networks, 4 (1989), 43-57. |
[2] | A. Miller, B. Blott, T. Hames, Review of neural network applications in medical imaging and signal processing, Med. Biol. Eng. Comput., 30 (1992), 49-64. |
[3] | B. Hu, Z. Guan, G. Chen, F. L. Lewis, Multistability of delayed hybrid impulsive neural networks with application to associative memories, IEEE Trans. Neural Networks Learn. Syst., 30 (2018), 1-15. |
[4] | M. Cohen, S. Grossberg, Absolute stability and global pattern formation and parallel memory storage by competitive neural networks, IEEE Trans. Man Cybernet. SMC, 13 (1983), 815-826. |
[5] | B. Kosko, Bidirectional associative memories, IEEE Trans. Syst. Man Cybern. SMC, 18 (1988), 49-60. doi: 10.1109/21.87054 |
[6] | S. Guo, L. Huang, Stability analysis of a delayed Hopfield neural network, Phys. Rev. E, 67 (2003), 061902. doi: 10.1103/PhysRevE.67.061902 |
[7] | J. Cao, Global stability analysis in delayed cellular neural networks, Phys. Rev. E, 59 (1999), 5940-5944. doi: 10.1103/PhysRevE.59.5940 |
[8] | W. Yao, C. Wang, Y. Sun, C. Zhou, H. Lin, Exponential multistability of memristive Cohen-Grossberg neural networks with stochastic parameter perturbations, Appl. Math. Comput., 386 (2020), 1-18. |
[9] | Z. Dong, X. Wang, X. Zhang, A nonsingular M-matrix-based global exponential stability analysis of higher-order delayed discrete-time Cohen-Grossberg neural networks, Appl. Math. Comput., 385 (2020), 125401. |
[10] | L. Ke, W. Li, Exponential synchronization in inertial Cohen-Grossberg neural networks with time delays, J. Franklin Inst., 356 (2019), 11285-11304. doi: 10.1016/j.jfranklin.2019.07.027 |
[11] | S. Gao, R. Shen, T. Chen, Periodic solutions for discrete-time Cohen-Grossberg neural networks with delays, Phys. Lett. A, 383 (2019), 414-420. doi: 10.1016/j.physleta.2018.11.016 |
[12] | C. Bai, Global exponential stability and existence of periodic solution of Cohen-Grossberg type neural networks with delays and impulses, Nonlinear Anal.: Real World Appl., 9 (2008), 747-761. doi: 10.1016/j.nonrwa.2006.12.007 |
[13] | C. Aouiti, I. B. Gharbiaa, J. Cao, A. Alsaedi, Dynamics of impulsive neutral-type BAM neural networks, J. Franklin Inst., 356 (2019), 2294-2324. doi: 10.1016/j.jfranklin.2019.01.028 |
[14] | F. Kong, Q. Zhu, K. Wang, J. J. Nieto, Stability analysis of almost periodic solutions of discontinuous BAM neural networks with hybrid time-varying delays and $D$ operator, J. Franklin Inst., 356 (2019), 11605-11637. doi: 10.1016/j.jfranklin.2019.09.030 |
[15] | J. Cao, Global asymptotic stability of delayed bi-directional associative memory neural networks, Appl. Math. Comput., 142 (2003), 333-339. |
[16] | Z. Pu, R. Rao, Exponential stability criterion of higher order BAM neural networks with delays and impulse via fixed point approach, Neurocomputing, 292 (2018), 63-71. doi: 10.1016/j.neucom.2018.02.081 |
[17] | S. Cai, Q. Zhang, Existence and stability of periodic solutions for impulsive fuzzy BAM Cohen-Grossberg neural networks on time scales, Adv. Difference Equ., 64 (2016), 944-967. |
[18] | C. Aouiti, F. Dridi, New results on interval general Cohen-Grossberg BAM neural networks, J. Syst. Sci. Complex., 33 (2020), 944-967. doi: 10.1007/s11424-020-8048-9 |
[19] | F. Yang, C. Zhang, D. Wu, Global stability analysis of impulsive BAM type Cohen-Grossberg neural networks with delays, Appl. Math. Comput., 186 (2007), 932-940. |
[20] | C. Bai, Periodic oscillation for Cohen-Grossberg-type bidirectional associative memory neural networks with neutral time-varying delays, In: 2009 Fifth International Conference on Natural Computation, 2 (2009), 18-23. |
[21] | S. Chen, X. Liu, Stability analysis of discrete-time coupled systems with delays, J. Franklin Inst., 357 (2020), 9942-9959. doi: 10.1016/j.jfranklin.2020.07.035 |
[22] | Q. Feng, S. Nguang, A. Seuret, Stability analysis of linear coupled differential-difference systems with general distributed delays, IEEE Trans. Automat. Control, 65 (2020), 1356-1363. doi: 10.1109/TAC.2019.2928145 |
[23] | S. Arik, New criteria for stability of neutral-type neural networks with multiple time delays, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 1504-1513. doi: 10.1109/TNNLS.2019.2920672 |
[24] | C. Cheng, T. Liao, J. Yuan, C. Hwang, Globally asymptotic stability of a class of neutral type neural networks, IEEE Trans. Syst. Man Cybern. SMC, 36 (2006), 1191-1194. doi: 10.1109/TSMCB.2006.874677 |
[25] | J. Liu, G. Zong, New delay-dependent asymptotic stability conditions concerning BAM neural networks of neutral-type, Neurocomputing, 72 (2009), 2549-2555. doi: 10.1016/j.neucom.2008.11.006 |
[26] | Z. He, C. Li, H. Li, Q. Zhang, Global exponential stability of high-order Hopfield neural networks with state-dependent impulses, Phys. A, 542 (2020), 1-21. |
[27] | R. Kumar, S. Das, Exponential stability of inertial BAM neural network with time-varying impulses and mixed time-varying delays via matrix measure approach, Commun. Nonlinear Sci. Numer. Simul., 81 (2020), 1-13. |
[28] | J. Chen, C. Li, X. Yang, Asymptotic stability of delayed fractional-order fuzzy neural networks with impulse effects, J. Franklin Inst., 355 (2018), 7595-7608. doi: 10.1016/j.jfranklin.2018.07.039 |
[29] | J. Wang, H. Jiang, T. Ma, C. Hu, A new approach based on discrete-time high-order neural networks with delays and impulses, J. Franklin Inst., 355 (2018), 4708-4726. doi: 10.1016/j.jfranklin.2018.04.032 |
[30] | X. Wang, X. Yu, S. Zhong, et al., Existence and globally exponential stability of periodic solution of BAM neural networks with mixed delays and impulses, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 24 (2017), 447-459. |
[31] | X. Zhang, C. Li, T. Huang, Impacts of state-dependent impulses on the stability of switching Cohen-Grossberg neural networks, Adv. Difference Equ., 316 (2017), 1-21. |
[32] | H. Gu, H. Jiang, Z. Teng, BAM-type impulsive neural networks with time-varying delays, Nonlinear Anal. Real World Appl., 10 (2009), 3059-3072. doi: 10.1016/j.nonrwa.2008.10.039 |
[33] | H. Liao, Z. Zhang, L. Ren, W. Peng, BAM neural networks via novel computing method of degree and inequality techniques, Chaos, Solitons Fractals, 104 (2017), 785-797. doi: 10.1016/j.chaos.2017.09.035 |
[34] | R. E. Gains, J. L. Mawhin, Coincidence degree and nonlinear differential equations, Springer Verlag, Berlin., 1977. |