Citation: Patrick Henning, Mario Ohlberger. The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift[J]. Networks and Heterogeneous Media, 2010, 5(4): 711-744. doi: 10.3934/nhm.2010.5.711
[1] | A. Abdulle, Multiscale methods for advection-diffusion problems, Discrete Contin. Dyn. Syst., suppl (2005), 11-21. |
[2] | A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM, Multiscale Model. Simul., 4 (2005), 447-459 (electronic). doi: 10.1137/040607137 |
[3] | A. Abdulle and W. E, Finite difference heterogeneous multi-scale method for homogenization problems, J. Comput. Phys., 191 (2003), 18-39. doi: 10.1016/S0021-9991(03)00303-6 |
[4] | A. Abdulle and C. Schwab, Heterogeneous multiscale FEM for diffusion problems on rough surfaces, Multiscale Model. Simul., 3 (2004/05), 195-220 (electronic). doi: 10.1137/030600771 |
[5] | G. Allaire and R. Orive, Homogenization of periodic non self-adjoint problems with large drift and potential, ESAIM Control Optim. Calc. Var., 13 (2007), 735-749 (electronic). doi: 10.1051/cocv:2007030 |
[6] | G. Allaire and A.-L. Raphael, "Homogénéisation d'un Modèle de Convection-Diffusion Avec Chimie/Adsorption en Milieu Poreux," (French), Rapport Interne, CMAP, Ecole Polytechnique, n. 604, 2006. |
[7] | G. Allaire and A.-L. Raphael, Homogenization of a convection-diffusion model with reaction in a porous medium, C. R. Math. Acad. Sci. Paris, 344 (2007), 523-528. |
[8] | T. Arbogast, G. Pencheva, M. F. Wheeler and I. Yotov, A multiscale mortar mixed finite element method, Multiscale Model. Simul., 6 (2007), 319-346 (electronic). doi: 10.1137/060662587 |
[9] | A. Bourlioux and A. J. Majda, An elementary model for the validation of flamelet approximations in non-premixed turbulent combustion, Combust. Theory Model., 4 (2000), 189-210. doi: 10.1088/1364-7830/4/2/307 |
[10] | W. E and B. Engquist, The heterogeneous multiscale methods, Commun. Math. Sci., 1 (2003), 87-132. |
[11] | W. E and B. Engquist, Multiscale modeling and computation, Notices Amer. Math. Soc., 50 (2003), 1062-1070. |
[12] | W. E and B. Engquist, The heterogeneous multi-scale method for homogenization problems, in "Multiscale Methods in Science And Engineering," Lect. Notes Comput. Sci. Eng., 44, Springer, Berlin, (2005), 89-110. |
[13] | W. E, P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Amer. Math. Soc., 18 (2005), 121-156 (electronic). doi: 10.1090/S0894-0347-04-00469-2 |
[14] | Y. Efendiev and T. Hou, Multiscale finite element methods for porous media flows and their applications, Appl. Numer. Math., 57 (2007), 577-596. doi: 10.1016/j.apnum.2006.07.009 |
[15] | V. Gravemeier and W. A. Wall, A 'divide-and-conquer' spatial and temporal multiscale method for transient convection-diffusion-reaction equations, Internat. J. Numer. Methods Fluids, 54 (2007), 779-804. doi: 10.1002/fld.1465 |
[16] | P. Henning and M. Ohlberger, A-posteriori error estimate for a heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift, Preprint, Universität Münster, N-09/09, 2009. |
[17] | P. Henning and M. Ohlberger, A note on homogenization of advection-diffusion problems with large expected drift, submitted to: ZAA, Journal for Analysis and its Applications, 2010. |
[18] | P. Henning and M. Ohlberger, The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains, Numer. Math., 113 (2009), 601-629. doi: 10.1007/s00211-009-0244-4 |
[19] | Multiscale Model. Simul., 3 (2004/05), 168-194 (electronic). doi: 10.1137/030601077 |
[20] | T. Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134 (1997), 169-189. doi: 10.1006/jcph.1997.5682 |
[21] | T. Y. Hou, X.-H. Wu and C. Zhiqiang, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comp., 68 (1999), 913-943. doi: 10.1090/S0025-5718-99-01077-7 |
[22] | L. Jiang, Y. Efendiev and V. Ginting, Multiscale methods for parabolic equations with continuum spatial scales, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 833-859 (electronic). doi: 10.3934/dcdsb.2007.8.833 |
[23] | E. Marušić-Paloka and A. L. Piatnitski, Homogenization of a nonlinear convection-diffusion equation with rapidly oscillating coefficients and strong convection, J. London Math. Soc. (2), 72 (2005), 391-409 (electronic). doi: 10.1112/S0024610705006824 |
[24] | A.-M. Matache, Sparse two-scale FEM for homogenization problems. Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), J. Sci. Comput., 17 (2002), 659-669. doi: 10.1023/A:1015187000835 |
[25] | A.-M. Matache and C. Schwab, Two-scale FEM for homogenization problems, M2AN Math. Model. Numer. Anal., 36 (2002), 537-572. doi: 10.1051/m2an:2002025 |
[26] | P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for parabolic homogenization problems, Math. Comp., 76 (2007), 153-177 (electronic). doi: 10.1090/S0025-5718-06-01909-0 |
[27] | J. Nolen, G. Papanicolaou and O. Pironneau, A framework for adaptive multiscale methods for elliptic problems, Multiscale Model. Simul., 7 (2008), 171-196. doi: 10.1137/070693230 |
[28] | J. T. Oden and K. S. Vemaganti, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms, J. Comput. Phys., 164 (2000), 22-47. doi: 10.1006/jcph.2000.6585 |
[29] | M. Ohlberger, A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems, Multiscale Model. Simul., 4 (2005), 88-114 (electronic). doi: 10.1137/040605229 |
[30] | C. Schwab and A.-M. Matache, Generalized FEM for homogenization problems, in "Multiscale and Multiresolution Methods," Lect. Notes Comput. Sci. Eng., 20, Springer, Berlin, (2002), 197-237. |
[31] | V. Thomée, "Galerkin Finite Element Methods for Parabolic Problems," Springer Series in Computational Mathematics, 25, Springer-Verlag, Berlin, 1997. |
[32] | K. S. Vemaganti and J. T. Oden, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. II. A computational environment for adaptive modeling of heterogeneous elastic solids, Comput. Methods Appl. Mech. Engrg., 190 (2001), 46-47. doi: 10.1016/S0045-7825(01)00217-1 |