Citation: Jérôme Coville, Nicolas Dirr, Stephan Luckhaus. Non-existence of positive stationary solutions for a class ofsemi-linear PDEs with random coefficients[J]. Networks and Heterogeneous Media, 2010, 5(4): 745-763. doi: 10.3934/nhm.2010.5.745
[1] | S. Brazovsii and T. Nattermann, Pinning and sliding of driven elastic systems: From domain walls to charge density waves, Advances in Physics, 53 (2004), 177-252. doi: 10.1080/00018730410001684197 |
[2] | L. A. Caffarelli, P. E. Souganidis and L. Wang, Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media, Comm. Pure Appl. Math., 58 (2005), 319-361. doi: 10.1002/cpa.20069 |
[3] | N. Dirr, G. Karali and N. K. Yip, Pulsating wave for mean curvature flow in inhomogeneous medium, European Journal of Applied Mathematics, 19 (2008), 661-699. doi: 10.1017/S095679250800764X |
[4] | N. Dirr and N. K. Yip, Pinning and de-pinning phenomena in front propagation in heterogeneous media, Interfaces and Free Boundaries, 8 (2006), 79-109. doi: 10.4171/IFB/136 |
[5] | G. R. Grimmett and D. R. Stirzaker, "Probability and Random Processes," Oxford University Press, Oxford, 1992. |
[6] | P.-L. Lions and P. E. Souganidis, Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 667-677. doi: 10.1016/j.anihpc.2004.10.009 |
[7] | L. Nirenberg, A strong maximum principle for parabolic equations, Comm. Pure Appl. Math., 6 (1953), 167-177. doi: 10.1002/cpa.3160060202 |
[8] | J. Xin, "An Introduction to Fronts in Random Media," Springer, New York, 2009. doi: 10.1007/978-0-387-87683-2 |