Istituto per le Applicazioni del Calcolo "M. Picone”, Consiglio Nazionale delle Ricerche, Via dei Taurini 19, 00185 Roma
2.
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli “Federico II”, Via Cintia, Monte S. Angelo, I-80126 Napoli
In [2] Barenblatt e.a. introduced a fluid model
for groundwater flow in fissurised porous media.
The system consists of two diffusion equations for the groundwater
levels in, respectively, the porous bulk and the system of cracks.
The equations are coupled by a fluid exchange term.
Numerical evidence in [2, 8] suggests that the penetration depth of the fluid
increases dramatically due to the presence of cracks and that the smallness of
certain parameter values play a key role in this phenomenon.
In the present paper we give precise estimates for the
penetration depth in terms of the smallness of some of the parameters.
Citation: Michiel Bertsch, Carlo Nitsch. Groundwater flow in a fissurised porous stratum[J]. Networks and Heterogeneous Media, 2010, 5(4): 765-782. doi: 10.3934/nhm.2010.5.765
Related Papers:
[1]
Michiel Bertsch, Carlo Nitsch .
Groundwater flow in a fissurised porous stratum. Networks and Heterogeneous Media, 2010, 5(4): 765-782.
doi: 10.3934/nhm.2010.5.765
[2]
Edoardo Mainini .
On the signed porous medium flow. Networks and Heterogeneous Media, 2012, 7(3): 525-541.
doi: 10.3934/nhm.2012.7.525
[3]
Catherine Choquet, Ali Sili .
Homogenization of a model of displacement with unbounded viscosity. Networks and Heterogeneous Media, 2009, 4(4): 649-666.
doi: 10.3934/nhm.2009.4.649
[4]
María Anguiano, Renata Bunoiu .
Homogenization of Bingham flow in thin porous media. Networks and Heterogeneous Media, 2020, 15(1): 87-110.
doi: 10.3934/nhm.2020004
[5]
Leda Bucciantini, Angiolo Farina, Antonio Fasano .
Flows in porous media with erosion of the solid matrix. Networks and Heterogeneous Media, 2010, 5(1): 63-95.
doi: 10.3934/nhm.2010.5.63
[6]
Laura Cattaneo, Paolo Zunino .
Computational models for fluid exchange between microcirculation and tissue interstitium. Networks and Heterogeneous Media, 2014, 9(1): 135-159.
doi: 10.3934/nhm.2014.9.135
[7]
Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski .
An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12(1): 147-171.
doi: 10.3934/nhm.2017006
[8]
Verónica Anaya, Mostafa Bendahmane, David Mora, Ricardo Ruiz Baier .
On a vorticity-based formulation for reaction-diffusion-Brinkman systems. Networks and Heterogeneous Media, 2018, 13(1): 69-94.
doi: 10.3934/nhm.2018004
[9]
Alexei Heintz, Andrey Piatnitski .
Osmosis for non-electrolyte solvents in permeable periodic porous media. Networks and Heterogeneous Media, 2016, 11(3): 471-499.
doi: 10.3934/nhm.2016005
[10]
Zhangxin Chen .
On the control volume finite element methods and their applications to multiphase flow. Networks and Heterogeneous Media, 2006, 1(4): 689-706.
doi: 10.3934/nhm.2006.1.689
Abstract
In [2] Barenblatt e.a. introduced a fluid model
for groundwater flow in fissurised porous media.
The system consists of two diffusion equations for the groundwater
levels in, respectively, the porous bulk and the system of cracks.
The equations are coupled by a fluid exchange term.
Numerical evidence in [2, 8] suggests that the penetration depth of the fluid
increases dramatically due to the presence of cracks and that the smallness of
certain parameter values play a key role in this phenomenon.
In the present paper we give precise estimates for the
penetration depth in terms of the smallness of some of the parameters.
References
[1]
G. I. Barenblatt, On some unsteady motions in a liquid or a gas in a porous medium, Prikladnaja Matematika i Mechanika, 16 (1952), 67-78.
[2]
G. I. Barenblatt, E. A. Ingerman, H. Shvets and J. L. Vázquez, Very intense pulse in the gorundwater flow in fissurised-porous stratum, PNAS, 97 (2000), 1366-1369. doi: 10.1073/pnas.97.4.1366
[3]
M. Bertsch, R. Dal Passo and C. Nitsch, A system of degenerate parabolic nonlinear pde's: A new free boundary problem, Interfaces Free Bound, 7 (2005), 255-276.
[4]
K. N. Chuen, C. C. Conley and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J., 26 (1977), 373-392. doi: 10.1512/iumj.1977.26.26029
[5]
R. Dal Passo, L. Giacomelli and G. Grün, A waiting time phenomena for thin film equations, Ann. Scuola Norm. Sup. Pisa (4), 30 (2001), 437-463.
[6]
R. Dal Passo, L. Giacomelli and G. Grün, "Waiting Time Phenomena for Degenerate Parabolic Equations - A Unifying Approach," in "Geometric Analysis and Nonlinear Partial Differential Equations" (S. Hildebrant and H. Karcher, eds.), Springer-Verlag, (2003), 637-648.
[7]
R. Kersner, Nonlinear heat conduction with absorption: Space localization and extinction in finite time, SIAM J. Appl. Math., 43 (1983), 1274-1285. doi: 10.1137/0143085
J. Simon, Compact sets in the space , Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.
[10]
G. Stampacchia, "Équationes Elliptiques Du Second Ordre à Coefficients Discontinus," Les presses de l'université de Montréal, 1966.
[11]
J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory," Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007.
Michiel Bertsch, Carlo Nitsch. Groundwater flow in a fissurised porous stratum[J]. Networks and Heterogeneous Media, 2010, 5(4): 765-782. doi: 10.3934/nhm.2010.5.765
Michiel Bertsch, Carlo Nitsch. Groundwater flow in a fissurised porous stratum[J]. Networks and Heterogeneous Media, 2010, 5(4): 765-782. doi: 10.3934/nhm.2010.5.765