Loading [MathJax]/jax/output/SVG/jax.js

Groundwater flow in a fissurised porous stratum

  • Received: 01 February 2010
  • Primary: 35K55; Secondary: 35B30, 35Q35, 35R35, 76S05.

  • In [2] Barenblatt e.a. introduced a fluid model for groundwater flow in fissurised porous media. The system consists of two diffusion equations for the groundwater levels in, respectively, the porous bulk and the system of cracks. The equations are coupled by a fluid exchange term. Numerical evidence in [2, 8] suggests that the penetration depth of the fluid increases dramatically due to the presence of cracks and that the smallness of certain parameter values play a key role in this phenomenon. In the present paper we give precise estimates for the penetration depth in terms of the smallness of some of the parameters.

    Citation: Michiel Bertsch, Carlo Nitsch. Groundwater flow in a fissurised porous stratum[J]. Networks and Heterogeneous Media, 2010, 5(4): 765-782. doi: 10.3934/nhm.2010.5.765

    Related Papers:

    [1] Michiel Bertsch, Carlo Nitsch . Groundwater flow in a fissurised porous stratum. Networks and Heterogeneous Media, 2010, 5(4): 765-782. doi: 10.3934/nhm.2010.5.765
    [2] Edoardo Mainini . On the signed porous medium flow. Networks and Heterogeneous Media, 2012, 7(3): 525-541. doi: 10.3934/nhm.2012.7.525
    [3] Catherine Choquet, Ali Sili . Homogenization of a model of displacement with unbounded viscosity. Networks and Heterogeneous Media, 2009, 4(4): 649-666. doi: 10.3934/nhm.2009.4.649
    [4] María Anguiano, Renata Bunoiu . Homogenization of Bingham flow in thin porous media. Networks and Heterogeneous Media, 2020, 15(1): 87-110. doi: 10.3934/nhm.2020004
    [5] Leda Bucciantini, Angiolo Farina, Antonio Fasano . Flows in porous media with erosion of the solid matrix. Networks and Heterogeneous Media, 2010, 5(1): 63-95. doi: 10.3934/nhm.2010.5.63
    [6] Laura Cattaneo, Paolo Zunino . Computational models for fluid exchange between microcirculation and tissue interstitium. Networks and Heterogeneous Media, 2014, 9(1): 135-159. doi: 10.3934/nhm.2014.9.135
    [7] Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski . An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12(1): 147-171. doi: 10.3934/nhm.2017006
    [8] Verónica Anaya, Mostafa Bendahmane, David Mora, Ricardo Ruiz Baier . On a vorticity-based formulation for reaction-diffusion-Brinkman systems. Networks and Heterogeneous Media, 2018, 13(1): 69-94. doi: 10.3934/nhm.2018004
    [9] Alexei Heintz, Andrey Piatnitski . Osmosis for non-electrolyte solvents in permeable periodic porous media. Networks and Heterogeneous Media, 2016, 11(3): 471-499. doi: 10.3934/nhm.2016005
    [10] Zhangxin Chen . On the control volume finite element methods and their applications to multiphase flow. Networks and Heterogeneous Media, 2006, 1(4): 689-706. doi: 10.3934/nhm.2006.1.689
  • In [2] Barenblatt e.a. introduced a fluid model for groundwater flow in fissurised porous media. The system consists of two diffusion equations for the groundwater levels in, respectively, the porous bulk and the system of cracks. The equations are coupled by a fluid exchange term. Numerical evidence in [2, 8] suggests that the penetration depth of the fluid increases dramatically due to the presence of cracks and that the smallness of certain parameter values play a key role in this phenomenon. In the present paper we give precise estimates for the penetration depth in terms of the smallness of some of the parameters.


    [1] G. I. Barenblatt, On some unsteady motions in a liquid or a gas in a porous medium, Prikladnaja Matematika i Mechanika, 16 (1952), 67-78.
    [2] G. I. Barenblatt, E. A. Ingerman, H. Shvets and J. L. Vázquez, Very intense pulse in the gorundwater flow in fissurised-porous stratum, PNAS, 97 (2000), 1366-1369. doi: 10.1073/pnas.97.4.1366
    [3] M. Bertsch, R. Dal Passo and C. Nitsch, A system of degenerate parabolic nonlinear pde's: A new free boundary problem, Interfaces Free Bound, 7 (2005), 255-276.
    [4] K. N. Chuen, C. C. Conley and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J., 26 (1977), 373-392. doi: 10.1512/iumj.1977.26.26029
    [5] R. Dal Passo, L. Giacomelli and G. Grün, A waiting time phenomena for thin film equations, Ann. Scuola Norm. Sup. Pisa (4), 30 (2001), 437-463.
    [6] R. Dal Passo, L. Giacomelli and G. Grün, "Waiting Time Phenomena for Degenerate Parabolic Equations - A Unifying Approach," in "Geometric Analysis and Nonlinear Partial Differential Equations" (S. Hildebrant and H. Karcher, eds.), Springer-Verlag, (2003), 637-648.
    [7] R. Kersner, Nonlinear heat conduction with absorption: Space localization and extinction in finite time, SIAM J. Appl. Math., 43 (1983), 1274-1285. doi: 10.1137/0143085
    [8] Y. Shvets, "Problems of Flooding in Porous and Fissured Porous Rock," Ph.D. thesis, University of California, Berkeley, 2005, http://gradworks.umi.com/31/87/3187151.html.
    [9] J. Simon, Compact sets in the space Lp(0,T;B), Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.
    [10] G. Stampacchia, "Équationes Elliptiques Du Second Ordre à Coefficients Discontinus," Les presses de l'université de Montréal, 1966.
    [11] J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory," Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007.
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3565) PDF downloads(94) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog