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Abstract. This contribution is concerned with the formulation of a heteroge-
neous multiscale finite elements method (HMM) for solving linear advection-

diffusion problems with rapidly oscillating coefficient functions and a large
expected drift. We show that, in the case of periodic coefficient functions,

this approach is equivalent to a discretization of the two-scale homogenized

equation by means of a Discontinuous Galerkin Time Stepping Method with
quadrature. We then derive an optimal order a-priori error estimate for this

version of the HMM and finally provide numerical experiments to validate the

method.

1. Introduction. In this contribution we are concerned with the numerical analy-
sis of a numerical multiscale finite element method for advection-diffusion problems
where the coefficient functions have rapid oscillations within the space variable and
where a large macroscopic drift may be expected. This means that we treat equa-
tions of the type

kε∂tu
ε −∇ · (Aε∇uε) + ε−1bε · ∇uε = 0 in Rd × (0, T̄ ), (1)

uε(0, ·) = v0 in Rd,
with a very small parameter ε that should be regarded as a measure for the degree
of fineness of the problem. For the time-dependent coefficients we assume that they
primarily contain microscopic oscillations, whereas the behaviour on the macro-scale
is constant. Moreover, the velocity field bε is assumed to be divergence-free. Even
though, the case where the coefficients are also allowed to vary on the macro-scale is
not part of this work, a generalization to this situation is possible, but yields several
difficulties. These difficulties already arise in the homogenization theory for such
problems, where a so-called exponential spectral problem is required to formulate
the homogenized equation (see Allaire and Orive [5]). We therefore postpone the
analysis of the general case to future work. We note that problem (1) also covers the
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treatment of advection-diffusion-reaction problems, if the corresponding coefficients
are periodic and independent of t, i.e. if the problem with additional reaction term
is of the following kind:

∂tũε −∇ ·
(
Ã
(x
ε

)
∇ũε

)
+ ε−1b̃

(x
ε

)
· ∇ũε + ε−2c̃

(x
ε

)
ũε = 0 in Rd × (0, T̄ ), (2)

ũε(0, ·) = ṽ0 in Rd.

Here, the assumption that ∇ · b̃ = 0 is not needed. The matching was treated by
Allaire and Raphael [6, 7] in 2007, who show that, by means of certain spectral cell
problems, equation (2) can be transformed to a simple advection-diffusion prob-
lem with a divergence-free velocity field b. The transformation itself can be easily
calculated and results among others in the additional coefficient function k.

The scaling of the convective term with 1
ε in equation (1) refers to a large Péclet

number (see for instance [9]). Hence, in this contribution we are interested in the
advection dominated case.

Equations of type (1) have a variety of applications such as reservoir displacement
problems, the modeling of semi-conductor devices, polymer chemistry and especially
models for transport of solutes in groundwater and surface water. Here, we may
for instance look at the modeling of groundwater pollution, where the interest is to
determine the concentration of the contaminant in the water. In particular when
the water content takes values that are close to saturation, large Péclet numbers
will occur. This is due to the fact that saturation implies that the diffusion process
has only a minor influence and the flow is primarily caused by gravity.

The problem with the numerical treatment of this type of equations, is the in-
credibly fine micro-structure, which also may have an important influence on the
coarse scale properties. To compute reliable numerical approximations with a stan-
dard method for parabolic equations, this structure must be well resolved. Since
this results in an intractable computational demand, we are interested in reducing
the high complexity of such problems by formulating suitable methods that get
by without global fine-scale calculations. In particular we are concerned with ap-
proaches that allow us to remain independent of the fineness parameter ε. Even if
it is getting smaller, the computational demand remains constant.

There are several approaches dealing with that problem, which is why we give
a small survey on the different techniques. Since some of the methods, treating el-
liptic homogenization problems, have not yet been adapted to parabolic equations,
we also include the stationary case in our overview. A first example for a method
to solve fine-scale problems, is the so called multiscale finite element method devel-
oped by Hou et al. This method is applicable to heterogeneous composite materials
as well as to porous media. The elliptic case was treated in [20, 21], whereas the
applications to two phase flow in porous media were observed in [14]. Multiscale
methods for solving parabolic equations with continuum spatial scales and heteroge-
neous coefficients were discussed by Jiang, Efendiev and Ginting [22]. A projection
framework for multiscale methods for the elliptic case is presented by Nolen, Papani-
colaou and Pironneau [27]. Another possibility of finding a proper approximation to
the solution uε of an elliptic homogenization problem, could be realized by means
of a two-scale finite element method, such as proposed by Schwab and Matache
[24, 25, 30]. Here it is assumed that the coefficients are periodically oscillating.
Therefore, the method makes explicit use of the so-called two-scale homogenized
equation that is equivalent to the standard homogenized problem. In [19], Hoang
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and Schwab introduce a two-scale FEM which is realized by a discretization of this
formulation on sparse grids. In a contribution of Arbogast et al [8], a multiscale
mortar mixed finite element discretizations for second order elliptic equations is
treated. Here an overall domain Ω is subdivided into coarse elements, the subdo-
mains, on which the original problem is posed. These subdomains are discretized
on a very fine grid scale and are stringed together by a low degree-of-freedom mor-
tar space. For a ‘divide-and-conquer’ spatial and temporal multiscale method for
transient advection-diffusion-reaction equations, see the work of Gravemeier and
Wall [15]. Adaptive algorithms for stationary fine-scale problems were developed
by Oden and Vemaganti [28, 32]. These algorithms determine a number of cells in
which the error between the homogenized solution and the exact solution is still
too large. Locally on these cells, a fine-scale problem is solved whose solution is
added as a perturbation to the homogenized solution. The local error indicators are
measured in a quantity of interest, which could be a norm concerning the physical
background. One further method to treat fine-scale problems is the heterogeneous
multiscale finite element method (HMM), as shall be discussed in this paper. Ini-
tially introduced in 2003 by E and Engquist [10, 11, 12], the HMM is based on
a standard finite element approach, whereas the evaluation of the corresponding
discrete bilinear form is achieved by means of solving local cell problems in quad-
rature points. This method is not restricted to the case of periodicity. The HMM
for elliptic problems on non-perforated domains was treated in contributions of E,
Ming and Zhang [13], Abdulle and Schwab [4] and Ohlberger [29] and the perforated
case by Henning and Ohlberger [18]. The parabolic case (HMM) was observed by
Abdulle and E [3] and Ming and Zhang [26]. In another work of Abdulle [1], an
algorithm for solving advection-diffusion problems is presented, where the HMM is
combined with an Orthogonal Runge-Kutta Chebyshev (ROCK) method, in order
to get an efficient resolution of the micro-structure.

Among others, a-priori results concerning HMM were achieved in [1, 2, 10] and
[13]. The associated proofs, however, made direct use of the local problems be-
longing to the method, so that these approaches are not applicable to a further
a-posteriori theory. To avoid this problem Ohlberger [29] reformulates the HMM
into a discrete two-scale equation in order to compare this reformulation with the
corresponding two-scale homogenized problem. On this basis a-posteriori estimates
for the elliptic problem could be shown by Ohlberger for the case of domains without
inclusions [29] and by Henning and Ohlberger for the case of a perforated domain
[18].

The goal of this paper is an original formulation of the HMM for advection-
diffusion problems with rapidly oscillating coefficient functions and a large expected
drift. Since the large drift is a result of the microscopic behaviour, we integrate this
heuristic ansatz into our approach. A detailed motivation behind the method will
be given. For the case of periodic coefficient functions, we will show that our method
is equivalent to a discretization of the two-scale homogenized equation by means
of a Discontinuous Galerkin Time Stepping Method. Using this technique of a
reformulation (see also [29] and [18]), the heterogeneous multiscale method is put
into a variational framework, which simplifies the analysis. In this paper we focus
on a-priori error estimates, whereas a-posteriori error estimates will be considered
in a forthcoming work [16].

The article is structured into four main parts. Section 2 introduces some general
assumptions and recalls several important analytic results of the homogenization
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theory. The next part is concerned with the derivation of the HMM for advection-
diffusion problems and its reformulation under certain circumstances. In the follow-
ing section the a-priori error estimate is derived, using this reformulated version.
In the last part, we state two numerical model problems to show the applicability
and efficiency of our method.

2. General assumptions and analytic results. In this section we are dealing
with the periodic setting and the homogenization of equation (1). Moreover, we
introduce all the definitions and notations that are required to formulate the het-
erogeneous multiscale finite element method.

2.1. The continuous setting and a homogenization result. This subsec-
tion is covering the treatment of the following linear advection-diffusion prob-
lem with rapidly oscillating coefficient functions and a large expected drift: find
uε ∈ H1(0, T̄ ;H1(Rd)) with∫ T̄

0

∫
Rd
k
(
t,
x

ε

)
∂tu

ε(t, x)Φ(t, x) +A
(
t,
x

ε

)
∇uε(t, x) · ∇Φ(t, x) dx dt (3)

+

∫ T̄

0

∫
Rd
ε−1b

(
t,
x

ε

)
· ∇uε(t, x)Φ(t, x) dx dt = 0 ∀Φ ∈ H1(0, T̄ ,H1(Rd))

and uε(0, ·) = v0. For our purposes, it is sufficient to assume that the coefficient
functions fulfill some regularity and ellipticity properties, such that the equation
admits an unique solution. The most important condition is the periodicity of
the coefficients. In this sense, the model equation is the basis for our analysis.
Nevertheless, the HM method introduced in section 3, is applicable to far more
general cases.

The fundamental demand for our strategy to prove convergence of the later
method, is the existence of a so called two-scale homogenized equation of the problem
above. This is why we devote this subsection to recall the corresponding analytical
results and its requirements.

To be sufficiently smooth for a subsequent numerical treatment, we assume from
now on, that the coefficient functions are Lipschitz-continuous and that the initial
value belongs to H1(Rd). Moreover, these assumptions guarantee that we have a
regular solution of the corresponding two-scale homogenized equation. This regular-
ity will become important within later error estimates. The following assumptions
are made:

Assumption 2.1 (General analytic assumptions). We assume that the coefficient
functions are Lipschitz-continuous, that the initial value is regular and that k is
positive with average one, i.e.:

A ∈
(
H1,∞(0, T̄ ;H1,∞

] (Y )
)d×d

; A(t, y)ξ · ξ ≥ |ξ|2 ∀ξ ∈ Rd a.e. in (0, T̄ )× Y ;

b ∈
(
H1,∞(0, T̄ ;H1,∞

] (Y )
)d

; ∇ · b(t, ·) = 0 a.e. in (0, T̄ ); v0 ∈ H1(Rd);

k ∈ H1,∞(0, T̄ ;H1,∞
] (Y )); k > 0;

∫
Y

k(t, y) dt = 1 everywhere in [0, T̄ ].

Note that the regularity assumptions enable us to formulate the HMM with
a pointwise evaluation of the coefficient functions. The condition that k(t, ·) has
average one, is just a normalization property, which simplifies the later results. The
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existence of k itself, may for instance be the result of a transformation from an
advection-diffusion-reaction problem to an equation of the type above.

We introduce the following spaces:

Definition 2.2 (Analytic spaces). For 0 ≤ m < ∞, 1 ≤ p ≤ ∞ and for any

Y ′ =
d

Π
i=0

(ai, bi) ⊂ Rd with ai < bi, we define

C0
] (Y ′) := {φ ∈ C0(Y ′)| φ is Y ′ − periodic},

Hm,p
] (Y ′) := C0

] (Y ′)
‖·‖Hm,p(Y ′)

and

H̃1
] (Y ′) := {v ∈ H1

] (Y ′) |
∫
Y ′
− v(y) dy = 0}.

For Y = (0, 1)d we furthermore define the following Bochner-spaces:

I := H1(Rd)× L2(Rd, H1
] (Y )),

I0 := H1(Rd)× L2(Rd, H̃1
] (Y )),

X0(0, T̄ ) := L2(0, T̄ ;H1(Rd))× L2((0, T̄ )×Rd, H̃1
] (Y )) and

X1(0, T̄ ) := H1(0, T̄ ;H1(Rd))× L2((0, T̄ )×Rd, H̃1
] (Y )).

Let Ω be a domain, then | · |Hk(Ω) denotes the semi-norm on Hk(Ω) and the full

norm is denoted by ‖ · ‖Hk(Ω) . Moreover, we introduce on L2(Ω, Hk(Y )):

|Φ|L2(Ω,Hk(Y )) :=

(∫
Ω

|Φ(x, ·)|2Hk(Y )

) 1
2

and ‖Φ‖L2(Ω,Hk(Y )) :=

k∑
l=0

|Φ|L2(Ω,Hl(Y )).

I0 is a Hilbert space with respect to the norm ‖(Φ, φ)‖I0 := |Φ|H1(Rd)+|φ|L2(Rd,H1(Y ))

and X0(0, T̄ ) with ‖(Φ, φ)‖X0(0,T̄ ) := |Φ|L2(0,T̄ ;H1(Rd)) + |φ|L2((0,T̄ )×Rd,H1(Y )).

The following convergence was initially introduced by Marušić-Paloka and Piat-
nitski [23]:

Definition 2.3 (Two-scale convergence with drift). Let B ∈ H1(0, T̄ )d be a given
drift, (uε)ε>0 a sequence in L2((0, T̄ )×Rd) and u0 ∈ L2((0, T̄ )×Rd×Y ). Then we
say uε is two-scale convergent with drift to u0, if

lim
ε→0

∫ T̄

0

∫
Rd
uε(t, x)Φ

(
t, x− B(t)

ε
,
x

ε

)
dx dt =

∫ T̄

0

∫
Rd

∫
Y

u0(t, x, y)Φ(t, x, y) dy dx dt

for all functions Φ ∈ L2((0, T̄ )× Rd;C0(Y )).

In order to finally state the two-scale homogenized equation for problem (3), we
still need some additional definitions. They will be used throughout the paper.

Definition 2.4. We define the space, and space-time averaged drift velocities b and
B through

b(t) :=

∫
Y

− b(t, y) dy, B(t) :=

∫ t

0

b(s) ds
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and the parameter-depending bilinearform E ∈ C0,1([0, T̄ ],L(I, I ′)) by

E(t) ((u0, u1), (Φ0, φ1)) :=

∫
Rd
b(t) · ∇xΦ0

(∫
Y

ku1

)
−
∫
Rd

∫
Y

(b(t, ·) · ∇xΦ0)u1

−
∫
Rd
b(t) · ∇xu0

(∫
Y

kφ1

)
+

∫
Rd

∫
Y

b(t, ·) · (∇xu0 +∇y u1) φ1

+

∫
Rd

∫
Y

A(t, ·) (∇xu0 +∇y u1) · (∇xΦ0 +∇yφ1) .

Now we are prepared to formulate the main result. It is obtained by making the
following asymptotic expansion ansatz for uε:

uε(x) = u0(t, x− B(t)

ε
) + εu1

(
t, x− B(t)

ε
,
x

ε

)
+ O(ε2).

In problem (3), we use test functions which are expected to be in resonance with
the oscillations of uε, i.e. test functions of the form

Φε(x) = Φ0(t, x− B(t)

ε
) + εφ1

(
t, x− B(t)

ε
,
x

ε

)
.

Forming the limit in the resulting weak formulation with ε→ 0 yields the subsequent
homogenization result (see [17] for details). The rather complicated structure of
the two-scale operator E is a natural effect of the homogenization process. Indeed,
decoupling the problem below and forming the effective macro problem, yields a
parabolic equation, which only contains a diffusive part.

Theorem 2.5 (Two-scale homogenized equation with drift). Let Assumption 2.1
be fulfilled and let (uε)ε>0 be the sequence of solutions of Problem (3). Then there
exist functions (u0, u1) ∈ X1(0, T̄ ), such that we have the following convergence up
to a subsequence:

uε → u0 two-scale with drift B(t) and

∇uε → ∇xu0 +∇y u1 two-scale with drift B(t).

(u0, u1) is the unique solution of the homogenized problem

−
∫ T̄

0

(u0, ∂tΦ0)L2(Rd) +

∫ T̄

0

E(t)((u0, u1), (Φ0, φ1)) = (v0,Φ0(0, ·))L2(Rd) (4)

for all (Φ0, φ1) ∈ H1(0, T̄ ;H1(Rd)) × L2((0, T̄ ) × Rd, H1
] (Y )), Φ0(T, ·) = 0. More-

over, we have the following regularity for the solutions

u0 ∈ H1(0, T̄ ;H1(Rd)) ∩ L2(0, T̄ ;H2(Rd)) and

u1 ∈ L2(0, T̄ ;H1(Rd, H̃1
] (Y ))) ∩ L2((0, T̄ )× Rd, H2(Y ))

and the following estimate holds true

|u1|L2((0,T̄ )×Rd,H2(Y )) ≤ C|u0|L2(0,T̄ ;H1(Rd) ≤ C‖v0‖L2(Rd). (5)

Proof. A detailed proof can be found in [17], where the result is a combination of
Theorem 3.1, Proposition 3.3 and Remark 3.6.
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2.2. The discrete setting. Before we formulate the heterogeneous multiscale
method for our types of problems, we still need to make several definitions in order
to introduce the discrete spaces that we are dealing with.

Therefore, let TH = {Tj |j ∈ J} be a regular simplicial partition of Rd, and
{(qi, xi)|i ∈ Qj} a given quadrature rule on Tj ∈ TH with weights qi and quadrature
points xi. By Th we denote a regular periodic partition of Y with index set K
such that Th = {Sk|k ∈ K}. Furthermore we define the 1

2 -tuple in Rd by v 1
2

=

( 1
2 , ...,

1
2 ) and the ε-scaled unit-cells, centered around a quadrature point xi by

Yi,ε := {xi − εv 1
2

+ εy |y ∈ Y }. The associated bijection xεi : Y → Yi,ε is given

by xεi(y) := xi − εv 1
2

+ εy, ∀y ∈ Y and yεi : Yi,ε → Y the corresponding inverse

mapping defined by yεi (x) :=
x−xi+εv 1

2

ε , ∀x ∈ Yi,ε. For simplification we will use

equidistant time steps. Therefore, we define tn := n4t, where 4t := T̄
N denotes the

step size and N ∈ N the maximum number of time steps. Moreover, we introduce
the following spaces:

Definition 2.6 (Discrete spaces). For the multiscale method we define

V lH := V lH(Rd) := {ΦH ∈ H1(Rd) ∩ C0(Rd) |ΦH|T ∈ Pl(T ) ∀T ∈ TH};

Wm
h (Y ) := {φh ∈ H̃1

] (Y ) ∩ C0(Y ) | φh|S ∈ Pm(S) ∀S ∈ Th};

Wm
h (Yi,ε) := {φh ∈ H̃1

] (Yi,ε) ∩ C0(Yi,ε)| (φh ◦ xεi)|S ∈ Pm(S) ∀S ∈ Th};
V lH(Rd,Wm

h (Y )) := {φh ∈ L2(Rd, H̃1
] (Y )) |φh(·, y)|T ∈ Pl(T ) ∀T ∈TH , y∈ Y ;

φh(x, ·) ∈Wm
h (Y ) ∀x ∈ Rd};

and for a reformulation of the method we also introduce

ĨH := V 1
H(Rd)× V 0

H(Rd,W 1
h (Y )), the space of solutions per time step;

IH := V 1
H(Rd)× L2(Rd,W 1

h (Y )), the space of test functions per time step;

X̃H(0, T̄ ) := V 0
4t(0, T̄ ;V 1

H(Rd))× V 0
4t,H((0, T̄ )×Rd,W 1

h (Y )), the solution space;

XH(0, T̄ ) := V 0
4t(0, T̄ ;V 1

H(Rd))× L2((0, T̄ )×Rd,W 1
h (Y )), the test space.

Here V 0
4t(0, T̄ ) denotes the space of piecewise constant functions on every interval

[n4t, (n + 1)4t] ⊂ [0, T̄ ]. V 0
4t,H((0, T̄ )×Rd) is the space of piecewise constant

functions on elements [n4t, (n+1)4t]×T , T ∈ TH . X̃H and XH should be seen as

different approximations of the original solution space X0. After reformulation, X̃H

is the solution space for our HMM-approximation. In the following section, we will
see that the reformulation of the HMM yields the possibility to use test functions,
which partially contain a very general L2-part, therefore we also introduce XH .
This fact is used for achieving our a-priori error estimate.

3. Heterogeneous multiscale method for advection-diffusion problems.
We are now prepared to derive a suitable multiscale finite element method for a
general (possibly non-periodic) problem of the following kind:
find uε ∈ H1(0, T̄ ;H1(Rd)) with∫ T̄

0

∫
Rd
k
(
t,
x

ε

)
∂tu

ε(t, x)Φ(t, x) +Aε(t, x)∇uε(t, x) · ∇Φ(t, x) dx dt (6)

+

∫ T̄

0

∫
Rd
ε−1bε(t, x) · ∇uε(t, x)Φ(t, x) dx dt = 0 ∀Φ ∈ H1(0, T̄ ,H1(Rd))
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and uε(0, ·) = v0. We demand that bε is divergence-free. If there is additionally
some cell size 1 � δ > 0 with

∫
x+[−δ,δ]d b

ε(t, y) dy = 0 for all (t, x)∈[0, T̄ ]×Rd we

do not need further assumptions on Aε. If bε does not have local zero average, we
assume that Aε and bε are only micro-scale functions, i.e. they only show a micro-
scopic behaviour and are constant on the macro-scale (for fixed t). However, these
restrictions are not necessarily needed. At the moment they should be regarded as
a simplification for the method. If there is absolutely no restriction on the scale
separated functions bε and Aε (except div bε = 0), the coefficients need to be pre-
modified according to the macroscopic drift. This may for instance involve a scale
separation by means of multiresolution analysis.

Moreover, we note that the specific structure of kε(t, x) = k(t, xε ) with average∫
Y
k(t, y) dy = 1, is also not a real restriction, but a simplification. The case with

a completely general kε yields no further difficulties but does not make sense in
the formulation above. This is due to the fact that the coefficient function kε only
occurs when the considered problem is a transformation of an originally more general
problem with reaction. This transformation however, is only possible under certain
conditions. Therefore, if the other coefficient functions fulfill these conditions, we
always have that kε is of the form k(·, ·ε ).

3.1. Motivation for the formulation of the multiscale method.
In this subsection, we a heuristic approach of how to formulate the multiscale
method. It should not be regarded as a proof, but only as a motivation for the
scheme that we find in Definition 3.1.

Let Φ ∈ H1((0, T̄ ) × Rd) be a test function, then we start with the variational
formulation of (6):∫

Rd

∫ T̄

0

kε∂tu
εΦ +

∫
Rd

∫ T̄

0

Aε∇uε · ∇Φ +
1

ε

∫
Rd

∫ T̄

0

(bε · ∇uε) Φ = 0

and uε fulfilling the initial-boundary condition. Using that bε is divergence-free we
obtain: ∫

Rd

∫ T̄

0

kε∂tu
εΦ +

∫
Rd

∫ T̄

0

Aε∇uε · ∇Φ− 1

ε

∫
Rd

∫ T̄

0

(bε · ∇Φ)uε = 0.

We make a finite-element approach with quadrature formula for this problem. Keep-
ing in mind that uε and the coefficient functions contain fine-scale oscillations, we
naturally formulate the following equation:

(un+1
H ,ΦH)L2(RN ) = (unH ,ΦH)L2(RN ) +4tAn+1

H (un+1
H ,ΦH) ∀ΦH ∈ V 1

H

with

AnH(uH ,ΦH) :=
∑
j∈J

∑
i∈Qj

qi

∫
Yi,ε

− Aεh(tn, x)∇xR(n)
i (uH)(x) · ∇xΦH(xi) dx

−
∑
j∈J

∑
i∈Qj

qi

∫
Yi,ε

− 1

ε
bεh(tn, x) · ∇xΦH(xi) R

(n)
i (uH)(x) dx.

Here, Aεh and bεh denote adequate approximations of Aε and bε (see Definition 3.1 for

details). R
(n)
i denotes a reconstruction operator, such that R

(n)
i (uH) approximates
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uε. Note that k does not occur in the scalar products of the kind (unH ,ΦH)L2(RN ),
since it has average 1 on the micro-scale:

(unH ,ΦH)L2(RN ) ≈
∑
j∈J

∑
i∈Qj

qiu
n
H(xi)ΦH(x) =

∑
j∈J

∑
i∈Qj

qi

∫
Yi,ε

− kεunH(xi)ΦH(x).

There are two questions that arise with this approach:

1. Why do we approximate −
∫
Rd
∫ T

0
(bε · ∇Φ)uε instead of

∫
Rd
∫ T

0
(bε · ∇uε) Φ?

Does it make a difference?
2. How do we determine the reconstruction operator R

(n)
i ?

The answer to the first question is very much related to the answer of the second
question. In general, the reconstructions in a heterogeneous multiscale method have
difficulties to capture terms of order O(ε). For instance: Assume that we make the
ansatz uε(x) = u0(x)+εu1(x, xε ), then ∇Ri(uH) approximates ∇xu0 +∇y u1 instead
of∇xu0+ε∇xu1+∇y u1. Normally, this is not problematic, since ε tends to zero. But
in a term that is scaled with 1

ε , it becomes significant. On the other hand, in the re-
construction Ri(uH) itself (an approximation of u0 + εu1) the term of order ε is still

existent. Therefore, −
∑
j∈J

∑
i∈Qj qi

∫
Yi,ε
− 1

ε b
ε
h(tn, x) · ∇xΦH(xi) R

(n)
i (uH)(x) dx

is expected to be a relatively exact approximation (it also captures the O(ε)-terms),

whereas
∑
j∈J

∑
i∈Qj qi

∫
Yi,ε
− 1

ε b
ε
h(tn, x) ·∇xR(n)

i (uH)(x) ΦH(x) dx does not approx-

imate the right term (it does not capture the O(ε)-terms).
Now we focus on question 2. The discrete problem for the determination of the

reconstructions is given by a discretization of the local resonance condition, namely

find R
(n)
i (uH) ∈ uH +Wm

h (Yi,δ) with

∫
Yi,δ

Aεh(tn, x)∇xR(n)
i (uH)(x) · ∇xφh(x) dx

+

∫
Yi,δ

1

ε
bεh(tn, x) · ∇xR(n)

i (uH)(x) φh(x) dx = 0, ∀φh ∈W 1
h (Yi,δ).

This equation can be interpreted as that the micro-scale oscillations of the re-
construction Ri(uH) are in resonance with all functions φh ∈ W 1

h (Yi,δ). This is
what we expect if we make the ansatz uε(t, x) = u0(t, x) + εu1(t, x, xε ) + O(ε2).
Note that the test function φh should be interpreted as a shifted test function
scaled with ε, i.e. it is of the type εφ̃h. Therefore, the multiplication with 1

ε
is neutralized and we do not deal with the same problem as in the global equa-

tion. This means that using
∫
Yi,δ

1
ε b
ε
h(tn, x) · ∇xR(n)

i (uH)(x) φh(x) dx instead of

−
∫
Yi,δ

1
ε b
ε
h(tn, x) · ∇φh(x) R

(n)
i (uH)(x) dx makes sense in this formulation. Both

expressions only differ in a term of order O(ε).
Using the derived method as described above will still produce wrong approxi-

mations for uε. Why? Again we need to focus on the macro-scale part with the
1
ε -dependence. Defining the local centered reconstruction by:

R
(n)
i (uH)(x) := R

(n)
i (uH)(x)− (uH(x)− uH(xi)) ,
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we look at the difference between the expressions:∫
Yi,ε

− 1

ε
bεh(tn, x) · ∇xΦH(xi) R

(n)
i (uH)(x) dx and (7)∫

Yi,ε

− 1

ε
bεh(tn, x) · ∇xΦH(xi) R

(n)
i (uH)(x) dx. (8)

Even if they seem almost identical, the difference may be crucial. Both terms differ
in the separation of the scales. In (7) the scales seem to be ’less separated’ than
in (8). For instance, in (8) we are essentially dealing with an average over the
micro-scale behaviour. In (7) on the other hand, the macro-scale behaviour has
an influence of order ε on the average. At first view, an O(ε)-discrepancy seems
to be negligible, but again the 1

ε -scaling can produce a significant difference. The
following argumentation is to emphasize this. Let us assume that bε(t, x) = b(t, xε )
with b(t, ·) being Y -periodic and having zero average, then we have for a suitable
approximation bh:∫
Yi,ε

− 1

ε
bεh(tn, x) ·∇xΦH(xi) uH(xi) dx = uH(xi) ∇xΦH(xi) ·

∫
Yi,ε

− 1

ε
bεh(tn, x) dx = 0.

(9)

If we furthermore define the fine-scale part by K(n)
i (uH) := R

(n)
i (uH)−uH , we have:

(8) =

∫
Yi,ε

− 1

ε
bεh(tn, x) · ∇xΦH(xi)

(
uH(xi) +K(n)

i (uH)
)
dx

(9)
=

∫
Yi,ε

− 1

ε
bεh(tn, x) · ∇xΦH(xi) K(n)

i (uH) dx.

On the other hand for (7):

(7) =

∫
Yi,ε

− 1

ε
bεh(tn, x) · ∇xΦH(xi)

(
uH(x) +K(n)

i (uH)
)
dx

(9)
=

∫
Yi,ε

− 1

ε
bεh(tn, x) · ∇xΦH(xi)

(
uH(x)− uH(xi) +K(n)

i (uH)
)
dx

=

∫
Yi,ε

− 1

ε
bεh(tn, x) · ∇xΦH(xi) (uH(x)− uH(xi)) dx

+

∫
Yi,ε

− 1

ε
bεh(tn, x) · ∇xΦH(xi) K(n)

i (uH) dx.

Thus, (7) and (8) differ in:∫
Yi,ε

− 1

ε
bεh(tn, x) · ∇xΦH(xi) (uH(x)− uH(xi)) dx (10)

=

∫
Yi,ε

− 1

ε
bεh(tn, x) · ∇xΦH(xi) (∇uH(xi) · (x− xi)) dx.

Since we only have |x−xi| ≤ ε and at the same time a scaling with 1
ε , the difference

(10) is neither equal to zero nor does it converge to zero. Therefore, (7) and (8) are
obviously different. In the following we work with (8), since a clearer separation of
the scales corresponds more with our approach for uε. As we will see later on, this
choice is the ’right’ choice.

We simplify the subsequent considerations by assuming that the macroscopic drift
B is only time dependent. Since we expect the solution uε to have a large drift,
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we integrate this presumption into the method itself. Just like in the analytical
contemplations, we make the ansatz:

uε(t, x) = u0

(
t, x− B(t)

ε

)
+ εu1

(
t, x− B(t)

ε
,
(
x, ε−1

))
+O(ε2). (11)

Here, the last component of u1 describes the microscopic behaviour of uε (without
being necessarily periodic).

Instead of approximating U0(t, x) = u0

(
t, x− B(t)

ε

)
, the multiscale method will

be designed to approximate only u0(t, x) by using an approach of characteristics.
With this approach we have the advantage that the strongly dominating part of
order 1

ε can be erased in our discrete problems. Moreover, we do not have to use
small time step sizes to capture the drift.

In order to incorporate these ideas into the method, we proceed heuristically.
Equation (11) suggests to test with

Φε(t, x) = Φ0
(
t, x− B(t)

ε

)
+ εφ1

(
t, x− B(t)

ε ,
(
x, ε−1

))
to determine the changes on

the macro-scale and on the micro-scale. Terms which are of the order O(ε) are
neglected.

∂tΦ
ε(t, x) = ∂tΦ

0

(
t, x− B(t)

ε

)
− 1

ε
b(t) · ∇xΦ0

(
t, x− B(t)

ε

)
(12)

− 1

ε
b(t) · ε∇xφ1

(
t, x− B(t)

ε
,
(
x, ε−1

))
+O(ε).

Note that the average b(t) of the advective part bε is equal to the derivative of the
macroscopic drift B(t). kε shall be disregarded for the moment, since it produces
no crucial changes. Since∫

Rd

∫ T̄

0

∂tu
εΦε dt dx = −

∫
Rd

∫ T̄

0

uε∂tΦ
ε dt dx

we conclude with (12) that there should be an additional term on the macro-scale,
that behaves like (u0 + εu1) 1

ε b∇xΦ0. We therefore need to add the following part
to our method ∑

j∈J

∑
i∈Qj

qi

∫
Yi,ε

− 1

ε
b(tn) · ∇xΦH(xi) R

(n)
i (uH)(x) dx.

On the micro-scale we observe that there should be an additional term behaving
like

∫
Rd
∫
Y
u0∇xφ1. Since

∫
Rd
∫
Y
u0∇xφ1 = −

∫
Rd
∫
Y
∇xu0φ

1, we add

−
∫
Yi,δ

1
ε b(t

n) · ∇xuH(x) φh(x) dx to the micro-scale equation. This concludes our

considerations and we are ready to formulate our multiscale finite element method.

3.2. Formulation of the HMM for the general non-periodic case.
In this subsection, we state the heterogeneous multiscale finite element method for
advection-diffusion problems. No periodicity is assumed for this part. The HMM
reads as follows:

Definition 3.1 (HMM for advection-diffusion problems with large drift). Assume
that bε is a divergence-free advection velocity, then we define the HMM approxima-
tion UH of uε by

UH(tn, xi) := unH(xi −
1

ε

∫ tn

0

∫
Yi,δ

− bεh(y, s) dy ds)
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where un+1
H ∈ V lH is defined as the solution of

(un+1
H ,ΦH)L2(RN ) +4tAn+1

H (un+1
H ,ΦH) = (unH ,ΦH)L2(RN ) ∀ΦH ∈ V lH ,

with

AnH(uH ,ΦH) :=
∑
j∈J

∑
i∈Qj

qi

∫
Yi,ε

− Aεh(tn, x)∇xR(n)
i (uH)(x) · ∇xΦH(xi) dx

+
∑
j∈J

∑
i∈Qj

qi

∫
Yi,ε

− 1

ε

(
kεh(tn, x)b

ε,i

h (tn)− bεh(tn, x)
)
· ∇xΦH(xi) R

(n)
i (uH)(x) dx.

Here, Aεh, bεh and kεh are assumed to be suitable approximations of Aε, bε and
kε. If these coefficient functions are sufficiently regular, we may for instance use
Aεh(t, ·)|xεi(Sk) := Aε(t, xεi(yk)) and bεh(t, ·)|xεi(Sk) := bε(t, xεi(yk)), where yk denotes

the barycenter of Sk. Moreover, we define b
δ,i

h (t) :=
∫
Yi,δ
− bεh(t, y) dy.

The local centered reconstructions are given by:

R
(n)
i (ΦH)(x) := R

(n)
i (ΦH)(x)− (ΦH(x)− ΦH(xi)) ,

and for ΦH ∈ V lH the local reconstruction operator R
(n)
i itself is defined by the

solutions R
(n)
i (ΦH) ∈ ΦH +Wm

h (Yi,δ) of∫
Yi,δ

Aεh(tn, x)∇xR(n)
i (ΦH)(x) ·∇xφh(x) dx+

∫
Yi,δ

1

ε
bεh(tn, x) ·∇xR(n)

i (ΦH)(x) φh(x) dx

=

∫
Yi,δ

kεh(tn, x)
1

ε
b
δ,i

h (tn) ·∇xΦH(x) φh(x) dx, ∀φh ∈Wm
h (Yi,δ).

The initial value u0
H = v0

H is given by a suitable discretization of v0. For the
parameter δ we furthermore assume δ ≥ ε. An expedient choice for the periodic
case could be δ = ε, for the non-periodic case δ = mε,m > 1.

In Definition 3.1 we assume that
∫
Yi,δ
− kεh(tn, x) dx = 1 for all Yi,δ and for all time

steps tn. If this is not the case, the HMM needs to be modified according to a new
drift of the form

Bh(tn) =

∫ tn

0

∫
Yi,δ
− bεh(s, x) dx∫
Yi,δ
− kεh(s, x) dx

ds.

This can be done in a straightforward way.

3.3. The HMM and its reformulation for the periodic case. In section 4,
we derive an a-priori error estimate for the HMM defined in 3.1. To do so, we need
to restrict ourselves to the case of periodic coefficient functions. In this subsection,
we therefore introduce a simplified formulation of the HMM in the periodic setting.
We show that it is equivalent to a direct discretization of the homogenized problem
(4). This result yields the basis for the analysis in section 4.

In Definition 3.2 below, we only use a Newton-Cotes quadrature formula of order
zero. Note that this is not a real constraint. For the case of quadrature formulas
of higher order, additional error terms occur, which depend on this order. Refor-
mulations of the HMM will therefore contain an approximation error related to
the quadrature. The following method is merely a simplification of the method in
Definition 3.1. In the following, we will always refer to this simplification.
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Definition 3.2. Let xj be defined as the barycenter of the macro-grid element
Tj ∈ TH and yk the barycenter of micro-grid element Sk ∈ Th. Under Assumption
2.1, we furthermore define the discrete approximations of Aε, bε and kε by

Aεh(t, x) := A

(
tn,

xεj(yk)

ε

)
, bεh(t, x) := b

(
tn,

xεj(yk)

ε

)
, kεh(t, x) := k

(
tn,

xεj(yk)

ε

)
for (t, x) ∈ [tn, tn+1) × xεj(Sk). Moreover, we make use of Ah(t, y) := Aεh(t, εy). bh
and kh are defined in analogy. Since bh is a Y -periodic function we can simplify the

definition of b
δ,j

h to:

b
δ,j

h (t) := bh(t) =

∫
Y

− bh(t, y) dy.

In the periodic setting, Definition 3.1 can be expressed as follows:

Definition 3.3 (HMM for periodic coefficient functions). In the case of periodic
coefficient functions we will use the following version of the HMM. Here the HMM
approximation UH of uε is given by

UH(tn, x) := unH(x− 1

ε

∫ tn

0

∫
Y

− bh(y, s) dy ds),

where un+1
H ∈ V 1

H is defined as the solution of:

(unH ,ΦH)L2(RN ) = (un+1
H ,ΦH)L2(RN ) +4tAn+1

H (un+1
H ,ΦH) ∀ΦH ∈ V 1

H ,

with

AnH(uH ,ΦH) :=
∑
j∈J
|Tj |
∫
Yj,ε

− Aεh(tn, x)∇xR(n)
j (uH)(x) · ∇xΦH(xj) dx

+
∑
j∈J
|Tj |
∫
Yj,ε

− 1

ε

(
kεh(tn, x)bh(tn)− bεh(tn, x)

)
· ∇xΦH(xj) R

(n)
j (uH)(x) dx.

xj , A
ε
h, bεh, kεh and b̄h are given by Definition 3.2. The local centered reconstructions

are defined by:

R
(n)
j (ΦH)(x) := R

(n)
j (ΦH)(x)− (ΦH(x)− ΦH(xj)) ,

and for ΦH ∈ V 1
H the local reconstruction operator R

(n)
j itself is defined by the

solutions R
(n)
j (ΦH) ∈ ΦH +W 1

h (Yj,ε) of∫
Yj,ε

Aεh(tn, x)∇xR(n)
j (ΦH)(x) ·∇xφh(x) dx+

∫
Yj,ε

1

ε
bεh(tn, x) ·∇xR(n)

j (ΦH)(x) φh(x) dx

=

∫
Yj,ε

kεh(tn, x)
1

ε
bh(tn) · ∇xΦH(x) φh(x) dx, ∀φh ∈W 1

h (Yj,ε).

The initial value u0
H is given by u0

H := v0
H := IH(v0).

To prepare for the numerical analysis, we now draw our attention to a reformu-
lation of this method. For this purpose, we introduce the bilinear forms EH and
GN :
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Definition 3.4. We define the operator EnH ∈ L(ĨH , I
′
H) by:

EnH ((uH , uh), (ΦH , φh)) :=

∫
Rd

∫
Y

bh(tn, y) · (∇xuH(x) +∇y uh(x, y)) φh(x, y) dy dx

+

∫
Rd

∫
Y

(
kh(tn, y)bh(tn)− bh(tn, y)

)
· ∇xΦH(x) uh(x, y) dy dx

−
∫
Rd

∫
Y

kh(tn, y) bh(tn) · ∇xuH(x) φh(x, y) dy dx

+

∫
Rd

∫
Y

Ah(tn, y) (∇xuH(x) +∇y uh(x, y)) · (∇xΦH(x) +∇yφh(x, y)) dy dx

and the parameter dependent bilinear form EH ∈ V 0
4t([0, T̄ ],L(ĨH , I

′
H)) by

EH(t) ((uH , uh), (ΦH , φh)) := En+1
H ((uH , uh), (ΦH , φh)) for t ∈ (tn, tn+1].

Moreover, we define the jumps over tn by:

[u]n := un+ − un−, where un+ := lim
t↘tn

u(t, ·), un− := lim
t↗tn

u(t, ·)

and a corresponding space by:

X4t := {(Φ0, φ1) ∈ X0(0, T̄ ) |Φ0|[tn,tn+1] ∈ P0(tn, tn+1;H1(Rd))}. (13)

For simplification we furthermore denote for n ≥ 0 and (ΦH , φh) ∈ XH(0, T̄ )

Φn+1
H := (ΦH)n+ = (ΦH)n+1

− . (14)

The bilinear form GN : X1(0, T̄ )×X4t → R is given by:

GN ((u0, u1), (Φ0, φ1)) :=

N−1∑
n=1

([u0]n, (Φ0)n+)L2(Rd) + ((u0)0
+, (Φ0)0

+)L2(Rd)

+

N−1∑
n=0

(∫ tn+1

tn
(∂tu0,Φ0)L2(Rd) + E(t)((u0, u1), (Φ0, φ1))

)
and analogously for the discrete case GNH : X̃H(0, T̄ )×XH(0, T̄ )→ R:

GNH((uH , uh), (ΦH , φh)) :=

N−1∑
n=1

([uH ]n, (ΦH)n+)L2(Rd) + ((uH)0
+, (ΦH)0

+)L2(Rd)

+

N−1∑
n=0

(∫ tn+1

tn
(∂tuH ,ΦH)L2(Rd) + EH(t)((uH , uh), (ΦH , φh))

)
.

The following theorem shows that in the periodic case, the HMM is equivalent to
a discretization of the two-scale equation (4) by means of a Discontinuous Galerkin
Time Stepping Method with quadrature. In this spirit, uH is an approximation of
the macro-scale portion u0, whereas Kh(uH) (defined in the subsequent theorem)
approximates the micro-scale part u1. This fact will help us to derive a correspond-
ing a-priori error estimate.

Theorem 3.5 (Reformulation of HMM). Suppose that H >> ε and let UH , unH
and R

(n)
j (unH) be given by Definition 3.3. We furthermore define (uH ,Kh(uH)) ∈

X̃H(0, T̄ ) by uH |(tn,tn+1] := un+1
H and Kh(uH)|(tn,tn+1] := K(n+1)

h (un+1
H ), where

K(n)
h (unH) ∈ V 0

H(Rd,W 1
h (Y )) is given by K(n)

h (unH)(x, y)|Tj×Y := 1
εK

(n)
j (unH)(εy) and
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K(n)
j (unH) ∈W 1

h (Yj,ε) by K(n)
j (unH) := R

(n)
j (unH)− unH . Note that any periodic func-

tion should be seen as its extension to the whole Rd, so that the preceding definitions
make sense. With these assumptions, we have that (uH ,Kh(uH)) ∈ X̃H(0, T̄ ) is a
solution of

GNH((uH ,Kh(uH)), (ΦH , φh)) = (v0
H , (ΦH)0

+)

for all (ΦH , φh) ∈ XH(0, T̄ ) and for all N , where N∆t ≤ T .

The proof of this theorem follows the ideas of a reformulation in the elliptic case
(see [29] and [18]). The details are given in Appendix A.

4. A-priori error estimates. In the following we are concerned with deriving an
a-priori error estimate for our heterogeneous multiscale finite element method for
advection-diffusion problems in the periodic setting. This estimate indicates the
rates of convergence that we expect for the given HMM. The basic concept of this
section will be similar to the one suggested in [31], chapter 12, for the treatment of
the equation ∂tu −4u = f . Note that it is only the structure of the proof, which
is still the same, but the completion is much more complicated. There are several
additional difficulties in our problem, which are not treated in [31]. In particular
the existence of time-dependent coefficient functions and the non-symmetric main
part complicate the analysis. The problem of non-symmetry is treated in Lemma
4.7, where we give an equivalent formulation of the dual problem. Another novelty
concerns the elliptic projection operator, which has to be introduced to finish the
proof with an optimal order of convergence in space.

This rest of this section is structured as follows. First, we introduce a dual
backward problem (Definition 4.2) which we use to derive an equation for the error
(Lemma 4.4). After this, the contributions of the error identity need to be controlled
by the L2-norm of the error itself. These estimates are given in the Lemmas 4.6
and 4.8 below. For Lemma 4.8, it is essential to symmetrize the problem. This is
achieved in Lemma 4.7

From now on, the error function between the homogenized solution and the HMM
approximation is denoted by en, i.e.

en(·) := unH(·)− u0(tn, ·)
for 0 ≤ n ≤ N . With this notation, we now formulate the main result of this paper.

Theorem 4.1 (A-priori error estimate). Under the Assumptions 2.1 and if v0
H

solves
∫
Rd v

0
HΦ0

H =
∫
Rd v0Φ0

H ∀Φ0
H ∈ V 1

H(Rd), the following a-priori error estimate
is fulfilled:

‖eN‖L2(Rd) ≤CH2 max
1≤n≤N

(
‖u0‖L2(tn−1,tn;H2(Rd))

)(
log

tN+1

4t

) 1
2

+C4t max
1≤n≤N

(
‖∂tu0‖L2((tn−1,tn)×Rd)

)(
log

tN+1

4t

) 1
2

+C(4t+H + h)‖(u0, u1)‖X0(0,T̄ ).

The theorem shows, that our multi-scale scheme is first order in time and second
order in space. The term (4t+H+h)‖(u0, u1)‖X0(0,T̄ ) describes the approximation
error determined by the qudrature rule. Choosing better approximations for the
coefficient functions improves this error.
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The rest of this section is concerned with proving Theorem 4.1. Before we start
with introducing a suitable dual backward problem, we state a formulation of equa-
tion (4) which might be helpful, since the dual problem will be formulated in an
analogous way.

Corollary 1. Let X4t be given by (13). For any solution of equation (4), we have

GN ((u0, u1), (Φ, φ)) = (v0,Φ
0
+)L2(Rd) ∀(Φ, φ) ∈ X4t.

This result is obvious, since u0 is continuous in t (which gives us [u0]n = 0) and
since (∂tu0,Φ)L2(Rd) + E(t)((u0, u1), (Φ, φ)) = 0. With regard to this corollary, we
introduce the corresponding, discrete backward problem:

Definition 4.2 (Discrete backward problem). We call (zH , zh) ∈ X̃H(0, tN+1) the
solution of the discrete dual backward problem, if

GNH((ΦH , φh), (zH , zh)) = ((ΦH)N− , e
N )L2(Rd) ∀ (ΦH , φh) ∈ XH(0, tN ). (15)

Remark 1. The discrete backward problem (15) is equivalent to the following

backward Euler discretization. The initial value zN+1
H is defined by zN+1

H := eN

and (znH , z
n
h ) ∈ ĨH is given by the equation

(ΦH , z
n+1
H )L2(Rd) = (ΦH , z

n
H)L2(Rd) +4tEnH((ΦH , φh), (znH , z

n
h )), ∀ (ΦH , φh) ∈ IH .

The following assumption is needed so that the error identity holds true.

Assumption 4.3. We assume that the discrete initial value v0
H is given by the

following local L2-projection
∫
Rd v

0
HΦ0

H =
∫
Rd v0Φ0

H ∀Φ0
H ∈ V 1

H(Rd).

Now, we are able to state an equation for the L2-error ‖eN‖L2(Rd).

Lemma 4.4 (Error identity). Suppose that the assumptions 2.1 and 4.3 are fulfilled

and that (zH , zh) ∈ X̃H(0, tN ) denotes the solution of the discrete backward problem
(15). Then the following error identity holds true for all (ΨH , ψh) ∈ XH(0, tN ):

‖eN‖2L2(Rd) =

∫ tN

0

EH(t)((u0 −ΨH , u1 − ψh), (zH , zh)) dt

+

N∑
n=1

(Ψn
H − u0(tn, ·), zn+1

H − znH)L2(Rd) +

∫ tN

0

(E − EH)(t)((u0, u1), (zH , zh)) dt.

Remark 2. The error contributions on the right hand side of the error identity
correspond to the space discretization, time discretization and data approximation
errors. Estimates for these individual terms will be derived in the Lemmas 4.6 and
4.8 below.

Proof of Lemma 4.4. We start with the equation

(eN , eN )L2(Rd) = (uNH − u0(tN , ·), eN )L2(Rd) (16)

= (uNH −ΨN
H , e

N )L2(Rd) + (ΨN
H − u0(tN , ·), eN )L2(Rd).

Using Assumption 4.3, Theorem 3.5 and Corollary 1, we have

GNH((uH ,Kh(uH)), (ΦH , φh)) = GN ((u0, u1), (ΦH , φh))
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for all (ΦH , φh) ∈ XH(0, tN ). Testing with (zH , zh) therefore yields

(uNH −ΨN
H , e

N )L2(Rd) = GNH((uH −ΨH ,Kh(uH)− ψh), (zH , zh))

= GNH((uH ,Kh(uH)), (zH , zh))−GNH((ΨH , ψh), (zH , zh))

= GN ((u0, u1), (zH , zh))−GNH((ΨH , ψh), (zH , zh))

= (GN −GNH)((u0, u1), (zH , zh)) +GNH((u0 −ΨH , u1 − ψh), (zH , zh))

=

∫ tN

0

(E − EH)(t)((u0, u1), (zH , zh)) dt+GNH((u0 −ΨH , u1 − ψh), (zH , zh)).

This implies

(uNH −ΨN
H , e

N )L2(Rd) =

∫ tN

0

(E − EH)(t)((u0, u1), (zH , zh)) dt (17)

+

N−1∑
n=0

∫ tn+1

tn
(∂t(u0 −Ψn+1

H ), zn+1
H )L2(Rd) +EH(t)((u0 −ΨH , u1 − ψh), (zH , zh)) dt

+

N−1∑
n=1

([u0 −ΨH ]n, z
n+1
H )L2(Rd) + (v0 −Ψ1

H , z
1
H)L2(Rd).

Moreover, we see that

N−1∑
n=0

(∫ tn+1

tn
(∂t(u0−Ψn+1

H ),zn+1
H )L2(Rd) +([u0−ΨH ]n,z

n+1
H )L2(Rd)

)
+(v0−Ψ1

H ,z
1
H)L2(Rd)

=

N−1∑
n=0

(∫ tn+1

tn
(∂tu0, z

n+1
H )L2(Rd)

)
−
N−1∑
n=1

([ΨH ]n, z
n+1
H )L2(Rd) + (v0 −Ψ1

H , z
1
H)L2(Rd)

=

N−1∑
n=0

(u0(tn+1, ·)− u0(tn, ·), zn+1
H )L2(Rd) −

N−1∑
n=1

(Ψn+1
H −Ψn

H , z
n+1
H )L2(Rd)

+(v0 −Ψ1
H , z

1
H)L2(Rd)

=

N−1∑
n=0

(u0(tn+1, ·), zn+1
H )L2(Rd) −

N−1∑
n=1

(u0(tn, ·), zn+1
H )L2(Rd)

−
N−1∑
n=0

(Ψn+1
H , zn+1

H )L2(Rd) +

N−1∑
n=1

(Ψn
H , z

n+1
H )L2(Rd)

=

N−1∑
n=1

(Ψn
H − u0(tn, ·), zn+1

H − znH)L2(Rd) + (u0(tN , ·)−ΨN
H , z

N
H )L2(Rd)

Combining this result with (16), we obtain:

‖eN‖2L2(Rd) = (uNH −ΨN
H , e

N )L2(Rd) + (ΨN
H − u0(tN , ·), eN )L2(Rd)

=

∫ tN

0

(E − EH)(t)((u0, u1), (zH , zh)) dt+

N−1∑
n=1

(Ψn
H − u0(tn, ·), zn+1

H − znH)L2(Rd)

+(u0(tN , ·)−ΨN
H , z

N
H )L2(Rd) + (ΨN

H − u0(tN , ·), eN )L2(Rd)

+

N−1∑
n=0

∫ tn+1

tn
En+1
H ((u0 −ΨH , u1 − ψh), (zH , zh)) dt
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=

∫ tN

0

(E − EH)(t)((u0, u1), (zH , zh)) dt+

N∑
n=1

(Ψn
H − u0(tn, ·), zn+1

H − znH)L2(Rd)

+

∫ tN

0

EH(t)((u0 −ΨH , u1 − ψh), (zH , zh)) dt.

In the following we derive some estimates, which we need to control the right
hand side of the error identity in Lemma 4.4. For simplification, we introduce the
following notations.

Definition 4.5. We define:

ūn+1
0 :=

1

4t

∫ tn+1

tn
u0(t, ·) dt,

ĨH(u0)(·, x)|(tn,tn+1]×Rd := IH(ūn+1
0 )(x)

Here IH denotes the corresponding Lagrange interpolation operator. Moreover, we
establish the notation z̃nH := (znH , z

n
h ).

In the next lemma, we derive an estimate for the space derivative contributions
of the solution of the discrete backward problem in Definition 4.2:

Lemma 4.6. Assume that the general assumptions 2.1 are fulfilled, then we have
the following estimate for the solution of the discrete backward problem (15):

N∑
n=0

4t
(
‖znH‖2H1(Rd) + ‖znh‖2L2(Rd,H1(Y ))

)
≤ C‖eN‖2L2(Rd).

Proof.

Since (znH , z
n+1
H )L2(Rd) = (znH , z

n
H)L2(Rd) +4tEnH(z̃nH , z̃

n
H) ≥ ‖znH‖2L2(Rd), we have

‖z0
H‖L2(Rd) ≤ ‖z1

H‖L2(Rd) ≤ ... ≤ ‖zN+1
H ‖L2(Rd). (18)

This implies

N∑
n=0

4t‖znH‖2L2(Rd) ≤ t
N+1‖eN‖2L2(Rd). (19)

Using the Poincare inequality for functions with mean zero, we get

N∑
n=0

4t‖znh‖2L2(Rd,H1(Y )) ≤ C
N∑
n=0

4t|znh |2L2(Rd,H1(Y )). (20)

(19) and (20) imply that it is sufficient to bound the semi-norms in the estimate of
Lemma 4.6, i.e. we restrict ourself to the following term:

N∑
n=0

4t
(
|znH |2H1(Rd) + |znh |2L2(Rd,H1(Y ))

)
.
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First we get

(zNH ,e
N )L2(Rd) =

N∑
n=0

4tEnH(z̃nH , z̃
n
H)+

N−1∑
n=0

(zn+1
H −znH , zn+1

H )L2(Rd) +‖z0
H‖2L2(Rd)

=

N∑
n=0

4tEnH(z̃nH , z̃
n
H) +

1

2

N−1∑
n=0

(zn+1
H − znH , zn+1

H − znH)L2(Rd)

+
1

2

N−1∑
n=0

(zn+1
H , zn+1

H )L2(Rd) −
1

2

N−1∑
n=0

(znH , z
n
H)L2(Rd) + ‖z0

H‖2L2(Rd)

≥
N∑
n=0

4tEnH(z̃nH , z̃
n
H).

This inequality together with the ellipticity of EnH (with constant 1) yields

N∑
n=0

4t
(
|znH |2H1(Rd) + |znh |2L2(Rd,H1(Y ))

)
≤

N∑
n=0

4tEnH(z̃nH , z̃
n
H)

≤ (zNH , e
N )L2(Rd) ≤ ‖eN‖2L2(Rd).

The bilinear form EnH is not symmetric, which complicates the analysis. To avoid
rather technical estimates to treat the non-symmetric case, we use a symmetrization
result which is given in Lemma 4.7 below. It is well known, that the standard
homogenization of problems like (3), yields a limit problem of the type

∂tu0 −∇ · (Ā∇u0) = 0,

where Ā is a symmetric, coercive diffusion matrix, only depending on t (see for
instance Allaire and Raphael [7]). The relation between this problem and the two-
scale homogenized equation was shown in [17], Theorem 3.8. The following lemma
is the equivalent result in the discrete setting. It simplifies the subsequent analysis
enormously.

Lemma 4.7. We introduce the operator Tnh : V 1
H(Rd) → V 0

H(Rd,W 1
h (Y )), where

Tnh (ΦH) ∈ V 0
H(Rd,W 1

h (Y )) is the unique solution of∫
Y

(
bh(tn, y)− kh(tn, y)bh(tn)

)
· ∇xΦH(x) φh(y) dy

=

∫
Y

Ah(tn, y)∇yφh(y) · (∇xΦH(x) +∇yTnh (ΦH)(x, y)) dy

+

∫
Y

bh(tn, y) · ∇yφh(y) Tnh (ΦH)(x, y) dy for all φh ∈W 1
h (Y ).

Moreover, we define the symmetric bilinearform SnH : V 1
H(Rd)× V 1

H(Rd)→ R by:

SnH(ΦH ,ΨH)

:=

∫
Rd

∫
Y

Ah(tn, y)(∇xΦH(x)+∇yTnh (ΦH)(x, y))(∇xΨH(x)+∇yTnh (ΨH)(x, y)) dy dx.

With theses definitions, the solution of the discrete backward problem (15) (see also
Remark 1) fulfills the equation

(ΦH , z
n+1
H )L2(Rd) = (ΦH , z

n
H)L2(Rd) +4tSnH(ΦH , z

n
H), (21)
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for all ΦH ∈ V 1
H(Rd). We also have Tnh (znH) = znh and

|ΦH |2H1(Rd) ≤ S
n
H(ΦH ,ΦH) for all ΦH ∈ V 1

H .

Proof. The proof of this lemma is completely analogous to the proof in the contin-
uous setting, which can be found in [17], Theorem 3.8.

Lemma (4.8) below is an estimate for the contributions of the discrete time
derivatives of the solution of the discrete backward problem in Definition 4.2. To
prove it, we make use of the symmetrisation result in Lemma 4.7. On the basis of
this result, the proof is quite analogous to the one presented in the book of Thomée
[31], chapter 12.

Lemma 4.8. Under the general assumptions 2.1, we have the following estimate
for the solution (zH , zh) ∈ X̃H(0, tN+1) of the discrete backward problem (15):

N∑
n=0

1√
4t
‖zn+1
H − znH‖L2(Rd) ≤ C

(
log

tN+1

4t

) 1
2

‖eN‖L2(Rd).

The proof of Lemma 4.8 is given in Appendix B.

With the preceding estimates, we are now ready to prove the a-priori error estimate
of Theorem 4.1.

Proof of Theorem 4.1. Choosing (ΨH , ψh) = (ĨH(u0), 0) in Lemma 4.4 yields:

‖eN‖2L2(Rd) =

∫ tN

0

EH(t)((u0 − ĨH(u0), u1), (zH , zh)) dt (22)

+

∫ tN

0

(E − EH)(t)((u0,u1),(zH ,zh)) dt+

N∑
n=1

(ĨH(u0)n−u0(tn, ·), zn+1
H −znH)L2(Rd).

Now we estimate the different summands. Since we have Lipschitz continuous co-
efficient functions we use Lemma 4.6 to get∫ tN

0

(E − EH)(t)((u0, u1), (zH , zh)) dt

≤ C(4t+H + h)‖(u0, u1)‖X0(0,T̄ )

(
N∑
n=1

4t
(
‖znH‖2H1(Rd) + ‖znh‖2L2(Rd,H1(Y ))

)) 1
2

≤ C(4t+H + h)‖(u0, u1)‖X0(0,T̄ )‖eN‖L2(Rd).

The third summand in the right hand side of (22) is separated as follows:

N∑
n=1

(ĨH(u0)n − u0(tn, ·), zn+1
H − znH)L2(Rd)

=

N∑
n=1

(ĨH(u0)n − ūn0 , zn+1
H − znH)L2(Rd)) +

N∑
n=1

(ūn0 − u0(tn, ·), zn+1
H − znH)L2(Rd).

Since

‖ūn0 − u0(tn, ·)‖2L2(Rd) ≤
∫
Rd

(
1

4t

∫ tn

tn−1

∫ tn

t

|∂tu0(s, ·)| ds dt

)2

≤ 4t‖∂tu0‖2L2((tn−1,tn)×Rd)
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we get by means of Lemma 4.8

N∑
n=1

(ūn0 − u0(tn, ·), zn+1
H − znH)L2(Rd)

≤ 4t max
1≤n≤N

(
‖∂tu0‖L2((tn−1,tn)×Rd)

) N∑
n=0

1√
4t
‖zn+1
H − znH‖L2(Rd)

≤ C4t max
1≤n≤N

(
‖∂tu0‖L2((tn−1,tn)×Rd)

)(
log

tN+1

4t

) 1
2

‖eN‖L2(Rd).

And moreover:

N∑
n=1

(ĨH(u0)n − ūn0 , zn+1
H − znH)L2(Rd))

≤ C

N∑
n=1

H2‖ūn0‖H2(Rd)‖zn+1
H − znH‖L2(Rd)

≤ C

N∑
n=1

H2 1√
4t
‖u0‖L2(tn−1,tn;H2(Rd))‖zn+1

H − znH‖L2(Rd)

≤ CH2 max
1≤n≤N

(
‖u0‖L2(tn−1,tn;H2(Rd))

)(
log

tN+1

4t

) 1
2

‖eN‖L2(Rd).

It remains to estimate the first summand in the right hand side of (22). To do so,
we denote β := sup

0≤t≤T
‖E(t)‖L(I,I′). Moreover, we define the projection operator

PnH,h = (PnH , P
n
h ) : I0 → ĨH by:

EnH(v,ΦH,h) = EnH(PnH,h(v),ΦH,h) ∀ΦH,h ∈ ĨH and ∀v ∈ I0. (23)

PnH,h is well-defined due to the Lax-Milgram Theorem. Since for v = (v0, v1) ∈ I0

‖PnH,h(v)‖2I0 ≤ E
n
H(PnH,h(v),PnH,h(v)) = EnH(v,PnH,h(v)) ≤ β‖PnH,h(v)‖I0‖v‖I0

and since

‖PnH‖L(H1(Rd),V 1
H) = sup

v0∈H1(Rd)\{0}

|PnHv0|H1(Rd)

|v0|H1(Rd)

≤ sup
(v0,v1)∈I0\{0}

|PnHv0|H1(Rd) + |Pnh v1|L2(Rd,H1(Y ))

|v0|H1(Rd) + |v1|L2(Rd,H1(Y ))

,

we also get:

‖PnH‖L(H1(Rd),V 1
H) ≤ ‖PnH,h‖L(I0,ĨH) ≤ β. (24)
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Now, we are prepared to estimate the first summand in the right hand side of (22).
Using Remark 1, (23) and (24) we get:∫ tN

0

EH(t)((u0 − ĨH(u0), u1), (zH , zh)) dt

=

N∑
n=1

EnH((

∫ tn

tn−1

u0 − ĨH(u0) dt,

∫ tn

tn−1

u1 dt), (z
n
H , z

n
h ))

=

N∑
n=1

EnH((PnH

(∫ tn

tn−1

u0 − ĨH(u0) dt

)
, Pnh

(∫ tn

tn−1

u1 dt

)
), (znH , z

n
h ))

=

N∑
n=1

(
zn+1
H − znH
4t

, PnH

(∫ tn

tn−1

u0 − ĨH(u0) dt

)
)L2(Rd)

≤
N∑
n=1

‖
zn+1
H − znH
4t

‖L2(Rd)‖PnH‖L(H1(Rd),V 1
H)H

2‖
∫ tn

tn−1

u0 dt‖H2(Rd)

≤
N∑
n=1

‖
zn+1
H − znH
4t

‖L2(Rd)βH
2
√
4t‖u0‖L2((tn−1,tn),H2(Rd))

≤ βH2 max
1≤n≤N

(
‖u0‖L2(tn−1,tn;H2(Rd))

)(
log

tN+1

4t

) 1
2

‖eN‖L2(Rd).

5. Numerical experiments. In the following we look at two model problems to
demonstrate the applicability of the HMM given by Definition 3.3. In the first
example, we apply the method to an advection-diffusion problem with a non-zero
drift. The time-dependent coefficients are periodic in space. Here, the exact solution

uε is unknown, but since u0(t, x− B(t)
ε ) is a good approximation of uε, we use this

as a reliable reference. u0 can be determined very efficiently by using the associated
homogenized macro problem, see Theorem 4.7 in [17]. Here, we need to solve the two
corresponding cell problems for every time step and the resulting macro problem
afterwards. In the second example we will apply the method to an advection-
diffusion problem without drift, but with a heterogeneous diffusion matrix. Here the
standard homogenization theory fails, so that we have to determine uε by a standard
computation on a very fine grid. We will see that to obtain a sufficiently accurate
approximation with a Backward-Euler (Linear-)Finite-Element Scheme (BE-FES),
the grid needs to be about 6 times finer than for a comparable approximation
computed with the HMM.

In this chapter we will use the following notations: For the n’th time step
unH denotes the HMM approximation, whereas unBWS denotes the approximation
gained by a Backward-Euler Finite-Element Scheme. The corresponding error func-

tions are given by en := u0(tn, ·) − unH and enBWS := u0(tn, · − B(tn)
ε ) − unBWS .

‖en‖relL2(Ω) :=
‖en‖L2(Ω)

‖u0(tn,·)‖L2(Ω)
and ‖enBWE‖relL2(Ω) :=

‖enBWE‖L2(Ω)

‖u0(tn,·−B(tn)
ε )‖L2(Ω)

denote the as-

sociated relative errors. N will define the maximal number of time steps, i.e. tN = T

or alternatively4t = T̄
N , with time step size4t. In both numerical experiments the

observed time interval [0, T̄ ] will be given by [0, 0.3] and the fineness parameter ε
will be set to ε = 0.01. For k,m ∈ N+, δ ∈ Rm+ and the error function g : Rm+ → R+
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Table 1. Model problem 1. Relative errors for N = 20 and de-
creasing mesh sizes (H,h).

H h ‖e1‖relL2(Ω) ‖eN‖relL2(Ω) ‖e1
BWE‖relL2(Ω) ‖eNBWE‖relL2(Ω)

2−
5
2 2−

5
2 0.497 2.674 0.349 1.76

2−3 2−3 0.339 0.727 0.292 1.17

2−
7
2 2−

7
2 0.206 0.297 0.246 0.983

2−4 2−4 0.1748836 0.1945293 0.292 0.955
2−4 2−5 0.1748802 0.1945079 0.292 0.955
2−4 2−6 0.1748784 0.1945025 0.292 0.955

2−
9
2 2−

7
2 0.1428528 0.1372253 0.318 0.968

2−
9
2 2−

9
2 0.1428393 0.1371633 0.318 0.968

2−
9
2 2−

11
2 0.1428358 0.1371477 0.318 0.968

2−5 2−5 0.135 0.112 0.334 0.967

we define the experimental order of convergence (EOC) of g in (kδ → δ) by

EOC(kδ→δ)(g) :=
log
(
g(kδ)
g(δ)

)
log(k)

. (25)

Model problem 1. In our first numerical test, we look at the following model
problem: find uε ∈ L2(0, 0.3;H1(R2)), with

∂tu
ε −∇ ·

(
A
(
t,
x

ε

)
∇uε

)
+ ε−1b

(
t,
x

ε

)
· ∇uε = 0 in (0, 0.3)× R2 and

uε(0, x1, x2) =

{
5 sin(5πx1) sin(5πx2) in [−0.2, 0.2]2

0, else.

Here Aε(t, x) = A(t, xε ) and bε(t, x) = b(xε ) are defined by:

A(t, y) :=

(
1 + t

2 sin(2πy1)cos(2πy2) 0
0 1 + t

2 sin(2πy1)cos(2πy2)

)
and

b(t, y) :=

(
−sin(2πy1) cos(2πy2) + 1

10
cos(2πy1) sin(2πy2)− 1

10

)
.

In Table 1 we see, that the relative error between the homogenized solution and
the approximation gained by the HMM in Definition 3.3 is small and diminishing

for decreasing mesh size, whereas the relative error between u0(tN , · − B(tN )
ε ) and

the Backward-Euler Finite-Element solution uNBWS remains essentially the same for
the whole computation series. We do not observe any convergence for the BE-FE
Scheme for these refinement levels. In fact, a mesh size of at least H−

13
2 (roughly

ε) is required, so that the BE-FE Scheme yields a first reliable approximation of uε

in Model Problem 1. Table 1 also gives a hint for the relation between macro mesh
size H and micro mesh size h. In this example we observe that choosing h smaller
than H, has almost no effect on the quality of the solution. The computation
time for solving one cell problem is increased, but the error remains basically the
same. For small values of H it may be even expedient to choose h larger than H,
since, in this case, there is no need for solving the cell problems with the same
accuracy. Compare for instance the computations for (H,h) = (2−

9
2 , 2−

7
2 ) and

(H,h) = (2−
9
2 , 2−

11
2 ). In Figure 1 we give a comparison between the isolines of
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Figure 1. Model problem 1. Comparison of the isolines between
u0(tN , ·) and uNH for different resolution of the HMM ((H,h) =
(2−4, 2−5), N = 20 (left), and (H,h) = (2−5, 2−6) , N = 40
(right)). The color gradient is from green (minimum −4.51 · 10−3)
to blue (maximum 4.51 · 10−3).

Figure 2. Model problem 1. The isolines of approximations of
uε(tN , ·) are shown for a Backward Euler FE Scheme with different
space and time resolution (H = 2−4, N = 20 (left), H = 2−6,

N = 40 (middle), and H = 2−
13
2 , N = 40 (left)). The color

gradient is from green (minimum −4.51 · 10−3) to blue (maximum
4.51 · 10−3).

Table 2. Model problem 1. With Definition (25), we calculate
the following EOC’s in space, i.e. EOC(2(H,h)→(H,h)). For each
computation N is fixed (and therefore also 4t). To get reliable
results for the convergence rate in space, we choose N large enough.

N k ∗H → H k ∗ h→ h EOC(eN ) EOC(eNBWE)

10 2−
5
2 → 2−

7
2 2−

5
2 → 2−

7
2 1.9105 0.8155

20 2−3 → 2−4 2−3 → 2−4 1.9015 0.2929

40 2−
7
2 → 2−

9
2 2−

7
2 → 2−

9
2 2.0247 0.0204

40 2−4 → 2−5 2−4 → 2−5 1.618 -0.0203

the exact solution and the HMM solution, gained for different values of (4t,H, h).
We see that the lines match quite well. The better correspondence of the isolines is
achieved for higher resolution level of the computational grid. In Figure 2, on the
other hand, the isolines of BE-FES approximations at different refinement levels are
expressed. Obviously, the first two approximations (for (4t,H) = ( 3

2 · 10−3, 2−4)
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Table 3. Model problem 1. With Definition (25), we calculate the
following EOC’s in time, i.e. EOC(24t→4t). For each computation
(H,h) is fixed. We decrease (H,h) with 4t to reduce the influence

of the error in space. For 10→ 20 and H = 2−
9
2 , the mesh size does

not seem to be small enough. We observe the EOC’s for N → 2N
with N = 3, 5, 10.

N → k ·N H h EOC(eN ) EOC(eNBWE)

3→ 6 2−4 2−5 1.1164 -0.2045

5→ 10 2−
9
2 2−

11
2 1.0425 -0.1179

10→ 20 2−
9
2 2−

11
2 0.6608 -0.0497

10→ 20 2−5 2−6 0.8994 -0.0488

and (4t,H) = (3
4 · 10−3, 2−6)) are not reliable. Comparing them with the isolines

of the exact solution in Figure 1, we immediately verify that they significantly differ
in shape and height. Only for (4t,H) = (3

4 · 10−3, 2−
13
2 ) the solution is reasonable.

Experimental orders of convergence are shown in Table 2 and Table 3. In order
to get reliable results for the EOC for the space refinement, we needed to choose
4t small in comparison to H2 (see Theorem 4.1). Therefore, taking only values
fulfilling 4t << H2, we tried to assure that the influence of 4t is kept small. With
regard to Theorem 4.1, we expect an EOC of 2, if uε is a regular solution and if
we have good approximations of the coefficient functions. This is confirmed by the
table. The relatively bad value (1.618) for 2−4 → 2−5 is probably due to 4t no
yet being small enough. Moreover, we point out that the EOC’s for the BW-FE
Scheme directly imply that we do not have a convergence to uε, as long as we do
not have a highly refined grid that captures ε, i.e.H ≈ ε = 0.01.

In Table 3, corresponding time EOC’s are shown. For the BW-FE Scheme it is
obvious that we cannot observe a convergence in time as long as we are not fine
enough in space. For the HMM we notice, that the time convergence seems to be
linear, which also corresponds with Theorem 4.1. Again we needed to guarantee
that we have a sufficiently small mesh size in order to avoid that it has a visible
influence on the results. For this purpose we assumed that roughly H2 ≤ 4t holds

true. For (4t,H) = ( T̄20 , 2
− 9

2 ), this assumption is not fulfilled. Immediately we see
the loss of quality at this result.

Model problem 2. In the second numerical test, we observe the following model
problem: find uε ∈ L2(0, 0.3; H̊1([−1, 1]2)) with

∂tu
ε −∇ · (Aε(x)∇uε) + ε−1bε(t, x) · ∇uε = 0 in (−1, 1)2 × (0, 0.3),

uε = 0 on ∂(−1, 1)2 × (0, T̄ ) and

uε(0, x1, x2) =

{
10 sin(2πx1) sin(2πx2) in [0, 0.5]2

0, else.

Here bε(t, x) = b(t, xε ) is defined by

b(t, y) :=

(
3
2 sin(2πy1) sin(2πy2)
3
2cos(2πy1) cos(2πy2)

)
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Table 4. Model problem 2. Relative errors for N = 20 and de-
creasing mesh sizes. gain we see that the relative HMM error
is significantly decreasing, whereas the relative BE-FES error for
T = 0.3 remains at a value of roughly 0.5.

H h ‖e1‖relL2(Ω) ‖eN‖relL2(Ω) ‖e1
BWE‖relL2(Ω) ‖eNBWE‖relL2(Ω)

2−
5
2 2−

5
2 0.153 0.49 0.245 1.198

2−3 2−3 0.086 0.209 0.137 0.36

2−
7
2 2−

7
2 0.047 0.101 0.172 0.551

2−4 2−4 0.031 0.049 0.192 0.533

2−
9
2 2−

9
2 0.024 0.035 0.183 0.447

2−5 2−5 0.02 0.027 0.192 0.459

and Aε by

Aε(x) :=

(
a(xε ) + 1

5 sin(2π x1

ε )2 0
0 a(xε ) + 1

5 sin(2π x1

ε )2

)

where

a(y) :=



1+ 1
2 sin(2πy1)sin(2πy2) on [−0.1, 0.1]2,

1+ 1
5 sin(4πy1)(cos(2πy2)− 1) on [−0.2, 0.2]2 \ [−0.1, 0.1]2,

1+ 1
10 (cos(2πy1)− 1) (cos(4πy2)− 1) on [−0.3, 0.3]2 \ [−0.2, 0.2]2,

1+( 3
10 sin(2πy1)sin(2πy1)(cos(8πy2)− 1)) on [−0.4, 0.4]2 \ [−0.3, 0.3]2,

1+( 1
2 sin(4πy1)sin(2πy2)) on [−0.5, 0.5]2 \ [−0.4, 0.4]2,

1+( 1
5 sin(πy1)(cos(2πy2)− 1)) on [−0.6, 0.6]2 \ [−0.5, 0.5]2,

1+( 1
10 (cos(4πy1)− 1)(cos(2πy2)− 1)) on [−0.7, 0.7]2 \ [−0.6, 0.6]2,

1+( 3
10 sin(2πy1)sin(2πy1)(cos(2πy2)− 1)) on [−0.8, 0.8]2 \ [−0.7, 0.7]2,

1, else.

Here we are dealing with the bounded domain [−0.1, 0.1]2 instead of R2 and an
additional homogeneous Dirichlet boundary condition. Since b meets the assump-
tions div b(t, ·) = 0 and

∫
Y
b(t, ·) = 0, we do not have a macroscopic drift of order

1
ε . In this case the HMM can be formulated analogously to approximate the corre-
sponding solution. Assuming that the coefficients are periodic, the same a-posteriori
and a-priori estimates as in the sections 4 and 5 can be obtained. This example is
to focus on the applicability of the HMM in the case of heterogeneous structures
within the coefficients, since standard homogenization fails for such problems.

Again, we compare the HMM with a standard Backward-Euler (Linear-)Finite-
Element Scheme. The results are essentially the same as for Model Problem 1. In
Table 4 we see that the relative HMM error is rapidly decreasing, whereas the BW-
FES error remains between the values 0.36 and 0.55 without showing convergence.
In Figure 3 we observe that already for a mesh size of (H,h) = (2−4, 2−4), the
isolines of the exact solution uε and HMM approximation uH match very well. In
comparison, the isolines of the BW-FES approximation are totally different. Even
for the higher refinement level in Figure 4 ((H,h) = (2−5, 2−5)), the BW-FES
approximation has not yet gained a better quality. Instead, the isolines of the
HMM approximation are now almost identical with the ones of the exact solution.
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Figure 3. Model problem 2. Here we have (H,h) = (2−4, 2−4)
and N = 20. The color gradient is from green (minimum 0) to
blue (maximum 2.148). In the left hand figure we see a comparison
between the isolines of uε(tN , ·) and uNH . In the right hand figure
the isolines of the BE-FES solution are shown.

Figure 4. Model problem 2. Here we have (H,h) = (2−5, 2−5),
N = 20 and a color gradient from green (minimum 0) to blue
(maximum 2.148). In the left hand figure we again compare the
isolines of uε(tN , ·) and uNH . In the right hand figure we compare
the isolines of the exact solution with the ones of the BE-FES so-
lution.

First correlations between the isolines of BE-FES approximation and the exact
solution start to show up at a mesh size of H = 2−6. Here, the relative error is
‖eNBWE‖relL2(Ω) = 0.027. To obtain a comparable result with the HMM, we can be 4

times coarser.
The experimental orders of convergence in Table 5 show again that the HMM

seems to converge with second order in (H,h). The bad results (EOC= 0.69, EOC=
0.87 and to a certain extend EOC= 1.51) are due to the fact, that the time step
size 4t is too large in comparison to H2. In Table 6 we observe that the BE-
FE Scheme does not converge on coarse grids, which is clear. The time EOC’s of
the HMM seem to be a little too small, since we expect values around 1. Again,
this observation is related to the fact that the mesh size is not yet small enough in
comparison to the time step size. For highly refined grids the results will be probably
better, showing a linear behaviour. Nevertheless, we note that Model Problem 2
includes a heterogeneous diffusion matrix, which implies that the Theorem 4.1 is
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Table 5. Model problem 2. With Definition (25), we calculate
the following EOC’s in space, i.e. EOC(2(H,h)→(H,h)). For each
computation N is fixed.

N H → k ·H h→ k · h EOC(eN ) EOC(eNBWE)

20 2−
5
2 → 2−

7
2 2−

5
2 → 2−

7
2 2.284 1.1208

20 2−3 → 2−4 2−3 → 2−4 2.0816 -0.5638

10 2−
7
2 → 2−

9
2 2−

7
2 → 2−

9
2 0.6923 0.3132

20 2−
7
2 → 2−

9
2 2−

7
2 → 2−

9
2 1.5105 0.3002

40 2−
7
2 → 2−

9
2 2−

7
2 → 2−

9
2 2.0603 0.2944

20 2−4 → 2−5 2−4 → 2−5 0.8758 0.2149

Table 6. Model problem 2. With Definition (25), we calculate the
following EOC’s in time, i.e. EOC(k4t→4t). For each computation
(H,h) is fixed.

N → k ·N H h EOC(eN ) EOC(eNBWE)

5→ 10 2−
9
2 2−

9
2 0.8408 -0.1123

5→ 10 2−5 2−5 0.9262 -0.1086
10→ 20 2−5 2−5 0.6728 -0.0515

not applicable. Even though we may expect the same results in most cases, other
properties could show up.

General comment: The numerical results have demonstrated the applicability
of the HMM of Definition 3.3. The orders of convergence, predicted by Theorem
4.1, could be verified. Results of good quality could be gained with much coarser
discretizations of the macro grid than with a comparable Backward-Euler Finite-
Element Scheme. Since ε = 0.01 was still relative large in comparison to what
we could encounter in other problems, this advantage will become much bigger for
wider scale separation between micro and macro scale. For several problems, the
computational demand for solving the fine-scale equation with a Finite-Element
or Finite-Volume-Scheme will be even too high for practical applications. In such
cases there is no alternative but a multiscale method. For problems such as Model
Problem 1 or 2, one may argue that the computational complexity for solving all
the cell problems may be of equal or even larger than a BE-FE Scheme with highly
refined grid. But note that all the cell problems are independent from each other,
which suggests to solve them in parallel or in a preprocessing step. Assuming that
the results of the cell problems are available, the remaining HMM macro problem
is only of minor complexity and can be solved very fast.

6. Conclusion. In this contribution we formulated the heterogeneous multiscale
finite element method for advection-diffusion problems with rapidly oscillating co-
efficients and large expected drift. For the case of periodic coefficient functions we
derived a corresponding a-priori error estimate in the L∞(L2)-norm. The conver-
gence is of second order in space and first order in time. In order to demonstrate the
applicability and efficiency of the method, numerical experiments were given. One
model problem covered the case of a large drift, another model problem the case
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of a heterogeneous structure within the diffusion matrix. Even for relatively coarse
grids, both problems could be solved with high accuracy. In order to establish a
basis for possible adaptive mesh refinement algorithms and error control, we will
also apply the techniques of this paper to derive an associated a-posteriori result,
based on local error indicators. This will be the subject of future work.
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Appendix A. Proof of Theorem 3.5. Here, we want give a detailed proof of
Theorem 3.5, which is given in two steps. We start with the following lemma (a
reformulation for a fixed time step n):

Lemma A.1. Suppose that H >> ε and let UH , unH and K(n)
h (unH) be defined in

Theorem 3.5. If u0
H = v0

H , then we have that for n ≥ 1, (unH ,K
(n)
h (unH)) ∈ ĨH is a

solution of

(un−1
H ,ΦH)L2(RN ) = (unH ,ΦH)L2(RN ) +4tEnH

(
(unH ,K

(n)
h (unH)), (ΦH , φh)

)
for all (ΦH , φh) ∈ IH . Note that this equation can be decoupled again into macro
and micro-scale part by choosing ΦH = 0.

Proof. We start with the local part. From Definition 3.3 we have∫
Yj,ε

Aεh(tn, x)∇xR(n)
j (ΦH)(x) ·∇xφh(x) dx+

∫
Yj,ε

1

ε
bεh(tn, x) ·∇xR(n)

j (ΦH)(x) φh(x) dx

=

∫
Yj,ε

kεh(tn, x)
1

ε
bh(tn) ·∇xΦH(x) φh(x) dx, ∀φh ∈Wm

h (Yj,ε).

Since ∇ΦH is a constant on Yj,ε, we obtain by using the definition of K(n)
j (ΦH) and

the transformation formula for xεj(y) = xj + εy:∫
Y

Aεh(tn, xεj(y))
(

(∇xK(n)
j (ΦH))(xεj(y)) +∇xΦH(xj)

)
· ∇xφh(xεj(y)) dy

+

∫
Y

1

ε
bεh(tn, xεj(y)) ·

(
(∇xK(n)

j (ΦH))(xεj(y)) +∇xΦH(xj)
)
φh(xεj(y)) dy

=

∫
Y

kεh(tn, xεj(y))
1

ε
bh(tn) · ∇xΦH(xj) φh(xεj(y)) dy, ∀φh ∈Wm

h (Yj,ε).
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Since ∇yK(n)
h (ΦH)(xj , y) = ∇xK(n)

j (ΦH)(εy), we have

∇xK(n)
j (ΦH)(xεj(y)) = (∇yK(n)

h (ΦH))(xj ,
xεj(y)

ε
).

Defining φ̃h ∈ W 1
h (Y ) by φ̃h(y) := 1

εφh(εy)) (and extending it by periodicity), we

get and in analogy to K(n)
h (ΦH):

∇x (φh(xεj(y)) = (∇y φ̃h)(
xεj(y)

ε
).

We therefore obtain:∫
Y

Ah(tn,
xεj(y)

ε
)

(
(∇yK(n)

h (ΦH))(xj ,
xεj(y)

ε
) +∇xΦH(xj)

)
· (∇y φ̃h)(

xεj(y)

ε
) dy

+

∫
Y

1

ε
bh(tn,

xεj(y)

ε
) ·
(

(∇yK(n)
h (ΦH))(xj ,

xεj(y)

ε
) +∇xΦH(xj)

)
εφ̃h(

xεj(y)

ε
) dy

=

∫
Y

kh(tn,
xεj(y)

ε
)

1

ε
bh(tn) · ∇xΦH(xj) εφ̃h(

xεj(y)

ε
) dy, ∀φ̃h ∈W 1

h (Y ).

Because the equation holds for every φ̃h ∈ W 1
h (Y ), it also holds for φh(x, ·) almost

everywhere in x and with φh ∈ L2(Rd,W 1
h (Y )). Since

xεj(y)

ε = y +
xj
ε and since

every function is y-periodic, we obtain:∫
Y

Ah(tn, y)
(
∇yK(n)

h (ΦH)(xj , y) +∇xΦH(xj)
)
· ∇yφh(x, y) dy

+

∫
Y

bh(tn, y) ·
(
∇yK(n)

h (ΦH)(xj , y) +∇xΦH(xj)
)
φh(x, y) dy (26)

=

∫
Y

kh(tn, y) bh(tn) · ∇xΦH(xj) φh(x, y) dy, ∀φh ∈ L2(Rd,W 1
h (Y )).

Analogously we get for the global problem:∫
Yj,ε

− Aεh(tn, x)∇xR(n)
j (unH)(x) · ∇xΦH(xj) dx

+

∫
Yj,ε

− 1

ε

(
kεh(tn, x)b

j

h(tn)− bεh(tn, x)
)
· ∇xΦH(xj) R

(n)
j (unH)(x) dx

=

∫
Y

− Ah(tn, y)
(
∇xunH(xj) +∇yK(n)

h (unH)(xj , y)
)
· ∇xΦH(xj) dy

+

∫
Y

− 1

ε

(
kh(tn, y)bh(tn)− bh(tn, y)

)
· ∇xΦH(xj) (unH(xj) + εK(n)

h (unH)(xj , y)) dy

=

∫
Y

− Ah(tn, y)
(
∇xunH(xj) +∇yK(n)

h (unH)(xj , y)
)
· ∇xΦH(xj) dy

+

∫
Y

−
(
kh(tn, y)bh(tn)− bh(tn, y)

)
· ∇xΦH(xj) K(n)

h (unH)(xj , y) dy,
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since
∫
Y
− 1

ε

(
kh(tn, y)bh(tn)− bh(tn, y)

)
·∇xΦH(xj) unH(xj) dy = 0. Choosing ΦH =

unH in (26) and adding this summand to the global equation yields:

AnH(unH ,ΦH)

=
∑
j∈J
|Tj |

(∫
Y

Ah(tn, y)
(
∇xunH(xj) +∇yK(n)

h (unH)(xj , y)
)
· ∇xΦH(xj) dy

)

+
∑
j∈J
|Tj |

(∫
Y

(
kh(tn, y)bh(tn)− bh(tn, y)

)
· ∇xΦH(xj) K(n)

h (unH)(xj , y) dy

)
+

∫
Rd

∫
Y

Ah(tn, y)
(
∇yK(n)

h (unH)(x, y) +∇xunH(x)
)
· ∇yφh(x, y) dy dx

+

∫
Rd

∫
Y

bh(tn, y) ·
(
∇yK(n)

h (unH)(x, y) +∇xunH(x)
)
φh(x, y) dy dx

−
∫
Rd

∫
Y

kh(tn, y) bh(tn) · ∇xunH(x) φh(x, y) dy dx.

Since the quadrature is exact for piecewise constant functions we finally obtain:

AnH(unH ,ΦH) = EnH

(
(unH ,K

(n)
h (unH)), (ΦH , φh)

)
, ∀(ΦH , φh) ∈ IH .

Now the reformulation can be proved.

Proof of Theorem 3.5. For (ΦH , φh) ∈ XH(0, T̄ ), we define (ΦnH , φ
n
h) ∈ IH by

(Φn+1
H , φn+1

h ) := ((ΦH)n+,
1

4t

∫ tn+1

tn
φh(t, ·) dt).

With Lemma A.1 we therefore obtain for all (ΦH , φh) ∈ XH(0, T̄ )

(unH , (ΦH)n+)L2(RN )

= (un+1
H , (ΦH)n+)L2(RN ) +4tEn+1

H

(
(un+1
H ,K(n+1)

h (un+1
H )), ((ΦH)n+, φ

n+1
h )

)
.

Defining [uH ]0 := u1
H − u0

H , we get by summing up:

N−1∑
n=0

(
([uH ]n, (ΦH)n+)L2(RN ) +4tEn+1

H

(
(un+1
H ,K(n+1)

h (un+1
H )), ((ΦH)n+, φ

n+1
h )

))
= 0.

Since (ΦH)n+ = ΦH(t, ·) for all t ∈ (tn, tn+1] and since φn+1
h =

∫ tn+1

tn
φh(t, ·) dt , we

obtain
N−1∑
n=0

([uH ]n, (ΦH)n+)L2(RN ) +

N−1∑
n=0

∫ tn+1

tn
EH(t) ((uH ,Kh(uH)), (ΦH , φh)) = 0.

Together with ∂t(uH)|(tn,tn+1) = 0 we finally have the result.

Appendix B. Proof of Lemma 4.8.

Proof of Lemma 4.8. We denote ‖ · ‖ := ‖ · ‖L2(Rd) and (·, ·) := (·, ·)L2(Rd). Using

(21) and testing with ΦH = zN+1
H and ΦH = zN+1

H − zNH , yields the equations:

(zN+1
H , zN+1

H − zNH ) = 4tSNH (zN+1
H , zNH )
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and

‖zN+1
H − zNH‖2 = 4tSNH (zN+1

H , zNH )−4tSNH (zNH , z
N
H ).

Combining this and since SNH (z̃NH , z̃
N
H ) ≥ 0 we obtain:

‖zN+1
H − zNH‖2 ≤ 4tSNH (zN+1

H , zNH )

= (zN+1
H , zN+1

H − zNH )

≤ ‖zN+1
H − zNH‖‖eN‖.

In particular this yields

(tN+1 − tN )
1

4t
‖zN+1
H − zNH‖2 ≤ ‖eN‖2. (27)

Now suppose that n ≤ N − 1. We test with ΦH = zn+1
H − znH to obtain:

2‖zn+1
H − znH‖2 = 24tSnH(zn+1

H − znH , znH)

= −4tSnH(zn+1
H − znH , zn+1

H − znH)−4tSnH(znH , z
n
H) +4tSnH(zn+1

H , zn+1
H )

≤ −4tSnH(znH , z
n
H) +4tSnH(zn+1

H , zn+1
H ).

Here we used the symmetry of SnH . Multiplying with (tN+1 − tn) 1
4t and summing

up yields:

2

N−1∑
n=0

(tN+1 − tn)
1

4t
‖zn+1
H − znH‖2

≤ −
N−1∑
n=0

(tN+1 − tn)SnH(znH , z
n
H) +

N−1∑
n=0

(tN+1 − tn)SnH(zn+1
H , zn+1

H )︸ ︷︷ ︸
=:I

.

In order to estimate I, we use

SnH(zn+1
H , zn+1

H )− SnH(znH , z
n
H) (28)

= Sn+1
H (zn+1

H , zn+1
H )− SnH(znH , z

n
H) + (SnH − Sn+1

H )(zn+1
H , zn+1

H ).

Since Ah is a piecewise constant interpolation of a Lipschitz continuous coefficient
function and due to Tnh (znH) = znh , we first get:

(Sn+1
H − SnH)(zn+1

H , zn+1
H ) ≤ C4t

(
‖zn+1
H ‖H1(Rd) + ‖zn+1

h ‖L2(Rd,H1(Y ))

)2
.

The Young inequality and Lemma 4.6 therefore yield:

N−1∑
n=0

(tN+1 − tn)(Sn+1
H − SnH)(zn+1

H , zn+1
H ) ≤ C‖eN‖2L2(Rd). (29)
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Now we estimate I by making use of (28):

I ≤
N−1∑
n=0

(tN+1 − tn)(SnH − Sn+1
H )(zn+1

H , zn+1
H )

+

N−1∑
n=0

(tN+1 − tn+1)Sn+1
H (zn+1

H , zn+1
H )−

N−1∑
n=0

(tN+1 − tn)SnH(znH , z
n
H)

+

N−1∑
n=0

4tSn+1
H (zn+1

H , zn+1
H )

=

N−1∑
n=0

(tN+1 − tn)(SnH − Sn+1
H )(zn+1

H , zn+1
H ) + (tN+1 − tN )SNH (zNH , z

N
H )

−tN+1S0
H(z0

H , z
0
H) +

N∑
n=1

4tSnH(znH , z
n
H).

(29) and again Lemma 4.6 yield:

I ≤ C‖eN‖2L2(Rd) + 2

N∑
n=1

4tSnH(znH , z
n
H) ≤ C‖eN‖2L2(Rd). (30)

Together with (27), we finally have

N∑
n=0

(tN+1 − tn)
1

4t
‖zn+1
H − znH‖2L2(Rd) ≤ C‖e

N‖2L2(Rd).

and therefore
N∑
n=0

1√
4t
‖zn+1
H − znH‖L2(Rd)

≤

(
N∑
n=0

1

tN+1 − tn

) 1
2
(

N∑
n=0

(tN+1 − tn)
1

4t
‖zn+1
H − znH‖2L2(Rd)

) 1
2

≤ C

(∫ tN

0

1

tN+1 − t
dt

) 1
2

‖eN‖L2(Rd)

= C

(
log

tN+1

4t

) 1
2

‖eN‖L2(Rd).
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