A direct approach to numerical homogenization in finite elasticity

  • Received: 01 August 2005 Revised: 01 November 2005
  • Primary: 74Q05; Secondary: 74B20.

  • We describe, analyze, and test a direct numerical approach to a homogenized problem in nonlinear elasticity at finite strain. The main advantage of this approach is that it does not modify the overall structure of standard softwares in use for computational elasticity. Our analysis includes a convergence result for a general class of energy densities and an error estimate in the convex case. We relate this approach to the multiscale finite element method and show our analysis also applies to this method. Microscopic buck- ling and macroscopic instabilities are numerically investigated. The application of our approach to some numerical tests on an idealized rubber foam is also presented. For consistency a short review of the homogenization theory in nonlinear elasticity is provided.

    Citation: Antoine Gloria Cermics. A direct approach to numerical homogenization in finite elasticity[J]. Networks and Heterogeneous Media, 2006, 1(1): 109-141. doi: 10.3934/nhm.2006.1.109

    Related Papers:

  • We describe, analyze, and test a direct numerical approach to a homogenized problem in nonlinear elasticity at finite strain. The main advantage of this approach is that it does not modify the overall structure of standard softwares in use for computational elasticity. Our analysis includes a convergence result for a general class of energy densities and an error estimate in the convex case. We relate this approach to the multiscale finite element method and show our analysis also applies to this method. Microscopic buck- ling and macroscopic instabilities are numerically investigated. The application of our approach to some numerical tests on an idealized rubber foam is also presented. For consistency a short review of the homogenization theory in nonlinear elasticity is provided.


    加载中
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3634) PDF downloads(53) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog