Research article

Compactness for iterated commutators of general bilinear fractional integral operators on Morrey spaces with non-doubling measures

  • Received: 15 May 2022 Revised: 06 September 2022 Accepted: 13 September 2022 Published: 23 September 2022
  • MSC : 42B20, 47B07, 42B35

  • In the present article, we obtain the compactness of iterated commutators generated by general bilinear fractional operator with RVMO functions on Morrey spaces with non-doubling measures.

    Citation: Zhiyu Lin, Xiangxing Tao, Taotao Zheng. Compactness for iterated commutators of general bilinear fractional integral operators on Morrey spaces with non-doubling measures[J]. AIMS Mathematics, 2022, 7(12): 20645-20659. doi: 10.3934/math.20221132

    Related Papers:

  • In the present article, we obtain the compactness of iterated commutators generated by general bilinear fractional operator with RVMO functions on Morrey spaces with non-doubling measures.



    加载中


    [1] D. R. Adams, A note on Riesz potentials, Duke Math. J., 42 (1975), 765–778. http://projecteuclid.org/euclid.dmj/1077311348
    [2] D. R. Adams, L. I. Hedberg, Function spaces and potential theory, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, 1996. https://doi.org/10.1007/978-3-662-03282-4
    [3] Á. Bényi, W. Damián, K. Moen, R. H. Torres, Compactness properties of commutators of bilinear fractional integrals, Math. Z., 280 (2015), 569–582. https://doi.org/10.1007/s00209-015-1437-4 doi: 10.1007/s00209-015-1437-4
    [4] J. J. Betancor, J. C. Fariña, A note on compactness of commutators for fractional integrals associated with nondoubling measures, Z. Anal. Anwend., 26 (2007), 331–339. https://doi.org/10.4171/ZAA/1327 doi: 10.4171/ZAA/1327
    [5] S. Chanillo, A note on commutators, Indiana Univ. Math. J., 31 (1982), 7–16. https://doi.org/10.1512/iumj.1982.31.31002 doi: 10.1512/iumj.1982.31.31002
    [6] J. Chen, D. Fan, Rough bilinear fractional integrals with variable kernels, Front. Math. China, 5 (2010), 369–378. https://doi.org/10.1007/s11464-010-0061-1 doi: 10.1007/s11464-010-0061-1
    [7] W. Chen, E. Sawyer, A note on commutators of fractional integrals with RBMO(µ) functions, Illinois J. Math., 46 (2002), 1287–1298. http://projecteuclid.org/euclid.ijm/1258138480
    [8] W. Chen, Y. Han, C. Miao, Bi-commutators of fractional integrals on product spaces, Math. Nachr., 281 (2008), 1108–1118. https://doi.org/10.1002/mana.200510663 doi: 10.1002/mana.200510663
    [9] G. Di Fazio, M. A. Ragusa, Commutators and Morrey spaces, Boll. Un. Mat. Ital. A(7), 5 (1991), 323–332. Available from: https://www.researchgate.net/publication/265456355_Commutators_and_Morrey_spaces.
    [10] Y. Ding, T. Mei, Boundedness and compactness for the commutators of bilinear operators on Morrey spaces, Potential Anal., 42 (2015), 717–748. https://doi.org/10.1007/s11118-014-9455-0 doi: 10.1007/s11118-014-9455-0
    [11] Y. Fan, G. Gao, Some estimates of rough bilinear fractional integral, J. Funct. Spaces Appl., 2012, 406540. https://doi.org/10.1155/2012/406540 doi: 10.1155/2012/406540
    [12] X. Fu, D. Yang, Generalized fractional integrals and their commutators over non-homogeneous metric measure spaces, Taiwanese J. Math., 18 (2014), 509–557. https://doi.org/10.11650/tjm.18.2014.3651 doi: 10.11650/tjm.18.2014.3651
    [13] J. García-Cuerva, A. E. Gatto, Boundedness properties of fractional integral operators associated to non-doubling measures, Stud. Math., 162 (2004), 245–261. https://doi.org/10.4064/sm162-3-5 doi: 10.4064/sm162-3-5
    [14] Q. Guo, J. Zhou, Boundedness and compactness of commutators for bilinear fractional integral operators on Morrey spaces, Anal. Math., 47 (2021), 81–103. https://doi.org/10.1007/s10476-021-0067-9 doi: 10.1007/s10476-021-0067-9
    [15] V. G. Maz'ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer Berlin, Heidelberg, 1985. https://doi.org/10.1007/978-3-662-09922-3
    [16] G. Hu, Y. Meng, D. Yang, Multilinear commutators for fractional integrals in non-homogeneous spaces, Publ. Mat., 48 (2004), 335–367. Available from: https://doi.org/10.5565/PUBLMAT_48204_03.
    [17] Y. Sawano, Generalized Morrey spaces for non-doubling measures, NoDEA-Nonlinear Diff., 15 (2008), 413–425. https://doi.org/10.1007/s00030-008-6032-5 doi: 10.1007/s00030-008-6032-5
    [18] Y. Sawano, S. Shirai, Compact commutators on Morrey spaces with non-doubling measures, Georgian Math. J., 15 (2008), 353–376. https://doi.org/10.1515/GMJ.2008.353 doi: 10.1515/GMJ.2008.353
    [19] Y. Sawano, H. Tanaka, Morrey spaces for non-doubling measures, Acta Math. Sin. (Engl. Ser.), 21 (2005), 1535–1544. https://doi.org/10.1007/s10114-005-0660-z doi: 10.1007/s10114-005-0660-z
    [20] Y. Sawano, H. Tanaka, Sharp maximal inequalities and commutators on Morrey spaces with non-doubling measures, Taiwanese J. Math., 11 (2007), 1091–1112. https://doi.org/10.11650/twjm/1500404805 doi: 10.11650/twjm/1500404805
    [21] X. Tao, J. Wang, Compactness for iterated commutators of multilinear singular integrals on morrey spaces with non-doubling measures, Math. Inequal. Appl., in press.
    [22] X. Tao, T. Zheng, Multilinear commutators of fractional integrals over Morrey spaces with non-doubling measures, NoDEA-Nonlinear Diff., 18 (2011), 287–308. https://doi.org/10.1007/s00030-010-0096-8 doi: 10.1007/s00030-010-0096-8
    [23] X. Tolsa, BMO, H1, and Calderón-Zygmund operators for non doubling measures, Math. Ann., 319 (2001), 89–149. https://doi.org/10.1007/PL00004432 doi: 10.1007/PL00004432
    [24] H. Zhao, Z. Liu, Weighted central BMO spaces and their applications, J. Funct. Space., 2021, 5285962. https://doi.org/10.1155/2021/5285962 doi: 10.1155/2021/5285962
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1338) PDF downloads(75) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog