In this work, we focus on the final value problem of an inverse problem for both linear and nonlinear biharmonic equations. The aim of this study is to provide a regularized method for the bi-harmonic equation, once the observed data are obtained at a terminal time in $ L^{q}(\Omega) $. We obtain an approximated solution using the Fourier series truncation method and the terminal input data in $ L^{q}(\Omega) $ for $ q \ne 2 $. In comparision with previous studies, the most highlight of this study is the error between the exact and regularized solutions to be estimated in $ L^{q}(\Omega) $; wherein an embedding between $ L^{q}(\Omega) $ and Hilbert scale spaces $ \mathcal{H}^{\rho}(\Omega) $ is applied.
Citation: Anh Tuan Nguyen, Le Dinh Long, Devendra Kumar, Van Thinh Nguyen. Regularization of a final value problem for a linear and nonlinear biharmonic equation with observed data in $ L^{q} $ space[J]. AIMS Mathematics, 2022, 7(12): 20660-20683. doi: 10.3934/math.20221133
In this work, we focus on the final value problem of an inverse problem for both linear and nonlinear biharmonic equations. The aim of this study is to provide a regularized method for the bi-harmonic equation, once the observed data are obtained at a terminal time in $ L^{q}(\Omega) $. We obtain an approximated solution using the Fourier series truncation method and the terminal input data in $ L^{q}(\Omega) $ for $ q \ne 2 $. In comparision with previous studies, the most highlight of this study is the error between the exact and regularized solutions to be estimated in $ L^{q}(\Omega) $; wherein an embedding between $ L^{q}(\Omega) $ and Hilbert scale spaces $ \mathcal{H}^{\rho}(\Omega) $ is applied.
[1] | E. Berchio, F. Gazzola, T. Weth, Critical growth biharmonic elliptic problems under Steklov-type boundary conditions, Adv. Differ. Equ., 12 (2007), 381–406. |
[2] | E. Berchio, F. Gazzola, E. Mitidieri, Positivity preserving property for a class of biharmonic elliptic problems, J. Differ. Equ., 229 (2006), 1–23. https://doi.org/10.1016/j.jde.2006.04.003 doi: 10.1016/j.jde.2006.04.003 |
[3] | F. Gazzola, On the moments of solutions to linear parabolic equations involving the biharmonic operator, Discrete Cont. Dyn. Syst., 33 (2013), 3583–3597. https://doi.org/10.3934/dcds.2013.33.3583 doi: 10.3934/dcds.2013.33.3583 |
[4] | G. Sweers, A survey on boundary conditions for the biharmonic, Complex Var. Elliptic Equ., 54 (2009), 79–93. https://doi.org/10.1080/17476930802657640 doi: 10.1080/17476930802657640 |
[5] | F. Gazzola, H. C. Grunau, G. Sweers, Polyharmonic boundary value problems: Positivity preserving and nonlinear higher order elliptic equations in bounded domains, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-12245-3 |
[6] | J. Smith, The coupled equation approach to the numerical solution of the biharmonic equation by finite differences. Ⅱ, SIAM J. Numer. Anal., 7 (1970), 104–111. |
[7] | L. W. Ehrlich, Solving the biharmonic equation as coupled finite difference equations, SIAM J. Numer. Anal., 8 (1971), 278–287. https://doi.org/10.1137/0708029 doi: 10.1137/0708029 |
[8] | R. Glowinski, O. Pironneau, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem, SIAM Rev., 21 (1979), 167–212. https://doi.org/10.1137/1021028 doi: 10.1137/1021028 |
[9] | Y. J. Wang, Y. T. Shen, Multiple and sign-changing solutions for a class of semilinear biharmonic equation, J. Differ. Equ., 246 (2009), 3109–3125. https://doi.org/10.1016/j.jde.2009.02.016 doi: 10.1016/j.jde.2009.02.016 |
[10] | L. Mu, J. P. Wang, X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods Partial Differ. Equ., 30 (2014), 1003–1029. https://doi.org/10.1002/num.21855 doi: 10.1002/num.21855 |
[11] | N. H. Tuan, Y. Zhou, T. N. Thach, N. H. Can, An approximate solution for a nonlinear biharmonic equation with discrete random data, J. Comput. Appl. Math., 371 (2020), 112711. https://doi.org/10.1016/j.cam.2020.112711 doi: 10.1016/j.cam.2020.112711 |
[12] | H. A. Matevossian, G. Nordo, G. Migliaccio, Biharmonic problems and their applications in engineering and technology, In: 13th Chaotic Modeling and Simulation International Conference, Cham: Springer, 2021,575–596. https://doi.org/10.1007/978-3-030-70795-8 |
[13] | H. A. Matevossian, M. U. Nikabadze, G. Nordo, A. R. Ulukhanyan, Biharmonic Navier and Neumann problems and their application in mechanical engineering, Lobachevskii J. Math., 42 (2021), 1876–1885. https://doi.org/10.1134/S1995080221080199 doi: 10.1134/S1995080221080199 |
[14] | D. H. Q. Nam, V. V. Au, N. H. Tuan, D. O'Regan, Regularization of a final value problem for a nonlinear biharmonic equation, Math. Methods Appl. Sci., 42 (2019), 6672–6685, https://doi.org/10.1002/mma.5771 doi: 10.1002/mma.5771 |
[15] | J. M. Arrieta, A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc., 352 (2000), 285–310. https://doi.org/10.1090/S0002-9947-99-02528-3 doi: 10.1090/S0002-9947-99-02528-3 |