Research article Special Issues

An efficient numerical approach for stochastic evolution PDEs driven by random diffusion coefficients and multiplicative noise

  • Received: 18 July 2022 Revised: 15 September 2022 Accepted: 16 September 2022 Published: 26 September 2022
  • MSC : 60H15, 60H35, 65C50

  • In this paper, we investigate the stochastic evolution equations (SEEs) driven by a bounded $ \log $-Whittle-Mat$ \acute{{\mathrm{e}}} $rn (W-M) random diffusion coefficient field and $ Q $-Wiener multiplicative force noise. First, the well-posedness of the underlying equations is established by proving the existence, uniqueness, and stability of the mild solution. A sampling approach called approximation circulant embedding with padding is proposed to sample the random coefficient field. Then a spatio-temporal discretization method based on semi-implicit Euler-Maruyama scheme and finite element method is constructed and analyzed. An estimate for the strong convergence rate is derived. Numerical experiments are finally reported to confirm the theoretical result.

    Citation: Xiao Qi, Mejdi Azaiez, Can Huang, Chuanju Xu. An efficient numerical approach for stochastic evolution PDEs driven by random diffusion coefficients and multiplicative noise[J]. AIMS Mathematics, 2022, 7(12): 20684-20710. doi: 10.3934/math.20221134

    Related Papers:

  • In this paper, we investigate the stochastic evolution equations (SEEs) driven by a bounded $ \log $-Whittle-Mat$ \acute{{\mathrm{e}}} $rn (W-M) random diffusion coefficient field and $ Q $-Wiener multiplicative force noise. First, the well-posedness of the underlying equations is established by proving the existence, uniqueness, and stability of the mild solution. A sampling approach called approximation circulant embedding with padding is proposed to sample the random coefficient field. Then a spatio-temporal discretization method based on semi-implicit Euler-Maruyama scheme and finite element method is constructed and analyzed. An estimate for the strong convergence rate is derived. Numerical experiments are finally reported to confirm the theoretical result.



    加载中


    [1] E. J. Allen, S. J. Novosel, Z. Zhang, Finite element and difference approximation of some linear stochastic partial differential equations, Stochastics, 64 (1998), 117–142. https://doi.org/10.1080/17442509808834159 doi: 10.1080/17442509808834159
    [2] A. Andersson, S. Larsson, Weak convergence for a spatial approximation of the nonlinear stochastic heat equation, Math. Comput., 85 (2016), 1335–1358. https://doi.org/10.1090/mcom/3016 doi: 10.1090/mcom/3016
    [3] I. Babu$\check{\mathrm{s}}$ka, F. Nobile, R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45 (2007), 1005–1034. https://doi.org/10.1137/050645142 doi: 10.1137/050645142
    [4] I. Babu$\check{\mathrm{s}}$ka, R. Tempone, G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42 (2004), 800–825. https://doi.org/10.1137/S0036142902418680 doi: 10.1137/S0036142902418680
    [5] M. Beccari, M. Hutzenthaler, A. Jentzen, R. Kurniawan, F. Lindner, D. Salimova, Strong and weak divergence of exponential and linear-implicit euler approximations for stochastic partial differential equations with superlinearly growing nonlinearities, arXiv preprint arXiv: 1903.06066, 2019.
    [6] C. E. Bréhier, Approximation of the invariant measure with an Euler scheme for stochastic PDEs driven by space-time white noise, Potential Anal., 40 (2014), 1–40.
    [7] C. E. Bréhier, J. Cui, J. Hong, Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen–Cahn equation, IMA J. Numer. Anal., 39 (2019), 2096–2134. https://doi.org/10.1093/imanum/dry052 doi: 10.1093/imanum/dry052
    [8] M. Cai, S. Gan, X. Wang, Weak convergence rates for an explicit full-discretization of stochastic Allen-Cahn equation with additive noise, J. Sci. Comput., 86 (2021), 1–30.
    [9] Y. Cao, J. Hong, Z. Liu, Approximating stochastic evolution equations with additive white and rough noises, SIAM J. Numer. Anal., 55 (2017), 1958–1981. https://doi.org/10.1137/16M1056122 doi: 10.1137/16M1056122
    [10] N. Chopin, Fast simulation of truncated Gaussian distributions, Stat. Comput., 21 (2011), 275–288. https://doi.org/10.1007/s11222-009-9168-1 doi: 10.1007/s11222-009-9168-1
    [11] J. Cui, J. Hong, Analysis of a splitting scheme for damped stochastic nonlinear Schrödinger equation with multiplicative noise, SIAM J. Numer. Anal., 56 (2018), 2045–2069. https://doi.org/10.1137/17M1154904 doi: 10.1137/17M1154904
    [12] J. Cui, J. Hong, Strong and weak convergence rates of a spatial approximation for stochastic partial differential equation with one-sided Lipschitz coefficient, SIAM J. Numer. Anal., 57 (2019), 1815–1841. https://doi.org/10.1137/18M1215554 doi: 10.1137/18M1215554
    [13] J. Cui, J. Hong, Z. Liu, Strong convergence rate of finite difference approximations for stochastic cubic Schrödinger equations, J. Differ. Equations, 263 (2017), 3687–3713. https://doi.org/10.1016/j.jde.2017.05.002 doi: 10.1016/j.jde.2017.05.002
    [14] J. Cui, J. Hong, Z. Liu, W. Zhou, Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations, J. Differ. Equations, 266 (2019), 5625–5663. https://doi.org/10.1016/j.jde.2018.10.034 doi: 10.1016/j.jde.2018.10.034
    [15] J. Cui, J. Hong, L. Sun, Strong Convergence of Full Discretization for Stochastic Cahn-Hilliard Equation Driven by Additive Noise, SIAM J. Numer. Anal., 59 (2021), 2866–2899. https://doi.org/10.1137/20M1382131 doi: 10.1137/20M1382131
    [16] J. Cui, J. Hong, L. Sun, Weak convergence and invariant measure of a full discretization for parabolic SPDEs with non-globally Lipschitz coefficients, Stoch. Proc. their Appl., 134 (2021), 55–93.
    [17] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge university press, 2014.
    [18] A. Davie, J. Gaines, Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations, Math. Comput., 70 (2001), 121–134. https://doi.org/10.1090/S0025-5718-00-01224-2 doi: 10.1090/S0025-5718-00-01224-2
    [19] A. De Bouard, A. Debussche, Weak and strong order of convergence of a semidiscrete scheme for the stochastic nonlinear Schrödinger equation, Appl. Math. Optim., 54 (2006), 369–399. https://doi.org/10.1007/s00245-006-0875-0 doi: 10.1007/s00245-006-0875-0
    [20] A. Debussche, Weak approximation of stochastic partial differential equations: The nonlinear case, Math. Comput., 80 (2011), 89–117. https://doi.org/10.1090/S0025-5718-2010-02395-6 doi: 10.1090/S0025-5718-2010-02395-6
    [21] A. Debussche, J. Printems, Weak order for the discretization of the stochastic heat equation, Math. Comput., 78 (2009), 845–863. https://doi.org/10.1090/S0025-5718-08-02184-4 doi: 10.1090/S0025-5718-08-02184-4
    [22] C. R. Dietrich, A simple and efficient space domain implementation of the turning bands method, Water Resour. Res., 31 (1995), 147–156. https://doi.org/10.1029/94WR01457 doi: 10.1029/94WR01457
    [23] C. R. Dietrich, G. N. Newsam, Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix, SIAM J. Sci. Comput., 18 (1997), 1088–1107. https://doi.org/10.1137/S1064827592240555 doi: 10.1137/S1064827592240555
    [24] Q. Du, T. Zhang, Numerical approximation of some linear stochastic partial differential equations driven by special additive noises, SIAM J. Numer. Anal., 140 (2002), 1421–1445.
    [25] K. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Semigroup Forum, 63 (1999), 278–280.
    [26] X. Feng, Y. Li, Y. Zhang, Finite element methods for the stochastic Allen-Cahn equation with gradient-type multiplicative noise, SIAM J. Numer. Anal., 55 (2017), 194–216. https://doi.org/10.1137/15M1022124 doi: 10.1137/15M1022124
    [27] M. Geissert, M. Kovács, S. Larsson, Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise, BIT Numer. Math., 549 (2009), 343–356.
    [28] I. Gohberg, S. Goldberg, M. A. Kaashoek, Hilbert-schmidt operators, In: Classes of Linear Operators Vol. I, 138–147. Springer, 1990.
    [29] I. Gy$\ddot{{\mathrm{o}}}$ngy, S. Sabanis, D. $\check{\mathrm{S}}$i$\check{\mathrm{s}}$ka, Convergence of tamed Euler schemes for a class of stochastic evolution equations, Stochast. Partial Differ. Equations: Anal. Comput., 4 (2016), 225–245.
    [30] I. Gyöngy, A. Millet, Rate of convergence of space time approximations for stochastic evolution equations, Potential Anal., 30 (2009), 29–64. https://doi.org/10.1111/j.1755-3768.1986.tb06988.x doi: 10.1111/j.1755-3768.1986.tb06988.x
    [31] E. Hausenblas, Approximation for semilinear stochastic evolution equations, Potential Anal., 18 (2003), 141–186. https://doi.org/10.1023/A:1020552804087 doi: 10.1023/A:1020552804087
    [32] E. Hausenblas, Weak approximation for semilinear stochastic evolution equations, In: Stochastic analysis and related topics VIII, 111–128. Springer, 2003.
    [33] M. Hutzenthaler, A. Jentzen, Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients, volume 236. American Mathematical Society, 2015.
    [34] M. Hutzenthaler, A. Jentzen, P. E. Kloeden, Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients, P. Royal Soc. A-Math. Phy., 467 (2011), 1563–1576. https://doi.org/10.1098/rspa.2010.0348 doi: 10.1098/rspa.2010.0348
    [35] A. Jentzen, P. E. Kloeden, Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise, P. Royal Soc. A-Math. Phy., 465 (2008), 649–667. https://doi.org/10.1098/rspa.2008.0325 doi: 10.1098/rspa.2008.0325
    [36] A. Jentzen, P. Pu$\check{\mathrm{s}}$nik, Strong convergence rates for an explicit numerical approximation method for stochastic evolution equations with non-globally Lipschitz continuous nonlinearities, IMA J. Numer. Anal., 40 (2020), 1005–1050.
    [37] N. L. Johnson, S. Kotz, N. Balakrishnan, Continuous univariate distributions, volume 289, John wiley & sons, 1995.
    [38] Y. Kazashi, Quasi-monte carlo integration with product weights for elliptic PDEs with log-normal coeffcients, IMA J. Numer. Anal., 39 (2019), 1563–1593. https://doi.org/10.1093/imanum/dry028 doi: 10.1093/imanum/dry028
    [39] P. E. Kloeden, G. J. Lord, A. et al Neuenkirch, The exponential integrator scheme for stochastic partial differential equations: Pathwise error bounds, J. Comput. Appl. Math., 235 (2011), 1245–1260. https://doi.org/10.1016/j.cam.2010.08.011 doi: 10.1016/j.cam.2010.08.011
    [40] P. E. Kloeden, E. Platen, Numerical solution of stochastic differential equations, Springer Science and Business Media, 2013.
    [41] M. Kovács, S. Larsson, F. Lindgren, Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise, BIT Numer. Math., 52 (2012), 85–108. https://doi.org/10.1007/s10543-011-0344-2 doi: 10.1007/s10543-011-0344-2
    [42] M. Kovács, S. Larsson, F. Lindgren, Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II, Fully discrete schemes, BIT Numer. Math., 53 (2013), 497–525.
    [43] M. Kov$\acute{\mathrm{a}}$cs, S. Larsson, F. Lindgren, On the discretisation in time of the stochastic Allen–Cahn equation, Math. Nachr., 291 (2018), 966–995. https://doi.org/10.1002/mana.201600283 doi: 10.1002/mana.201600283
    [44] R. Kruse, Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise, IMA J. Numer. Anal., 34 (2014), 217–251. https://doi.org/10.1093/imanum/drs055 doi: 10.1093/imanum/drs055
    [45] R. Kruse, Strong and weak approximation of semilinear stochastic evolution equations, Springer, 2014.
    [46] C. Li, Y. Huang, N. Yi, An unconditionally energy stable second order finite element method for solving the Allen–Cahn equation, J. Comput. Appl. Math., 353 (2019), 38–48.
    [47] N. Li, B. Meng, X. Feng, D. Gui, The spectral collocation method for the stochastic Allen-Cahn equation via generalized polynomial chaos, Numer. Heat Tr. B-Fund., 68 (2015), 11–29.
    [48] N. Li, J. Zhao, X. Feng, D. Gui, Generalized polynomial chaos for the convection diffusion equation with uncertainty, Int. J. Heat Mass Transfer, 97 (2016), 289–300. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.006 doi: 10.1016/j.ijheatmasstransfer.2016.02.006
    [49] Y. Li, H. G. Lee, D. Jeong, J. Kim, An unconditionally stable hybrid numerical method for solving the Allen–Cahn equation, Comput. Math. Appl., 60 (2010), 1591–1606. https://doi.org/10.1016/j.camwa.2010.06.041 doi: 10.1016/j.camwa.2010.06.041
    [50] F. Lindner, R. Schilling, Weak order for the discretization of the stochastic heat equation driven by impulsive noise, Potential Anal., 38 (2013), 345–379. https://doi.org/10.1007/s11118-012-9276-y doi: 10.1007/s11118-012-9276-y
    [51] Z. Liu, Z. Qiao, Strong approximation of monotone stochastic partial differential equations driven by white noise, IMA J. Numer. Anal., 40 (2020), 1074–1093. https://doi.org/10.1093/imanum/dry088 doi: 10.1093/imanum/dry088
    [52] Z. Liu, Z. Qiao, Strong approximation of monotone stochastic partial differential equations driven by multiplicative noise, Stoch. Partial Differ., 9 (2021), 559–602. https://doi.org/10.1007/s40072-020-00179-2 doi: 10.1007/s40072-020-00179-2
    [53] G. J. Lord, C. E. Powell, T. Shardlow, An introduction to computational stochastic PDEs, Cambridge University Press, 2014.
    [54] A. Mantoglou, J. L. Wilson, The turning bands method for simulation of random fields using line generation by a spectral method, Water Resour. Res., 18 (1982), 1379–1394. https://doi.org/10.1029/WR018i005p01379 doi: 10.1029/WR018i005p01379
    [55] G. Milstein, M. V. Tretyakov, Numerical integration of stochastic differential equations with nonglobally Lipschitz coefficients, SIAM J. Numer. Anal., 43 (2005), 1139–1154. https://doi.org/10.1137/040612026 doi: 10.1137/040612026
    [56] G. N. Milstein, M. V. Tretyakov, Stochastic numerics for mathematical physics, Springer Science and Business Media, 2013.
    [57] G. N. Newsam, C. R. Dietrich, Bounds on the size of nonnegative definite circulant embeddings of positive definite Toeplitz matrices, IEEE T. Inform. Theory, 40 (1994), 1218–1220. https://doi.org/10.1109/18.335952 doi: 10.1109/18.335952
    [58] J. Printems, On the discretization in time of parabolic stochastic partial differential equations, ESAIM: Math. Model. Numer. Anal., 35 (2001), 1055–1078. https://doi.org/10.1051/m2an:2001148 doi: 10.1051/m2an:2001148
    [59] M. Sauer, W. Stannat, Lattice approximation for stochastic reaction diffusion equations with one-sided Lipschitz condition, Math. Comput., 84 (2015), 743–766. https://doi.org/10.1090/S0025-5718-2014-02873-1 doi: 10.1090/S0025-5718-2014-02873-1
    [60] M. Shinozuka, Simulation of multivariate and multidimensional random processes, J. Acoust. Soc. Am., 49 (1971), 357–368. https://doi.org/10.1121/1.1912338 doi: 10.1121/1.1912338
    [61] M. Shinozuka, C. M. Jan, Digital simulation of random processes and its applications, J. Sound Vib., 25 (1972), 111–128. https://doi.org/10.1016/0022-460X(72)90600-1 doi: 10.1016/0022-460X(72)90600-1
    [62] J. L. Wadsworth, J. A. Tawn, Efficient inference for spatial extreme value processes associated to log-Gaussian random functions, Biometrika, 101 (2014), 1–15.
    [63] J. B. Walsh, Finite element methods for parabolic stochastic PDEs, Potential Anal., 23 (2005), 1–43.
    [64] X. Wang, Strong convergence rates of the linear implicit Euler method for the finite element discretization of SPDEs with additive noise IMA J. Numer. Anal., 37 (2017), 965–984.
    [65] X. Wang, An efficient explicit full-discrete scheme for strong approximation of stochastic Allen–Cahn equation, Stoch. Proc. Appl., 130 (2020), 6271–6299. https://doi.org/10.1016/j.spa.2020.05.011 doi: 10.1016/j.spa.2020.05.011
    [66] X. Wang, S. Gan, Weak convergence analysis of the linear implicit Euler method for semilinear stochastic partial differential equations with additive noise, J. Math. Anal. Appl., 398 (2013), 151–169. https://doi.org/10.1016/j.jmaa.2012.08.038 doi: 10.1016/j.jmaa.2012.08.038
    [67] A. TA. Wood, G. Chan, Simulation of stationary Gaussian processes in $[0, 1]^d$. J. Comput. Graph. Stat., 3 (1994), 409–432. https://doi.org/10.1086/174579
    [68] D. Xiu, J. Shen, Efficient stochastic Galerkin methods for random diffusion equations, J. Comput. Phys., 228 (2009), 266–281. https://doi.org/10.1016/j.jcp.2008.09.008 doi: 10.1016/j.jcp.2008.09.008
    [69] Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 43 (2005), 1363–1384. https://doi.org/10.1137/040605278 doi: 10.1137/040605278
    [70] Z. Zhang, G. Karniadakis, Numerical methods for stochastic partial differential equations with white noise, Springer, 2017.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1552) PDF downloads(84) Cited by(3)

Article outline

Figures and Tables

Figures(4)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog