Perturbation and numerical methods for computing the minimal average energy

  • Received: 01 January 2011 Revised: 01 April 2011
  • Primary: 35B27, 58E15; Secondary: 41A58, 65M99.

  • We investigate the differentiability of minimal average energy associated to the functionals $S_\epsilon (u) = \int_{\mathbb{R}^d} \frac{1}{2}|\nabla u|^2 + \epsilon V(x,u)\, dx$, using numerical and perturbative methods. We use the Sobolev gradient descent method as a numerical tool to compute solutions of the Euler-Lagrange equations with some periodicity conditions; this is the cell problem in homogenization. We use these solutions to determine the average minimal energy as a function of the slope. We also obtain a representation of the solutions to the Euler-Lagrange equations as a Lindstedt series in the perturbation parameter $\epsilon$, and use this to confirm our numerical results. Additionally, we prove convergence of the Lindstedt series.

    Citation: Timothy Blass, Rafael de la Llave. Perturbation and numerical methods for computing the minimal average energy[J]. Networks and Heterogeneous Media, 2011, 6(2): 241-255. doi: 10.3934/nhm.2011.6.241

    Related Papers:

  • We investigate the differentiability of minimal average energy associated to the functionals $S_\epsilon (u) = \int_{\mathbb{R}^d} \frac{1}{2}|\nabla u|^2 + \epsilon V(x,u)\, dx$, using numerical and perturbative methods. We use the Sobolev gradient descent method as a numerical tool to compute solutions of the Euler-Lagrange equations with some periodicity conditions; this is the cell problem in homogenization. We use these solutions to determine the average minimal energy as a function of the slope. We also obtain a representation of the solutions to the Euler-Lagrange equations as a Lindstedt series in the perturbation parameter $\epsilon$, and use this to confirm our numerical results. Additionally, we prove convergence of the Lindstedt series.


    加载中
    [1] V. Bangert, The existence of gaps in minimal foliations, Aequationes Math., 34 (1987), 153-166. doi: 10.1007/BF01830667
    [2] V. Bangert, A uniqueness theorem for $Z$n-periodic variational problems, Comment. Math. Helv., 62 (1987), 511-531. doi: 10.1007/BF02564459
    [3] V. Bangert, On minimal laminations of the torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 95-138.
    [4] T. Blass, R. de la Llave and E. Valdinoci, A comparison principle for a Sobolev gradient semi-flow, Commun. Pure Appl. Anal., 10 (2011), 69-91.
    [5] L. Chierchia and C. Falcolini, A note on quasi-periodic solutions of some elliptic systems, Z. Angew. Math. Phys., 47 (1996), 210-220. doi: 10.1007/BF00916825
    [6] L. C. Evans, "Partial Differential Equations," volume 19 of "Graduate Studies in Mathematics," American Mathematical Society, Providence, RI, 1998.
    [7] T. Kato, "Perturbation Theory for Linear Operators," Die Grundlehren der mathematischen Wissenschaften, Band 132. Springer-Verlag New York, Inc., New York, 1966.
    [8] R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1309-1344.
    [9] M. Morse, "Variational Analysis: Critical Extremals and Sturmian Extensions," Interscience Publishers [John Wiley & Sons, Inc.], New York-London-Sydney, 1973.
    [10] J. Moser, Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 229-272.
    [11] J. W. Neuberger, "Sobolev Gradients and Differential Equations," volume 1670 of "Lecture Notes in Mathematics," Springer-Verlag, Berlin, second edition, 2010.
    [12] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa(3), 13 (1959), 115-162.
    [13] W. Senn, Strikte Konvexität fär Variationsprobleme auf dem $n$-dimensionalen Torus, Manuscripta Math., 71 (1991), 45-65. doi: 10.1007/BF02568393
    [14] W. M. Senn, Differentiability properties of the minimal average action, Calc. Var. Partial Differential Equations, 3 (1995), 343-384.
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3428) PDF downloads(64) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog