Citation: Timothy Blass, Rafael de la Llave. Perturbation and numerical methods for computing the minimal average energy[J]. Networks and Heterogeneous Media, 2011, 6(2): 241-255. doi: 10.3934/nhm.2011.6.241
[1] | V. Bangert, The existence of gaps in minimal foliations, Aequationes Math., 34 (1987), 153-166. doi: 10.1007/BF01830667 |
[2] | V. Bangert, A uniqueness theorem for $Z$n-periodic variational problems, Comment. Math. Helv., 62 (1987), 511-531. doi: 10.1007/BF02564459 |
[3] | V. Bangert, On minimal laminations of the torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 95-138. |
[4] | T. Blass, R. de la Llave and E. Valdinoci, A comparison principle for a Sobolev gradient semi-flow, Commun. Pure Appl. Anal., 10 (2011), 69-91. |
[5] | L. Chierchia and C. Falcolini, A note on quasi-periodic solutions of some elliptic systems, Z. Angew. Math. Phys., 47 (1996), 210-220. doi: 10.1007/BF00916825 |
[6] | L. C. Evans, "Partial Differential Equations," volume 19 of "Graduate Studies in Mathematics," American Mathematical Society, Providence, RI, 1998. |
[7] | T. Kato, "Perturbation Theory for Linear Operators," Die Grundlehren der mathematischen Wissenschaften, Band 132. Springer-Verlag New York, Inc., New York, 1966. |
[8] | R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1309-1344. |
[9] | M. Morse, "Variational Analysis: Critical Extremals and Sturmian Extensions," Interscience Publishers [John Wiley & Sons, Inc.], New York-London-Sydney, 1973. |
[10] | J. Moser, Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 229-272. |
[11] | J. W. Neuberger, "Sobolev Gradients and Differential Equations," volume 1670 of "Lecture Notes in Mathematics," Springer-Verlag, Berlin, second edition, 2010. |
[12] | L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa(3), 13 (1959), 115-162. |
[13] | W. Senn, Strikte Konvexität fär Variationsprobleme auf dem $n$-dimensionalen Torus, Manuscripta Math., 71 (1991), 45-65. doi: 10.1007/BF02568393 |
[14] | W. M. Senn, Differentiability properties of the minimal average action, Calc. Var. Partial Differential Equations, 3 (1995), 343-384. |