Research article Special Issues

BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces

  • In this paper, we study the boundedness of the commutator of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces when the symbol functions belong to bounded mean oscillations (BMO) space.

    Citation: Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan. BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces[J]. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139

    Related Papers:

    [1] Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051
    [2] Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352
    [3] Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007
    [4] Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888
    [5] Muhammad Asim, Ghada AlNemer . Results for fractional bilinear Hardy operators in central varying exponent Morrey space. AIMS Mathematics, 2024, 9(11): 29689-29706. doi: 10.3934/math.20241438
    [6] Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for $ m $th order commutators of $ n- $dimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022
    [7] Bo Xu . Bilinear $ \theta $-type Calderón-Zygmund operators and its commutators on generalized variable exponent Morrey spaces. AIMS Mathematics, 2022, 7(7): 12123-12143. doi: 10.3934/math.2022674
    [8] Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki . Boundedness of Hardy operators on grand variable weighted Herz spaces. AIMS Mathematics, 2023, 8(10): 24515-24527. doi: 10.3934/math.20231250
    [9] Mehvish Sultan, Babar Sultan, Ahmad Aloqaily, Nabil Mlaiki . Boundedness of some operators on grand Herz spaces with variable exponent. AIMS Mathematics, 2023, 8(6): 12964-12985. doi: 10.3934/math.2023653
    [10] Jie Sun, Jiamei Chen . Weighted estimates for commutators associated to singular integral operator satisfying a variant of Hörmander's condition. AIMS Mathematics, 2023, 8(11): 25714-25728. doi: 10.3934/math.20231311
  • In this paper, we study the boundedness of the commutator of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces when the symbol functions belong to bounded mean oscillations (BMO) space.



    In the literature, one can find a rich history of the Hausdorff operator in harmonic analysis. Let's start our discussion by introducing the high-dimensional rough fractional Hausdorff operator [1]:

    HβΦ,Ωg(z)=RnΦ(z|t|1)|t|nβΩ(t)g(t)dt,  0β<n. (1.1)

    This is the most general form of Hausdorff operator, as the remaining definitions can be easily obtained from (1.1). For instance, if we take Ω=1, then we get the high-dimensional fractional Hausdorff operator [2]. Also, β=0 provides the n-dimensional rough Hausdorff operator [3]. Similarly, if Ω=1=n and β=0, then we get the one-dimensional Hausdorff operator [4,5,6]. Furthermore, if we choose the parameters correctly, many celebrated integral operators, such as Hardy-type operators, become special cases of the rough fractional Hausdorff operator. Furthermore, the commutator of (1.1):

    Hβ,bΦ,Ωg(z)=b(z)HβΦ,Ωg(z)HβΦ,Ω(bg)(z), (1.2)

    is just as important as the operator itself.

    On the other hand, function spaces with variable exponents are not a mere generalization of classical ones but appear to have a natural application in many real-world phenomena; see [7], for example. The variable-exponent Lebesgue space Lq() can be traced back to Orlicz [8]. In 1990, however, the authors of [9] incorporated the formal theory of function spaces with variable exponents into its structure. They introduced the variable-exponent Lebesgue and Sobolev spaces. Since the publication of [9], several authors have contributed to the theory of variable exponent function spaces. The works in [10,11,12,13], in particular, greatly influence the basic structure and relevant properties of such spaces. Finally, we must cite some recent publications in this direction: [14,15,16,17,18]. Additionally, the structure of grand spaces was first developed in [19,20] and continued to flourish through the years [21,22,23,24]. Recently, Kokilasvili and Meski [25] defined the grand-variable exponent Lebesgue spaces, which gave this field a new direction and attracted the attention of many authors [26,27,28].

    Commutators of integral operators find their applications in the regularity theory of partial differential equations and in the characterization of function spaces [29]. Such applications make their studies more important and valuable [30]. The commutators of various Hausdorff operators hold significant importance and have been a topic of discussion for numerous authors [31,32,33,34]. However, no one has tested the boundedness of such commutator operators on variable-exponent function spaces. The purpose of this article is to fill this gap by establishing the boundedness of (1.2) on grand-variable-exponent Herz-Morrey spaces. In a special case, we also obtain the continuity of Hβ,bΦ,Ω on grand-variable Herz spaces.

    In the next section, we present preliminary results, which will be helpful in establishing our main results. Finally, in the last section, we state our main results and give their proofs.

    Let us open our discussion by introducing the variable-exponent Lebesgue spaces. Let A be an open subset of Rn and q() be a measurable function on A with values in [1,), and q() denotes the prime index corresponding to q(), i.e., q()=q()/(q()1). The collection of all functions q() that satisfy:

    1<qq+<,

    where q=essinfzAq(z), and q+=esssupzAq(z), is denoted by P(A). The Lebesgue space with variable exponent Lq()(A) is defined as the set of all measurable functions f(z) satisfying:

    A(|f(z)|ζ)q(z)dz<,

    where the constant ζ>0. When equipped with the Luxemburg norm, it becomes a Banach function space.

    fLq()(A)=inf{ζ>0:A(|f(z)|ζ)q(z)dz1}.

    Its local version, Lq()loc(E), is defined as:

    Lq()loc(E)={f:fLq()(A)compactsubsetAE}.

    In the study of variable exponent function spaces, an essential operator is the Hardy-Littlewood maximal operator Mf. For a measurable function f on Lq()(Rn), it can be defined as:

    Mf(z)=supr>01|B(z,r)|B(z,r)|f(σ)|dσ.

    In the remainder of this paper, we use the notation B(Rn) to denote the set consisting of q()P(Rn) such that M is bounded on Lq()(Rn).

    Proposition 2.1. [13,35] Let ARn be an open set, and q()P(A) satisfies:

    |q(σ)q(ζ)|Cln(|σζ|),12|σζ|, (2.1)
    |q(σ)q(ζ)|Cln(|σ|+e),|σ||ζ|, (2.2)

    then q()B(A), where C is a positive constant independent of σ and ζ.

    Lemma 2.2. [9] Let q()P(A). If gLq()(A) and hLq()(A), then we have

    A|g(z)h(z)|dzrqgLq()(A)hLq()(A),

    where rq=1+1q1q+.

    Lemma 2.3. [36] If q()B(Rn), then there exist constants 0<δ<1 and C>0 such that for all balls B in Rn and all measurable subsets SB,

    χBLq()(Rn)χSLq()(Rn)C(|B||S|)δ.

    Lemma 2.4. [11] Define a variable exponent ˜p() such that 1q(t)=1˜p(t)+1p, (tRn). Then, we have

    ghLq()(Rn)CgL˜p()(Rn)hLp(Rn).

    Lemma 2.5. [35] Let p()P(Rn) satisfy conditions (2.1) and (2.2) in Proposition 2.1, then

    χQLq()(Rn){|Q|1q(x)  if |Q|<2n and xQ,|Q|1q()  if |Q|1,

    for all cubes (or balls) QRn, where q()=limxq(x).

    Let Bk={tRn:|t|2k}, Ck=BkBk1, and χk=χCk for kZ. Then, the homogeneous Herz space with variable exponent was first defined in [37,38].

    Definition 2.6. Let αR, 0<q<, and p()P(Rn). The homogeneous Herz space with variable exponent ˙Kα,qp()(Rn) is the set of all measurable functions f such that:

    ˙Kα,qp()(Rn)={fLp()loc(Rn{0}):f˙Kα,qp()(Rn)<},

    where

    f˙Kα,qp()(Rn)=(k=2kαqfχkqLp()(Rn))1q.

    If p()=p, then we have the classical Herz space ˙Kα,qp studied in [39].

    Definition 2.7. [36] Let αR,  0<q<, λ[0,), and p()P(Rn). The space M˙Kα,λq,p()(Rn) is the set of all measurable functions f given by

    M˙Kα,λq,p()(Rn)={fLp()loc(Rn{0}):fM˙Kα,λq,p()(Rn)<},

    where

    fM˙Kα,λq,p()(Rn)=supk0Z2k0λ(k0k=2kαfχkqLp(.)(Rn))1/q.

    Obviously, M˙Kα,0q,p()(Rn) = ˙Kα,qp()(Rn) is the Herz space with variable exponent.

    Definition 2.8. [27] Let αR, 0<q<, λ[0,),θ>0, and p()P(Rn). Then, grand-variable Herz-Morrey space M˙Kα,q),θλ,p()(Rn) is

    M˙Kα,q),θλ,p()(Rn)={fLp()loc(Rn{0}):fM˙Kα,q),θλ,p()(Rn)<},

    where

    fM˙Kα,q),θλ,p()(Rn)=supϵ>0supj0Z2j0λ(ϵθj0j=2jαq(1+ϵ)fχjq(1+ϵ)Lp(.)(Rn))1q(1+ϵ).

    Taking λ=0 in the above definition, we get the definition of grand-variable Herz space defined in [26].

    Definition 2.9. Let αR,  0<q<,θ>0, and p()P(Rn). Then, grand-variable-Herz space ˙Kα,q),θp()(Rn) is

    ˙Kα,q),θp()(Rn)={fLp()loc(Rn{0}):f˙Kα,q),θp()(Rn)<},

    where

    f˙Kα,q),θp()(Rn)=supϵ>0(ϵθjZ2jαq(1+ϵ)fχjq(1+ϵ)Lp(.)(Rn))1q(1+ϵ).

    Definition 2.10. Let bL1loc(Rn), then b is said to belong to the bounded mean oscillation space BMO(Rn) if bBMO(Rn)<, where

    bBMO(Rn)=supB1|B|B|b(x)bB|dx,

    and supremum is taken over all the balls BRn with bB=|B|1Bb(y)dy.

    Lemma 2.11. [38] Let p()P(Rn), then for all bBMO(Rn) and all l,mZ with l>m, we have

    C1bBMO(Rn)supB:Ball1χBLp()(Rn)(bbB)χBLp()(Rn)CbBMO(Rn),
    (bbBm)χBlLp()(Rn)C(lm)bBMO(Rn)χBlLp()(Rn).

    Remark 2.12. If p1(), p2(), p(), p1() are variable exponents and p1(), p2() belong to P(Rn), satisfying conditions in Proposition 2.1, then p(),p1(), and p2() belong to B(Rn). By using Lemma 2.2, there exist constants δ1(0,1(p1)+), δ2(0,1(p2)+), such that the inequalities:

    χSLp1()(Rn)χBLp1()(Rn)C(|S||B|)δ1,  χSLp2()(Rn)χBLp2()(Rn)C(|S||B|)δ2,

    hold for all balls BRn and SB.

    In this section, our primary goal is to investigate the boundedness properties of the Hausdorff operator's commutators on grand-variable Herz-type spaces. The constant CΦ,s will appear frequently in the proof of our main results, as defined by:

    CΦ,s=(0|Φ(r)|sr(nβ)sndrr)1s.

    Theorem 3.1. Let 0β<n, 1<q1q2<, θ>0, ΩLs(Sn1), p1(),p2()P(Rn), and satisfy the conditions in Proposition 2.1 with 1p1()=1p2()+βn, p1()<nβ, and p1()<s. Suppose δ1,δ2(0,1), nsnδ2β<α<nδ1ns, 0λ<α+β+nδ2ns, CΦ,s<, and bBMO(Rn). If Φ is a radial function, then Hβ,bΦ,Ω is bounded on the grand-variable Herz-Morrey space and satisfies:

    Hβ,bΦ,ΩfM˙Kα,q2),θλ,p2()(Rn)CCΦ,sbBMO(Rn)fM˙Kα,q1),θλ,p1()(Rn).

    Proof. Since q1q2, by definition of grand-variable Herz-Morrey space:

    Hβ,bΦ,Ωfq1(1+ϵ)M˙Kα,q2),θλ,p2()(Rn)supϵ>0supj0Z2j0λq1(1+ϵ)ϵθj0j=2jαq1(1+ϵ)(Hβ,bΦ,Ωf)χjq1(1+ϵ)Lp2()(Rn)supϵ>0supj0Z2j0λq1(1+ϵ)ϵθj0j=2jαq1(1+ϵ)(l=(Hβ,bΦ,Ω(fχl))χjLp2()(Rn))q1(1+ϵ)Csupϵ>0supj0Z2j0λq1(1+ϵ)ϵθj0j=2jαq1(1+ϵ)(j1l=(Hβ,bΦ,Ω(fχl))χjLp2()(Rn))q1(1+ϵ)+Csupϵ>0supj0Z2j0λq1(1+ϵ)ϵθj0j=2jαq1(1+ϵ)(j+1l=j1(Hβ,bΦ,Ω(fχl))χjLp2()(Rn))q1(1+ϵ)+Csupϵ>0supj0Z2j0λq1(1+ϵ)ϵθj0j=2jαq1(1+ϵ)(l=j+1(Hβ,bΦ,Ω(fχl))χjLp2()(Rn))q1(1+ϵ)=:I1+I2+I3.

    In order to estimate I1, we need to estimate the inner norm (Hβ,bΦ,Ω(fχl))χjLp2()(Rn). Thus, for lj1, we proceed as below:

    |Hβ,bΦ,Ω(fχl)(z)χj(z)|=|ClΦ(z|x|1)|x|nβΩ(x)(b(z)b(x))f(x)dx|χj(z)|ClΦ(z|x|1)|x|nβΩ(x)(b(z)bBl)f(x)dx|χj(z)+|ClΦ(z|x|1)|x|nβΩ(x)(b(x)bBl)f(x)dx|χj(z)=|(b(z)bBl)HβΦ,Ω(fχl)(z)|χj(z)+|HβΦ,Ω((bbBl)fχl)(z)|χj(z)=:J1+J2. (3.1)

    Now, we proceed with the J1 approximation and deduce that

    |HβΦ,Ω(fχl)(z)|Cl|Φ(z|x|1)|x|nβΩ(x)f(x)|dx(Φ(z|x|1)|x|nβΩ(x))χlLp1()(Rn)fχlLp1()(Rn).

    The condition s>p1() implies that there exists a p() such that 1p1()=1s+1p(). Hence, Lemma 2.4 gives us

    |HβΦ,Ω(fχl)(z)|(Φ(z|x|1)|x|nβΩ(x))χlLs(Rn)χBlLp()(Rn)fχlLp1()(Rn). (3.2)

    By polar decomposition, we see that

    (Φ(z|x|1)|x|nβΩ(x))χlsLs(Rn)=Cl|Φ(z|x|1)|x|nβΩ(x)|sdx=2l2l1Sn1|Φ(|z|r1)rnβ|s|Ω(x)|sdμ(x)rndrr,

    where μ(x) is the normalized Lebesgue measure on the unit sphere Sn1. We get the following inequality by change of variable:

    (Φ(z|x|1)|x|nβΩ(x))χlsLs(Rn)=Sn1|Ω(x)|sdμ(x)|z|2l1|z|2l|Φ(t)|s(|z|t1)n(nβ)sdttΩsLs(Sn1)|z|n(nβ)s0|Φ(t)|st(nβ)sndtt=CsΦ,sΩsLs(Sn1)|z|sβ+nns.

    Thus,

    (Φ(z|x|1)|x|nβΩ(x))χlLs(Rn)CCΦ,s|z|βns. (3.3)

    Furthermore, when xBl, |Bl|2n, then from 1p1(x)=1s+1p(x) and Lemma 2.5, we get

    χBlLp()(Rn)|Bl|1p()|Bl|1sχBlLp1()(Rn).

    When |Bl|1,

    χBlLp()(Rn)|Bl|1p()|Bl|1sχBlLp1()(Rn).

    Hence, we get

    χBlLp()(Rn)|Bl|1sχBlLp1()(Rn). (3.4)

    Using results from (3.3) and (3.4) into (3.2), we get

    |HβΦ,Ω(fχl)(z)|CCΦ,s|z|βns|Bl|1sχBlLp1()(Rn)fχlLp1()(Rn). (3.5)

    In light of this inequality, J1 takes the following form:

    J1CCΦ,s|Bj|βn1s|Bl|1sχBlLp1()(Rn)fχlLp1()(Rn)|(b(z)bBl)χj(z)|, (3.6)

    which gives us:

    J1Lp2()(Rn)CCΦ,s|Bj|βn1s|Bl|1sχBlLp1()(Rn)fχlLp1()(Rn)(bbBl)χjLp2()(Rn).

    Since l<j, by Lemma 2.11, we get

    J1Lp2()(Rn)CCΦ,sbBMO(Rn)(jl)|Bj|βn1s|Bl|1sχBlLp1()(Rn)fχlLp1()(Rn)χBjLp2()(Rn). (3.7)

    Next, let us estimate J2. The condition s>p1() gives that 1=1p1()+1s+1p().

    Thus,

    |HβΦ,Ω((bbBl)fχl)(z)|Cl|Φ(z|x|1)|x|nβΩ(x)(b(x)bBl)f(x)|dx(Φ(z|x|1)|x|nβΩ(x))χlLs(Rn)(b()bBl)χBlLp()(Rn)fχlLp1()(Rn). (3.8)

    Lemma 2.11 and the inequality (3.3) assist us in achieving

    J2CCΦ,sbBMO(Rn)|z|βnsχBlLp()(Rn)fχlLp1()(Rn)χj(z). (3.9)

    Finally, the obtained inequality (3.4) is quite beneficial for us in getting

    J2Lp2()(Rn)CCΦ,sbBMO(Rn)|Bj|βn1s|Bl|1sχBlLp1()(Rn)fχlLp1()(Rn)χBjLp2()(Rn). (3.10)

    Adding (3.7) and (3.10) into (3.1), we obtain

    Hβ,bΦ,Ω(fχl)χjLp2()(Rn)CCΦ,sbBMO(Rn)(jl)|Bj|βn1s|Bl|1sχBjLp2()(Rn)χBlLp1()(Rn)fχlLp1()(Rn).

    Since l<j, from Remark 2.12, we get the following inequality:

    Hβ,bΦ,Ω(fχl)χjLp2()(Rn)CCΦ,sbBMO(Rn)(jl)|Bj|βn12n(lj)(δ11s)χBjLp2()(Rn)χBjLp1()(Rn)fχlLp1()(Rn). (3.11)

    By virtue of Lemma 2.5 and the condition 1p1()=1p2()+βn, we obtain

    χBjLp2()(Rn)χBjLp1()(Rn)|Bj|1p2()+1p1()=|Bj|1βn. (3.12)

    So, inequality (3.11) assumes the following form:

    Hβ,bΦ,Ω(fχl)χjLp2()(Rn)CCΦ,sbBMO(Rn)(jl)2n(lj)(δ11s)fχlLp1()(Rn). (3.13)

    This completes the estimation of inner norm (Hβ,bΦ,Ω(fχl))χjLp2()(Rn).

    Next, we approximate I1. So, by using (3.13), we obtain

    I1Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵ)BMO(Rn)×supj0Z2j0λq1(1+ϵ)ϵθj0j=2jαq1(1+ϵ)(j1l=(jl)2n(lj)(δ11s)fχlLp1()(Rn))q1(1+ϵ)Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵ)BMO(Rn)×supj0Z2j0λq1(1+ϵ)ϵθj0j=(j1l=(jl)2(jl)(αnδ1+ns)2lαfχlLp1()(Rn))q1(1+ϵ).

    Since α<n(δ11s), for 1<q1<, we use the Hölder inequality to get

    I1Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵ)BMO(Rn)supj0Z2j0λq1(1+ϵ)ϵθj0j=j1l=×2q1(1+ϵ)2(jl)(αnδ1+ns)2lαq1(1+ϵ)fχlq1(1+ϵ)Lp1()(Rn)(j1l=(jl)q1(1+ϵ)2q1(1+ϵ)2(jl)(αnδ1+ns))q1(1+ϵ)q1(1+ϵ)Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵ)BMO(Rn)×supj0Z2j0λq1(1+ϵ)ϵθj0j=j1l=2q1(1+ϵ)2(jl)(αnδ1+ns)2lαq1(1+ϵ)fχlq1(1+ϵ)Lp1()(Rn)=Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵ)BMO(Rn)×supj0Z2j0λq1(1+ϵ)ϵθj01l=2lαq1(1+ϵ)fχlq1(1+ϵ)Lp1()(Rn)j0j=l+12q1(1+ϵ)2(jl)(αnδ1+ns)Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵ)BMO(Rn)ϵθfq1(1+ϵ)M˙Kα,λq1(1+ϵ),p1()(Rn).

    Now, we estimate I2. For l=j, we follow the same steps as for I1. So, we write

    |Hβ,bΦ,Ω(fχj)(z)χj(z)|=|(b(z)bBj)HβΦ,Ω(fχj)(z)|χj(z)+|HβΦ,Ω((b(x)bBj)fχj)(z)|χj(z)=K1+K2. (3.14)

    Replacing l by j in the inequality (3.6), constructed for J1, we obtain K1:

    K1CCΦ,s|Bj|βn1χBjLp1()(Rn)fχjLp1()(Rn)|(b(z)bBj)χj(z)|.

    From Lemma 2.11 and the inequality (3.12), we deduce that

    K1Lp2()(Rn)CCΦ,sbBMO(Rn)|Bj|βn1χBjLp1()(Rn)χBjLp2()(Rn)fχjLp1()(Rn)CCΦ,sbBMO(Rn)fχjLp1()(Rn). (3.15)

    However, by replacing l with j, the K2 estimation is obtained from the inequalities (3.8)–(3.10) established for J2.

    K2Lp2()(Rn)CCΦ,sbBMO(Rn)|Bj|βn1χBjLp1()(Rn)χBjLp2()(Rn)fχjLp1()(Rn)CCΦ,sbBMO(Rn)fχjLp1()(Rn). (3.16)

    Substituting (3.15) and (3.16) into (3.14), we obtain

    Hβ,bΦ,Ω(fχj)χjLp2()(Rn)CCΦ,sbBMO(Rn)fχjLp1()(Rn). (3.17)

    Thus,

    I2Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵ)BMO(Rn)supj0Z2j0λq1(1+ϵ)ϵθj0j=2jαq1(1+ϵ)fχjq1(1+ϵ)Lp1()(Rn)Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵ)BMO(Rn)ϵθfq1(1+ϵ)M˙Kα,λq1(1+ϵ),p1()(Rn).

    Next, we estimate I3. For lj+1, with a small adjustment in the first step of the inequality (3.1), we write

    |Hβ,bΦ,Ω(fχl)(z)χj(z)|=|(b(z)bBj)HβΦ,Ω(fχl)(z)|χj(z)+|HβΦ,Ω((b(x)bBj)fχl)(z)|χj(z)=L1+L2. (3.18)

    As with the estimation of J1, we approximate L1 using the inequalities (3.3)–(3.5) to obtain

    L1CCΦ,s|Bj|βn1s|Bl|1sχBlLp1()(Rn)fχlLp1()(Rn)|(b(z)bBj)χj(z)|.

    Taking the Lp2() norm of the above inequality

    L1Lp2()(Rn)CCΦ,s|Bj|βn1s|Bl|1sχBlLp1()(Rn)fχlLp1()(Rn)(bbBj)χBjLp2()(Rn),

    and using Lemma 2.11, we obtain

    L1Lp2()(Rn)CCΦ,sbBMO(Rn)|Bj|βn1s|Bl|1sχBlLp1()(Rn)fχlLp1()(Rn)χBjLp2()(Rn). (3.19)

    To estimate L2, we replace the factor (bbBl) with (bbBj) in the inequality (3.8):

    |HβΦ,Ω((bbBj)fχl)(z)|(Φ(z|x|1)|x|nβΩ(x))χlLs(Rn)(b()bBj)χBlLp()(Rn)fχlLp1()(Rn).

    For l>j, from Lemma 2.11 and the inequality (3.3), we deduce that

    L2CCΦ,sbBMO(Rn)(lj)|z|βnsχBlLp()(Rn)fχlLp1()(Rn)χj(z),

    from which, by virtue of (3.4), we obtain the following inequality:

    L2Lp2()(Rn)CCΦ,sbBMO(Rn)(lj)|Bj|βn1s|Bl|1sχBlLp1()(Rn)fχlLp1()(Rn)χBjLp2()(Rn). (3.20)

    Substitute (3.19) and (3.20) into (3.18), and we get

    Hβ,bΦ,Ω(fχl)χjLp2()(Rn)CCΦ,sbBMO(Rn)(lj)|Bj|βn1s|Bl|1sχBlLp1()(Rn)χBjLp2()(Rn)fχlLp1()(Rn).

    Since l>j, again with the help of Remark 2.12, we obtain

    Hβ,bΦ,Ω(fχl)χjLp2()(Rn)CCΦ,sbBMO(Rn)(lj)|Bj|βn1s|Bl|1sχBlLp1()(Rn)χBlLp2()(Rn)2n(jl)δ2fχlLp1()(Rn). (3.21)

    Using condition 1p1()=1p2()+βn and Lemma 2.5, we get

    χBlLp2()(Rn)χBlLp1()(Rn)|Bl|1p2()+1p1()=|Bl|1βn.

    Therefore, (3.21) becomes

    Hβ,bΦ,Ω(fχl)χjLp2()(Rn)CCΦ,sbBMO(Rn)(lj)|Bj|βn1s|Bl|1sβn2n(jl)δ2fχlLp1()(Rn)=CCΦ,sbBMO(Rn)(lj)2(jl)(β+nδ2ns)fχlLp1()(Rn).

    Thus, we can express I3 as:

    I3Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵ)BMO(Rn)×supj0Z2j0λq1(1+ϵ)ϵθj0j=(l=j+1(lj)2(jl)(α+β+nδ2ns)2lαfχlLp1()(Rn))q1(1+ϵ).

    Since α+β+nδ2ns>0 and λ<α+β+nδ2ns, so, we can select a constant σ>1 such that λ1σ(α+β+nδ2ns)<0. Hence, for 1<q1<, Hölder's inequality gives

    I3Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵBMO(Rn)×supj0Z2j0λq1(1+ϵ)ϵθj0j=l=j+12q1(1+ϵ)σ(jl)(α+β+nδ2ns)2lαq1(1+ϵ)fχlq1(1+ϵ)Lp1()(Rn)×(l=j+1(lj)q1(1+ϵ)2q1(1+ϵ)(σ1)σ(jl)(α+β+nδ2ns))q1(1+ϵ)q1(1+ϵ)Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵ)BMO(Rn)×supj0Z2j0λq1(1+ϵ)ϵθj0j=l=j+12q1(1+ϵ)σ(jl)(α+β+nδ2ns)2lαq1(1+ϵ)fχlq1(1+ϵ)Lp1()(Rn)Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵ)BMO(Rn)×supj0Z2j0λq1(1+ϵ)ϵθj0j=j01l=j+12q1(1+ϵ)σ(jl)(α+β+nδ2ns)2lαq1(1+ϵ)fχlq1(1+ϵ)Lp1()(Rn)+Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵ)BMO(Rn)×supj0Z2j0λq1(1+ϵ)ϵθj0j=l=j02q1(1+ϵ)σ(jl)(α+β+nδ2ns)2lαq1(1+ϵ)fχlq1(1+ϵ)Lp1()(Rn)=:M1+M2.

    By using nsnδ2β<α, M1 can be approximated as

    M1Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵ)BMO(Rn)×supj0Z2j0λq1(1+ϵ)ϵθj01l=2lαq1(1+ϵ)fχlq1(1+ϵ)Lp1()(Rn)l1j=2q1(1+ϵ)σ(jl)(α+β+nδ2ns)Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵ)BMO(Rn)supj0Z2j0λq1(1+ϵ)ϵθj01l=2lαq1(1+ϵ)fχlq1(1+ϵ)Lp1()(Rn).

    As λ<1σ(α+β+nδ2ns) and α+β+nδ2ns>0, hence we have

    M1Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵ)BMO(Rn)ϵθfq1(1+ϵ)M˙Kα,λq1(1+ϵ),p1()(Rn).

    Finally, M2 is approximated as

    M2Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵ)BMO(Rn)supj0Z2j0λq1(1+ϵ)ϵθj0j=l=j02q1(1+ϵ)σ(jl)(α+β+nδ2ns)2lλq1(1+ϵ)×2lλq1(1+ϵ)(lk=2kαq1(1+ϵ)fχkq1(1+ϵ)Lp1()(Rn))Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵ)BMO(Rn)2lλq1(1+ϵ)ϵθ(lk=2kαq1(1+ϵ)fχkq1(1+ϵ)Lp1()(Rn))×supj0Z2j0λq1(1+ϵ)j0j=2q1(1+ϵ)σj(α+β+nδ2ns)l=j02q1(1+ϵ)l(λ1σ(α+β+nδ2ns))Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵ)BMO(Rn)ϵθfq1(1+ϵ)M˙Kα,λq1(1+ϵ),p1()(Rn)×supj0Z2j0λq1(1+ϵ)2q1(1+ϵ)σj0(α+β+nδ2ns)2q1(1+ϵ)j0(λ1σ(α+β+nδ2ns))Csupϵ>0Cq1(1+ϵ)Φ,sbq1(1+ϵ)BMO(Rn)ϵθfq1(1+ϵ)M˙Kα,λq1(1+ϵ),p1()(Rn).

    Finally, when we combine all these estimates, we get

    Hβ,bΦ,ΩfM˙Kα,q2),θλ,p2()(Rn)CCΦ,sbBMO(Rn)fM˙Kα,q1),θλ,p1()(Rn).

    We end this paper by stating the following theorem:

    Theorem 3.2. Let 0β<n, 1<q1q2<, θ>0, ΩLs(Sn1), p1(),p2()P(Rn), and satisfy the conditions in Proposition 2.1 with 1p1()=1p2()+βn, p1()<nβ and p1()<s. Suppose δ1,δ2(0,1), nsnδ2β<α<nδ1ns, CΦ,s<, and bBMO(Rn). If Φ is a radial function, then Hβ,bΦ,Ω is bounded on grand-variable-Herz space and satisfies:

    Hβ,bΦ,Ωf˙Kα,q2),θp2()(Rn)CCΦ,sbBMO(Rn)f˙Kα,q1),θp1()(Rn).

    Proof. The proof is similar to the proof of Theorem 3.1, so we omit the details.

    In this note, we examined the boundedness of the Hausdorff operator's commutators on the variable exponent grand-Herz-Morrey spaces, assuming that the symbol functions originate from BMO spaces. We got affirmative results under certain conditions. The results of this study may stimulate the researchers to establish the same bounds on other function spaces with variable expomnents.

    Javeria Younas: Writing – original draft, Software, Methodology, Formal analysis; Amjad Hussain: Validation, Supervision, Funding acquisition, Conceptualization; Hadil Alhazmi: Writing – review & editing, Visualization, Validation, Supervision; A. F. Aljohani: Investigation, Formal analysis, Conceptualization, Visualization, Validation, Supervision, Resources, Methodology, Funding acquisition, Conceptualization; Ilyas Khan: Methodology, Analysis, Writing – review & editing, Supervision. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors extend their appreciation to the Deanship of Postgraduate Studies and Scientific Research at Majmaah University for funding this research work through the project number (ER-2024-1191).

    All authors declare no conflict of interest in this paper.



    [1] G. Gao, A. Hussain, (Lp,Lq)-boundedness of Hausdorff operators with power weight on Euclidean spaces, Anal. Theor. Appl., 31 (2015), 101–108. https://doi.org/10.4208/ata.2015.v31.n2.1 doi: 10.4208/ata.2015.v31.n2.1
    [2] X. Lin, L. Sun, Some estimates on the Hausdorff operator, Acta Sci. Math., 78 (2012), 669–681. https://doi.org/10.1007/BF03651391 doi: 10.1007/BF03651391
    [3] J. Chen, D. Fan, J. Li, Hausdorff operators on function spaces, Chinese Ann. Math., 33 (2012), 537–556. https://doi.org/10.1007/s11401-012-0724-1 doi: 10.1007/s11401-012-0724-1
    [4] E. Liflyand, F. Móricz, The Hausdorff operator is bounded on the real Hardy space H1(R), Proc. Am. Math. Soc., 128 (2000), 1391–1396. https://doi.org/10.1090/S0002-9939-99-05159-X
    [5] E. Liflyand, A. Miyachi, Boundedness of the Hausdorff operators in Hp spaces, 0<p<1, Stud. Math., 194 (2009), 279–292. https://doi.org/10.4064/sm194-3-4
    [6] D. Fan, X. Lin, Hausdorff operator on real Hardy spaces, Analysis, 34 (2014), 319–337. https://doi.org/10.1515/anly-2012-1183 doi: 10.1515/anly-2012-1183
    [7] M. Ruzicka, Electroreological fluids: Modeling and mathematical theory, Lecture Notes in Math., Springer: Berlin/Heidelberg, Germany, 2000.
    [8] W. Orlicz, Über konjugierte exponentenfolgen, Stud. Math., 3 (1931), 200–211. https://doi.org/10.4064/sm-3-1-200-211 doi: 10.4064/sm-3-1-200-211
    [9] O. Kováčik, J. Rákosník, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 41 (1991), 592–618. https://doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
    [10] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, The maximal function on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223–238.
    [11] A. Nekavinda, Hardy-Littlewood maximal operator on Lp(x)(R), Math. Inequal. Appl., 7 (2004), 255–265.
    [12] D. C. Uribe, A. Fiorenza, Variable exponent Lebesgue space: Foundations and harmonic analysis, Birkhauser: Basel, Switzerland, 2013.
    [13] L. Diening, P. Harjulehto, P. Hästö, M. Ru˘zicka, Lebesgue and Sobolev spaces with variable exponent, Lect. Notes Math., Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18363-8
    [14] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in nonstandard function spaces: Variable exponent Lebesgue and amalgam spaces, Birkauser, Heidelberg, 1 (2016).
    [15] K. P. Ho, Extrapolation to Herz spaces with variable exponents and applications, Rev. Mat. Complut., 33 (2020), 437–463. https://doi.org/10.1007/s13163-019-00320-3 doi: 10.1007/s13163-019-00320-3
    [16] K. P. Ho, Spherical maximal function, maximal Bochner-Riesz mean and geometrical maximal function on Herz spaces with variable exponents, Rend. Circ. Mat. Palerm., 70 (2021), 559–574. https://doi.org/10.1007/s12215-020-00511-8 doi: 10.1007/s12215-020-00511-8
    [17] M. Z. Abidin, M. Marwan, N. Ullah, A. M. Zidan, Well-Posedness in variable-exponent function spaces for the three-dimensional micropolar fluid equations, J. Math., 2023. https://doi.org/10.1155/2023/4083997
    [18] A. Hussain, I. Khan, A. Mohamed, Variable Herz-Morrey estimates for rough fractional Hausdorff operator, J. Inequal. Appl., 33 (2024). https://doi.org/10.1186/s13660-024-03110-8
    [19] T. Iwaniec, C. Sbordone, On integrability of the Jacobien under minimal hypotheses, Arch. Ration. Mech. An., 119 (1992), 129–143.
    [20] L. Greco, T. Iwaniec, C. Sbordone, Inverting the p-harmonic operator, Manuscripta Math., 92 (1997), 249–258.
    [21] A. Meskhi, Maximal functions, potentials and singular integrals in grand Morrey spaces, Complex Var. Elliptic, 56 (2011), 1003–1019. https://doi.org/10.1080/17476933.2010.534793 doi: 10.1080/17476933.2010.534793
    [22] R. Bandaliyev, K. Safarova, On Hardy type inequalities in grand Lebesgue spaces Lp) for 0<p1, Linear Multilinear A., 70 (2022), 6053–6066. https://doi.org/10.1080/03081087.2021.1944968 doi: 10.1080/03081087.2021.1944968
    [23] S. G. Samko, S. M. Umarkhadzhiev, Weighted Hardy operators in grand Lebesgue spaces on Rn, J. Math. Sci., 268 (2022), 509–522. https://doi.org/10.1007/s10958-022-06208-w doi: 10.1007/s10958-022-06208-w
    [24] A. P. Singh, P. Jain, R. Panchal, On quasi-grand Lebesgue spaces and the Hausdorff operator, Bull. Malays. Math. Sci. Soc., 47 (2024), 14. https://doi.org/10.1007/s40840-023-01618-8 doi: 10.1007/s40840-023-01618-8
    [25] V. Kokilashvili, A. Meskhi, Maximal and Calderon-Zygmund operators in grand variable exponent Lebesgue spaces, Georgian Math. J., 21 (2014), 447–461. https://doi.org/10.1515/gmj-2014-0047 doi: 10.1515/gmj-2014-0047
    [26] H. Nafis, H. Rafeiro, M. Zaighum, A note on the boundedness of sublinear operators on grand variable Herz spaces, J. Inequal. Appl., 1 (2020), 2020. https://doi.org/10.1186/s13660-019-2265-6 doi: 10.1186/s13660-019-2265-6
    [27] M. Sultan, B. Sultan, A. Hussain, Grand Herz-Morrey spaces with variable exponent, Math. Notes, 114 (2023), 957–977. https://doi.org/10.1134/S0001434623110305 doi: 10.1134/S0001434623110305
    [28] S. Bashir, B. Sultan, A. Hussain, A. Khan, T. Abdeljawad, A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent, AIMS Math., 8 (2023), 22178–22191. https://doi.org/10.3934/math.20231130 doi: 10.3934/math.20231130
    [29] R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611–635. https://doi.org/10.2307/1970954 doi: 10.2307/1970954
    [30] R. Gong, N. M. Vempati, Q. Wu, P. Xie, Boundedness and compactness of Cauchy-type integral commutators on weighted Morrey spaces, J. Aust. Math. Soc., 113 (2022), 3656. https://doi.org/10.1017/S1446788722000015 doi: 10.1017/S1446788722000015
    [31] A. Hussain, A. Ajaib, Some results for commutators of generalized Hausdorff operator, J. Math. Inequal., 13 (2019), 1129–1146. https://doi.org/10.7153/jmi-2019-13-80 doi: 10.7153/jmi-2019-13-80
    [32] A. Ajaib, A. Hussain, Weighted CBMO estimates for commutators of matrix Hausdorff operator on the Heisenberg group, Open Math., 18 (2020), 496–511. https://doi.org/10.1515/math-2020-0175 doi: 10.1515/math-2020-0175
    [33] Y. Sun, J. Zhao, Two-weighted estimates for multilinear Hausdorff operators and commutators on stratified groups, J. Pseudo-Differ. Oper., 13 (2022), 49. https://doi.org/10.1007/s11868-022-00480-9 doi: 10.1007/s11868-022-00480-9
    [34] N. Sarfraz, F. Gürbüz, Weak and strong boundedness for p-adic fractional Hausdorff operator and its commutator, Int. J. Nonlinear Sci. Numer. Simulat., 24 (2023), 2281–2292. https://doi.org/10.1515/ijnsns-2020-0290 doi: 10.1515/ijnsns-2020-0290
    [35] E. Nakai, Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal., 262 (2012), 3665–3748. https://doi.org/10.1016/j.jfa.2012.01.004 doi: 10.1016/j.jfa.2012.01.004
    [36] M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J., 40 (2010), 343–355. https://doi.org/10.32917/hmj/1291818849 doi: 10.32917/hmj/1291818849
    [37] M. Izuki, Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent, Math. Sci. Res. J., 13 (2009), 243–253.
    [38] M. Izuki, Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palerm., 59 (2010), 199–213. https://doi.org/10.1007/s12215-010-0015-1 doi: 10.1007/s12215-010-0015-1
    [39] S. Lu, L. Xu, Boundedness of rough singular integral operators on the homogeneous Morrey-Herz spaces, Hokkaido Math. J., 34 (2005), 299–314. https://doi.org/10.14492/hokmj/1285766224 doi: 10.14492/hokmj/1285766224
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1053) PDF downloads(69) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog