In this paper, we study the boundedness of the commutator of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces when the symbol functions belong to bounded mean oscillations (BMO) space.
Citation: Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan. BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces[J]. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139
[1] | Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051 |
[2] | Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352 |
[3] | Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007 |
[4] | Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888 |
[5] | Muhammad Asim, Ghada AlNemer . Results for fractional bilinear Hardy operators in central varying exponent Morrey space. AIMS Mathematics, 2024, 9(11): 29689-29706. doi: 10.3934/math.20241438 |
[6] | Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for $ m $th order commutators of $ n- $dimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022 |
[7] | Bo Xu . Bilinear $ \theta $-type Calderón-Zygmund operators and its commutators on generalized variable exponent Morrey spaces. AIMS Mathematics, 2022, 7(7): 12123-12143. doi: 10.3934/math.2022674 |
[8] | Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki . Boundedness of Hardy operators on grand variable weighted Herz spaces. AIMS Mathematics, 2023, 8(10): 24515-24527. doi: 10.3934/math.20231250 |
[9] | Mehvish Sultan, Babar Sultan, Ahmad Aloqaily, Nabil Mlaiki . Boundedness of some operators on grand Herz spaces with variable exponent. AIMS Mathematics, 2023, 8(6): 12964-12985. doi: 10.3934/math.2023653 |
[10] | Jie Sun, Jiamei Chen . Weighted estimates for commutators associated to singular integral operator satisfying a variant of Hörmander's condition. AIMS Mathematics, 2023, 8(11): 25714-25728. doi: 10.3934/math.20231311 |
In this paper, we study the boundedness of the commutator of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces when the symbol functions belong to bounded mean oscillations (BMO) space.
In the literature, one can find a rich history of the Hausdorff operator in harmonic analysis. Let's start our discussion by introducing the high-dimensional rough fractional Hausdorff operator [1]:
HβΦ,Ωg(z)=∫RnΦ(z|t|−1)|t|n−βΩ(t′)g(t)dt, 0≤β<n. | (1.1) |
This is the most general form of Hausdorff operator, as the remaining definitions can be easily obtained from (1.1). For instance, if we take Ω=1, then we get the high-dimensional fractional Hausdorff operator [2]. Also, β=0 provides the n-dimensional rough Hausdorff operator [3]. Similarly, if Ω=1=n and β=0, then we get the one-dimensional Hausdorff operator [4,5,6]. Furthermore, if we choose the parameters correctly, many celebrated integral operators, such as Hardy-type operators, become special cases of the rough fractional Hausdorff operator. Furthermore, the commutator of (1.1):
Hβ,bΦ,Ωg(z)=b(z)HβΦ,Ωg(z)−HβΦ,Ω(bg)(z), | (1.2) |
is just as important as the operator itself.
On the other hand, function spaces with variable exponents are not a mere generalization of classical ones but appear to have a natural application in many real-world phenomena; see [7], for example. The variable-exponent Lebesgue space Lq(⋅) can be traced back to Orlicz [8]. In 1990, however, the authors of [9] incorporated the formal theory of function spaces with variable exponents into its structure. They introduced the variable-exponent Lebesgue and Sobolev spaces. Since the publication of [9], several authors have contributed to the theory of variable exponent function spaces. The works in [10,11,12,13], in particular, greatly influence the basic structure and relevant properties of such spaces. Finally, we must cite some recent publications in this direction: [14,15,16,17,18]. Additionally, the structure of grand spaces was first developed in [19,20] and continued to flourish through the years [21,22,23,24]. Recently, Kokilasvili and Meski [25] defined the grand-variable exponent Lebesgue spaces, which gave this field a new direction and attracted the attention of many authors [26,27,28].
Commutators of integral operators find their applications in the regularity theory of partial differential equations and in the characterization of function spaces [29]. Such applications make their studies more important and valuable [30]. The commutators of various Hausdorff operators hold significant importance and have been a topic of discussion for numerous authors [31,32,33,34]. However, no one has tested the boundedness of such commutator operators on variable-exponent function spaces. The purpose of this article is to fill this gap by establishing the boundedness of (1.2) on grand-variable-exponent Herz-Morrey spaces. In a special case, we also obtain the continuity of Hβ,bΦ,Ω on grand-variable Herz spaces.
In the next section, we present preliminary results, which will be helpful in establishing our main results. Finally, in the last section, we state our main results and give their proofs.
Let us open our discussion by introducing the variable-exponent Lebesgue spaces. Let A be an open subset of Rn and q(⋅) be a measurable function on A with values in [1,∞), and q′(⋅) denotes the prime index corresponding to q(⋅), i.e., q′(⋅)=q(⋅)/(q(⋅)−1). The collection of all functions q(⋅) that satisfy:
1<q−≤q+<∞, |
where q−=essinfz∈Aq(z), and q+=esssupz∈Aq(z), is denoted by P(A). The Lebesgue space with variable exponent Lq(⋅)(A) is defined as the set of all measurable functions f(z) satisfying:
∫A(|f(z)|ζ)q(z)dz<∞, |
where the constant ζ>0. When equipped with the Luxemburg norm, it becomes a Banach function space.
‖f‖Lq(⋅)(A)=inf{ζ>0:∫A(|f(z)|ζ)q(z)dz≤1}. |
Its local version, Lq(⋅)loc(E), is defined as:
Lq(⋅)loc(E)={f:f∈Lq(⋅)(A)∀compactsubsetA⊂E}. |
In the study of variable exponent function spaces, an essential operator is the Hardy-Littlewood maximal operator Mf. For a measurable function f on Lq(⋅)(Rn), it can be defined as:
Mf(z)=supr>01|B(z,r)|∫B(z,r)|f(σ)|dσ. |
In the remainder of this paper, we use the notation B(Rn) to denote the set consisting of q(⋅)∈P(Rn) such that M is bounded on Lq(⋅)(Rn).
Proposition 2.1. [13,35] Let A⊂Rn be an open set, and q(⋅)∈P(A) satisfies:
|q(σ)−q(ζ)|≤−Cln(|σ−ζ|),12≥|σ−ζ|, | (2.1) |
|q(σ)−q(ζ)|≤Cln(|σ|+e),|σ|≤|ζ|, | (2.2) |
then q(⋅)∈B(A), where C is a positive constant independent of σ and ζ.
Lemma 2.2. [9] Let q(⋅)∈P(A). If g∈Lq(⋅)(A) and h∈Lq′(⋅)(A), then we have
∫A|g(z)h(z)|dz≤rq‖g‖Lq(⋅)(A)‖h‖Lq′(⋅)(A), |
where rq=1+1q−−1q+.
Lemma 2.3. [36] If q(⋅)∈B(Rn), then there exist constants 0<δ<1 and C>0 such that for all balls B in Rn and all measurable subsets S⊂B,
‖χB‖Lq(⋅)(Rn)‖χS‖Lq(⋅)(Rn)≤C(|B||S|)δ. |
Lemma 2.4. [11] Define a variable exponent ˜p(⋅) such that 1q(t)=1˜p(t)+1p, (t∈Rn). Then, we have
‖gh‖Lq(⋅)(Rn)≤C‖g‖L˜p(⋅)(Rn)‖h‖Lp(Rn). |
Lemma 2.5. [35] Let p(⋅)∈P(Rn) satisfy conditions (2.1) and (2.2) in Proposition 2.1, then
‖χQ‖Lq(⋅)(Rn)≈{|Q|1q(x) if |Q|<2n and x∈Q,|Q|1q(∞) if |Q|≥1, |
for all cubes (or balls) Q⊂Rn, where q(∞)=limx→∞q(x).
Let Bk={t∈Rn:|t|≤2k}, Ck=Bk∖Bk−1, and χk=χCk for k∈Z. Then, the homogeneous Herz space with variable exponent was first defined in [37,38].
Definition 2.6. Let α∈R, 0<q<∞, and p(⋅)∈P(Rn). The homogeneous Herz space with variable exponent ˙Kα,qp(⋅)(Rn) is the set of all measurable functions f such that:
˙Kα,qp(⋅)(Rn)={f∈Lp(⋅)loc(Rn∖{0}):‖f‖˙Kα,qp(⋅)(Rn)<∞}, |
where
‖f‖˙Kα,qp(⋅)(Rn)=(∞∑k=−∞2kαq‖fχk‖qLp(⋅)(Rn))1q. |
If p(⋅)=p, then we have the classical Herz space ˙Kα,qp studied in [39].
Definition 2.7. [36] Let α∈R, 0<q<∞, λ∈[0,∞), and p(⋅)∈P(Rn). The space M˙Kα,λq,p(⋅)(Rn) is the set of all measurable functions f given by
M˙Kα,λq,p(⋅)(Rn)={f∈Lp(⋅)loc(Rn∖{0}):‖f‖M˙Kα,λq,p(⋅)(Rn)<∞}, |
where
‖f‖M˙Kα,λq,p(⋅)(Rn)=supk0∈Z2−k0λ(k0∑k=−∞‖2kαfχk‖qLp(.)(Rn))1/q. |
Obviously, M˙Kα,0q,p(⋅)(Rn) = ˙Kα,qp(⋅)(Rn) is the Herz space with variable exponent.
Definition 2.8. [27] Let α∈R, 0<q<∞, λ∈[0,∞),θ>0, and p(⋅)∈P(Rn). Then, grand-variable Herz-Morrey space M˙Kα,q),θλ,p(⋅)(Rn) is
M˙Kα,q),θλ,p(⋅)(Rn)={f∈Lp(⋅)loc(Rn∖{0}):‖f‖M˙Kα,q),θλ,p(⋅)(Rn)<∞}, |
where
‖f‖M˙Kα,q),θλ,p(⋅)(Rn)=supϵ>0supj0∈Z2−j0λ(ϵθj0∑j=−∞2jαq(1+ϵ)‖fχj‖q(1+ϵ)Lp(.)(Rn))1q(1+ϵ). |
Taking λ=0 in the above definition, we get the definition of grand-variable Herz space defined in [26].
Definition 2.9. Let α∈R, 0<q<∞,θ>0, and p(⋅)∈P(Rn). Then, grand-variable-Herz space ˙Kα,q),θp(⋅)(Rn) is
˙Kα,q),θp(⋅)(Rn)={f∈Lp(⋅)loc(Rn∖{0}):‖f‖˙Kα,q),θp(⋅)(Rn)<∞}, |
where
‖f‖˙Kα,q),θp(⋅)(Rn)=supϵ>0(ϵθ∑j∈Z2jαq(1+ϵ)‖fχj‖q(1+ϵ)Lp(.)(Rn))1q(1+ϵ). |
Definition 2.10. Let b∈L1loc(Rn), then b is said to belong to the bounded mean oscillation space BMO(Rn) if ‖b‖BMO(Rn)<∞, where
‖b‖BMO(Rn)=supB1|B|∫B|b(x)−bB|dx, |
and supremum is taken over all the balls B⊂Rn with bB=|B|−1∫Bb(y)dy.
Lemma 2.11. [38] Let p(⋅)∈P(Rn), then for all b∈BMO(Rn) and all l,m∈Z with l>m, we have
C−1‖b‖BMO(Rn)≤supB:Ball1‖χB‖Lp(⋅)(Rn)‖(b−bB)χB‖Lp(⋅)(Rn)≤C‖b‖BMO(Rn), |
‖(b−bBm)χBl‖Lp(⋅)(Rn)≤C(l−m)‖b‖BMO(Rn)‖χBl‖Lp(⋅)(Rn). |
Remark 2.12. If p1(⋅), p2(⋅), p′(⋅), p′1(⋅) are variable exponents and p1(⋅), p2(⋅) belong to P(Rn), satisfying conditions in Proposition 2.1, then p′(⋅),p′1(⋅), and p2(⋅) belong to B(Rn). By using Lemma 2.2, there exist constants δ1∈(0,1(p′1)+), δ2∈(0,1(p2)+), such that the inequalities:
‖χS‖Lp′1(⋅)(Rn)‖χB‖Lp′1(⋅)(Rn)≤C(|S||B|)δ1, ‖χS‖Lp2(⋅)(Rn)‖χB‖Lp2(⋅)(Rn)≤C(|S||B|)δ2, |
hold for all balls B⊂Rn and S⊂B.
In this section, our primary goal is to investigate the boundedness properties of the Hausdorff operator's commutators on grand-variable Herz-type spaces. The constant CΦ,s will appear frequently in the proof of our main results, as defined by:
CΦ,s=(∫∞0|Φ(r)|sr(n−β)s−ndrr)1s. |
Theorem 3.1. Let 0≤β<n, 1<q1≤q2<∞, θ>0, Ω∈Ls(Sn−1), p1(⋅),p2(⋅)∈P(Rn), and satisfy the conditions in Proposition 2.1 with 1p1(⋅)=1p2(⋅)+βn, p1(⋅)<nβ, and p′1(⋅)<s. Suppose δ1,δ2∈(0,1), ns′−nδ2−β<α<nδ1−ns, 0≤λ<α+β+nδ2−ns′, CΦ,s<∞, and b∈BMO(Rn). If Φ is a radial function, then Hβ,bΦ,Ω is bounded on the grand-variable Herz-Morrey space and satisfies:
‖Hβ,bΦ,Ωf‖M˙Kα,q2),θλ,p2(⋅)(Rn)≤CCΦ,s‖b‖BMO(Rn)‖f‖M˙Kα,q1),θλ,p1(⋅)(Rn). |
Proof. Since q1≤q2, by definition of grand-variable Herz-Morrey space:
‖Hβ,bΦ,Ωf‖q1(1+ϵ)M˙Kα,q2),θλ,p2(⋅)(Rn)≤supϵ>0supj0∈Z2−j0λq1(1+ϵ)ϵθj0∑j=−∞2jαq1(1+ϵ)‖(Hβ,bΦ,Ωf)χj‖q1(1+ϵ)Lp2(⋅)(Rn)≤supϵ>0supj0∈Z2−j0λq1(1+ϵ)ϵθj0∑j=−∞2jαq1(1+ϵ)(∞∑l=−∞‖(Hβ,bΦ,Ω(fχl))χj‖Lp2(⋅)(Rn))q1(1+ϵ)≤Csupϵ>0supj0∈Z2−j0λq1(1+ϵ)ϵθj0∑j=−∞2jαq1(1+ϵ)(j−1∑l=−∞‖(Hβ,bΦ,Ω(fχl))χj‖Lp2(⋅)(Rn))q1(1+ϵ)+Csupϵ>0supj0∈Z2−j0λq1(1+ϵ)ϵθj0∑j=−∞2jαq1(1+ϵ)(j+1∑l=j−1‖(Hβ,bΦ,Ω(fχl))χj‖Lp2(⋅)(Rn))q1(1+ϵ)+Csupϵ>0supj0∈Z2−j0λq1(1+ϵ)ϵθj0∑j=−∞2jαq1(1+ϵ)(∞∑l=j+1‖(Hβ,bΦ,Ω(fχl))χj‖Lp2(⋅)(Rn))q1(1+ϵ)=:I1+I2+I3. |
In order to estimate I1, we need to estimate the inner norm ‖(Hβ,bΦ,Ω(fχl))χj‖Lp2(⋅)(Rn). Thus, for l≤j−1, we proceed as below:
|Hβ,bΦ,Ω(fχl)(z)χj(z)|=|∫ClΦ(z|x|−1)|x|n−βΩ(x′)(b(z)−b(x))f(x)dx|χj(z)≤|∫ClΦ(z|x|−1)|x|n−βΩ(x′)(b(z)−bBl)f(x)dx|χj(z)+|∫ClΦ(z|x|−1)|x|n−βΩ(x′)(b(x)−bBl)f(x)dx|χj(z)=|(b(z)−bBl)HβΦ,Ω(fχl)(z)|χj(z)+|HβΦ,Ω((b−bBl)fχl)(z)|χj(z)=:J1+J2. | (3.1) |
Now, we proceed with the J1 approximation and deduce that
|HβΦ,Ω(fχl)(z)|≤∫Cl|Φ(z|x|−1)|x|n−βΩ(x′)f(x)|dx≤‖(Φ(z|x|−1)|x|n−βΩ(x′))χl‖Lp′1(⋅)(Rn)‖fχl‖Lp1(⋅)(Rn). |
The condition s>p′1(⋅) implies that there exists a p(⋅) such that 1p′1(⋅)=1s+1p(⋅). Hence, Lemma 2.4 gives us
|HβΦ,Ω(fχl)(z)|≤‖(Φ(z|x|−1)|x|n−βΩ(x′))χl‖Ls(Rn)‖χBl‖Lp(⋅)(Rn)‖fχl‖Lp1(⋅)(Rn). | (3.2) |
By polar decomposition, we see that
‖(Φ(z|x|−1)|x|n−βΩ(x′))χl‖sLs(Rn)=∫Cl|Φ(z|x|−1)|x|n−βΩ(x′)|sdx=∫2l2l−1∫Sn−1|Φ(|z|r−1)rn−β|s|Ω(x′)|sdμ(x′)rndrr, |
where μ(x′) is the normalized Lebesgue measure on the unit sphere Sn−1. We get the following inequality by change of variable:
‖(Φ(z|x|−1)|x|n−βΩ(x′))χl‖sLs(Rn)=∫Sn−1|Ω(x′)|sdμ(x′)∫|z|2l−1|z|2l|Φ(t)|s(|z|t−1)n−(n−β)sdtt≤‖Ω‖sLs(Sn−1)|z|n−(n−β)s∫∞0|Φ(t)|st(n−β)s−ndtt=CsΦ,s‖Ω‖sLs(Sn−1)|z|sβ+n−ns. |
Thus,
‖(Φ(z|x|−1)|x|n−βΩ(x′))χl‖Ls(Rn)≤CCΦ,s|z|β−ns′. | (3.3) |
Furthermore, when x∈Bl, |Bl|≤2n, then from 1p′1(x)=1s+1p(x) and Lemma 2.5, we get
‖χBl‖Lp(⋅)(Rn)≈|Bl|1p(⋅)≈|Bl|−1s‖χBl‖Lp′1(⋅)(Rn). |
When |Bl|≥1,
‖χBl‖Lp(⋅)(Rn)≈|Bl|1p(∞)≈|Bl|−1s‖χBl‖Lp′1(⋅)(Rn). |
Hence, we get
‖χBl‖Lp(⋅)(Rn)≈|Bl|−1s‖χBl‖Lp′1(⋅)(Rn). | (3.4) |
Using results from (3.3) and (3.4) into (3.2), we get
|HβΦ,Ω(fχl)(z)|≤CCΦ,s|z|β−ns′|Bl|−1s‖χBl‖Lp′1(⋅)(Rn)‖fχl‖Lp1(⋅)(Rn). | (3.5) |
In light of this inequality, J1 takes the following form:
J1≤CCΦ,s|Bj|βn−1s′|Bl|−1s‖χBl‖Lp′1(⋅)(Rn)‖fχl‖Lp1(⋅)(Rn)|(b(z)−bBl)χj(z)|, | (3.6) |
which gives us:
‖J1‖Lp2(⋅)(Rn)≤CCΦ,s|Bj|βn−1s′|Bl|−1s‖χBl‖Lp′1(⋅)(Rn)‖fχl‖Lp1(⋅)(Rn)‖(b−bBl)χj‖Lp2(⋅)(Rn). |
Since l<j, by Lemma 2.11, we get
‖J1‖Lp2(⋅)(Rn)≤CCΦ,s‖b‖BMO(Rn)(j−l)|Bj|βn−1s′|Bl|−1s‖χBl‖Lp′1(⋅)(Rn)‖fχl‖Lp1(⋅)(Rn)‖χBj‖Lp2(⋅)(Rn). | (3.7) |
Next, let us estimate J2. The condition s>p′1(⋅) gives that 1=1p1(⋅)+1s+1p(⋅).
Thus,
|HβΦ,Ω((b−bBl)fχl)(z)|≤∫Cl|Φ(z|x|−1)|x|n−βΩ(x′)(b(x)−bBl)f(x)|dx≤‖(Φ(z|x|−1)|x|n−βΩ(x′))χl‖Ls(Rn)‖(b(⋅)−bBl)χBl‖Lp(⋅)(Rn)‖fχl‖Lp1(⋅)(Rn). | (3.8) |
Lemma 2.11 and the inequality (3.3) assist us in achieving
J2≤CCΦ,s‖b‖BMO(Rn)|z|β−ns′‖χBl‖Lp(⋅)(Rn)‖fχl‖Lp1(⋅)(Rn)χj(z). | (3.9) |
Finally, the obtained inequality (3.4) is quite beneficial for us in getting
‖J2‖Lp2(⋅)(Rn)≤CCΦ,s‖b‖BMO(Rn)|Bj|βn−1s′|Bl|−1s‖χBl‖Lp′1(⋅)(Rn)‖fχl‖Lp1(⋅)(Rn)‖χBj‖Lp2(⋅)(Rn). | (3.10) |
Adding (3.7) and (3.10) into (3.1), we obtain
‖Hβ,bΦ,Ω(fχl)χj‖Lp2(⋅)(Rn)≤CCΦ,s‖b‖BMO(Rn)(j−l)|Bj|βn−1s′|Bl|−1s‖χBj‖Lp2(⋅)(Rn)‖χBl‖Lp′1(⋅)(Rn)‖fχl‖Lp1(⋅)(Rn). |
Since l<j, from Remark 2.12, we get the following inequality:
‖Hβ,bΦ,Ω(fχl)χj‖Lp2(⋅)(Rn)≤CCΦ,s‖b‖BMO(Rn)(j−l)|Bj|βn−12n(l−j)(δ1−1s)‖χBj‖Lp2(⋅)(Rn)‖χBj‖Lp′1(⋅)(Rn)‖fχl‖Lp1(⋅)(Rn). | (3.11) |
By virtue of Lemma 2.5 and the condition 1p1(⋅)=1p2(⋅)+βn, we obtain
‖χBj‖Lp2(⋅)(Rn)‖χBj‖Lp′1(⋅)(Rn)≈|Bj|1p2(⋅)+1p′1(⋅)=|Bj|1−βn. | (3.12) |
So, inequality (3.11) assumes the following form:
‖Hβ,bΦ,Ω(fχl)χj‖Lp2(⋅)(Rn)≤CCΦ,s‖b‖BMO(Rn)(j−l)2n(l−j)(δ1−1s)‖fχl‖Lp1(⋅)(Rn). | (3.13) |
This completes the estimation of inner norm ‖(Hβ,bΦ,Ω(fχl))χj‖Lp2(⋅)(Rn).
Next, we approximate I1. So, by using (3.13), we obtain
I1≤Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵ)BMO(Rn)×supj0∈Z2−j0λq1(1+ϵ)ϵθj0∑j=−∞2jαq1(1+ϵ)(j−1∑l=−∞(j−l)2n(l−j)(δ1−1s)‖fχl‖Lp1(⋅)(Rn))q1(1+ϵ)≤Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵ)BMO(Rn)×supj0∈Z2−j0λq1(1+ϵ)ϵθj0∑j=−∞(j−1∑l=−∞(j−l)2(j−l)(α−nδ1+ns)2lα‖fχl‖Lp1(⋅)(Rn))q1(1+ϵ). |
Since α<n(δ1−1s), for 1<q1<∞, we use the Hölder inequality to get
I1≤Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵ)BMO(Rn)supj0∈Z2−j0λq1(1+ϵ)ϵθj0∑j=−∞j−1∑l=−∞×2q1(1+ϵ)2(j−l)(α−nδ1+ns)2lαq1(1+ϵ)‖fχl‖q1(1+ϵ)Lp1(⋅)(Rn)(j−1∑l=−∞(j−l)q′1(1+ϵ)2q′1(1+ϵ)2(j−l)(α−nδ1+ns))q1(1+ϵ)q′1(1+ϵ)≤Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵ)BMO(Rn)×supj0∈Z2−j0λq1(1+ϵ)ϵθj0∑j=−∞j−1∑l=−∞2q1(1+ϵ)2(j−l)(α−nδ1+ns)2lαq1(1+ϵ)‖fχl‖q1(1+ϵ)Lp1(⋅)(Rn)=Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵ)BMO(Rn)×supj0∈Z2−j0λq1(1+ϵ)ϵθj0−1∑l=−∞2lαq1(1+ϵ)‖fχl‖q1(1+ϵ)Lp1(⋅)(Rn)j0∑j=l+12q1(1+ϵ)2(j−l)(α−nδ1+ns)≤Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵ)BMO(Rn)ϵθ‖f‖q1(1+ϵ)M˙Kα,λq1(1+ϵ),p1(⋅)(Rn). |
Now, we estimate I2. For l=j, we follow the same steps as for I1. So, we write
|Hβ,bΦ,Ω(fχj)(z)χj(z)|=|(b(z)−bBj)HβΦ,Ω(fχj)(z)|χj(z)+|HβΦ,Ω((b(x)−bBj)fχj)(z)|χj(z)=K1+K2. | (3.14) |
Replacing l by j in the inequality (3.6), constructed for J1, we obtain K1:
K1≤CCΦ,s|Bj|βn−1‖χBj‖Lp′1(⋅)(Rn)‖fχj‖Lp1(⋅)(Rn)|(b(z)−bBj)χj(z)|. |
From Lemma 2.11 and the inequality (3.12), we deduce that
‖K1‖Lp2(⋅)(Rn)≤CCΦ,s‖b‖BMO(Rn)|Bj|βn−1‖χBj‖Lp′1(⋅)(Rn)‖χBj‖Lp2(⋅)(Rn)‖fχj‖Lp1(⋅)(Rn)≤CCΦ,s‖b‖BMO(Rn)‖fχj‖Lp1(⋅)(Rn). | (3.15) |
However, by replacing l with j, the K2 estimation is obtained from the inequalities (3.8)–(3.10) established for J2.
‖K2‖Lp2(⋅)(Rn)≤CCΦ,s‖b‖BMO(Rn)|Bj|βn−1‖χBj‖Lp′1(⋅)(Rn)‖χBj‖Lp2(⋅)(Rn)‖fχj‖Lp1(⋅)(Rn)≤CCΦ,s‖b‖BMO(Rn)‖fχj‖Lp1(⋅)(Rn). | (3.16) |
Substituting (3.15) and (3.16) into (3.14), we obtain
‖Hβ,bΦ,Ω(fχj)χj‖Lp2(⋅)(Rn)≤CCΦ,s‖b‖BMO(Rn)‖fχj‖Lp1(⋅)(Rn). | (3.17) |
Thus,
I2≤Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵ)BMO(Rn)supj0∈Z2−j0λq1(1+ϵ)ϵθj0∑j=−∞2jαq1(1+ϵ)‖fχj‖q1(1+ϵ)Lp1(⋅)(Rn)≤Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵ)BMO(Rn)ϵθ‖f‖q1(1+ϵ)M˙Kα,λq1(1+ϵ),p1(⋅)(Rn). |
Next, we estimate I3. For l≥j+1, with a small adjustment in the first step of the inequality (3.1), we write
|Hβ,bΦ,Ω(fχl)(z)χj(z)|=|(b(z)−bBj)HβΦ,Ω(fχl)(z)|χj(z)+|HβΦ,Ω((b(x)−bBj)fχl)(z)|χj(z)=L1+L2. | (3.18) |
As with the estimation of J1, we approximate L1 using the inequalities (3.3)–(3.5) to obtain
L1≤CCΦ,s|Bj|βn−1s′|Bl|−1s‖χBl‖Lp′1(⋅)(Rn)‖fχl‖Lp1(⋅)(Rn)|(b(z)−bBj)χj(z)|. |
Taking the Lp2(⋅) norm of the above inequality
‖L1‖Lp2(⋅)(Rn)≤CCΦ,s|Bj|βn−1s′|Bl|−1s‖χBl‖Lp′1(⋅)(Rn)‖fχl‖Lp1(⋅)(Rn)‖(b−bBj)χBj‖Lp2(⋅)(Rn), |
and using Lemma 2.11, we obtain
‖L1‖Lp2(⋅)(Rn)≤CCΦ,s‖b‖BMO(Rn)|Bj|βn−1s′|Bl|−1s‖χBl‖Lp′1(⋅)(Rn)‖fχl‖Lp1(⋅)(Rn)‖χBj‖Lp2(⋅)(Rn). | (3.19) |
To estimate L2, we replace the factor (b−bBl) with (b−bBj) in the inequality (3.8):
|HβΦ,Ω((b−bBj)fχl)(z)|≤‖(Φ(z|x|−1)|x|n−βΩ(x′))χl‖Ls(Rn)‖(b(⋅)−bBj)χBl‖Lp(⋅)(Rn)‖fχl‖Lp1(⋅)(Rn). |
For l>j, from Lemma 2.11 and the inequality (3.3), we deduce that
L2≤CCΦ,s‖b‖BMO(Rn)(l−j)|z|β−ns′‖χBl‖Lp(⋅)(Rn)‖fχl‖Lp1(⋅)(Rn)χj(z), |
from which, by virtue of (3.4), we obtain the following inequality:
‖L2‖Lp2(⋅)(Rn)≤CCΦ,s‖b‖BMO(Rn)(l−j)|Bj|βn−1s′|Bl|−1s‖χBl‖Lp′1(⋅)(Rn)‖fχl‖Lp1(⋅)(Rn)‖χBj‖Lp2(⋅)(Rn). | (3.20) |
Substitute (3.19) and (3.20) into (3.18), and we get
‖Hβ,bΦ,Ω(fχl)χj‖Lp2(⋅)(Rn)≤CCΦ,s‖b‖BMO(Rn)(l−j)|Bj|βn−1s′|Bl|−1s‖χBl‖Lp′1(⋅)(Rn)‖χBj‖Lp2(⋅)(Rn)‖fχl‖Lp1(⋅)(Rn). |
Since l>j, again with the help of Remark 2.12, we obtain
‖Hβ,bΦ,Ω(fχl)χj‖Lp2(⋅)(Rn)≤CCΦ,s‖b‖BMO(Rn)(l−j)|Bj|βn−1s′|Bl|−1s‖χBl‖Lp′1(⋅)(Rn)‖χBl‖Lp2(⋅)(Rn)2n(j−l)δ2‖fχl‖Lp1(⋅)(Rn). | (3.21) |
Using condition 1p1(⋅)=1p2(⋅)+βn and Lemma 2.5, we get
‖χBl‖Lp2(⋅)(Rn)‖χBl‖Lp′1(⋅)(Rn)≈|Bl|1p2(⋅)+1p′1(⋅)=|Bl|1−βn. |
Therefore, (3.21) becomes
‖Hβ,bΦ,Ω(fχl)χj‖Lp2(⋅)(Rn)≤CCΦ,s‖b‖BMO(Rn)(l−j)|Bj|βn−1s′|Bl|1s′−βn2n(j−l)δ2‖fχl‖Lp1(⋅)(Rn)=CCΦ,s‖b‖BMO(Rn)(l−j)2(j−l)(β+nδ2−ns′)‖fχl‖Lp1(⋅)(Rn). |
Thus, we can express I3 as:
I3≤Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵ)BMO(Rn)×supj0∈Z2−j0λq1(1+ϵ)ϵθj0∑j=−∞(∞∑l=j+1(l−j)2(j−l)(α+β+nδ2−ns′)2lα‖fχl‖Lp1(⋅)(Rn))q1(1+ϵ). |
Since α+β+nδ2−ns′>0 and λ<α+β+nδ2−ns′, so, we can select a constant σ>1 such that λ−1σ(α+β+nδ2−ns′)<0. Hence, for 1<q1<∞, Hölder's inequality gives
I3≤Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵBMO(Rn)×supj0∈Z2−j0λq1(1+ϵ)ϵθj0∑j=−∞∞∑l=j+12q1(1+ϵ)σ(j−l)(α+β+nδ2−ns′)2lαq1(1+ϵ)‖fχl‖q1(1+ϵ)Lp1(⋅)(Rn)×(∞∑l=j+1(l−j)q′1(1+ϵ)2q′1(1+ϵ)(σ−1)σ(j−l)(α+β+nδ2−ns′))q1(1+ϵ)q′1(1+ϵ)≤Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵ)BMO(Rn)×supj0∈Z2−j0λq1(1+ϵ)ϵθj0∑j=−∞∞∑l=j+12q1(1+ϵ)σ(j−l)(α+β+nδ2−ns′)2lαq1(1+ϵ)‖fχl‖q1(1+ϵ)Lp1(⋅)(Rn)≤Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵ)BMO(Rn)×supj0∈Z2−j0λq1(1+ϵ)ϵθj0∑j=−∞j0−1∑l=j+12q1(1+ϵ)σ(j−l)(α+β+nδ2−ns′)2lαq1(1+ϵ)‖fχl‖q1(1+ϵ)Lp1(⋅)(Rn)+Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵ)BMO(Rn)×supj0∈Z2−j0λq1(1+ϵ)ϵθj0∑j=−∞∞∑l=j02q1(1+ϵ)σ(j−l)(α+β+nδ2−ns′)2lαq1(1+ϵ)‖fχl‖q1(1+ϵ)Lp1(⋅)(Rn)=:M1+M2. |
By using ns′−nδ2−β<α, M1 can be approximated as
M1≤Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵ)BMO(Rn)×supj0∈Z2−j0λq1(1+ϵ)ϵθj0−1∑l=−∞2lαq1(1+ϵ)‖fχl‖q1(1+ϵ)Lp1(⋅)(Rn)l−1∑j=−∞2q1(1+ϵ)σ(j−l)(α+β+nδ2−ns′)≤Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵ)BMO(Rn)supj0∈Z2−j0λq1(1+ϵ)ϵθj0−1∑l=−∞2lαq1(1+ϵ)‖fχl‖q1(1+ϵ)Lp1(⋅)(Rn). |
As λ<1σ(α+β+nδ2−ns′) and α+β+nδ2−ns′>0, hence we have
M1≤Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵ)BMO(Rn)ϵθ‖f‖q1(1+ϵ)M˙Kα,λq1(1+ϵ),p1(⋅)(Rn). |
Finally, M2 is approximated as
M2≤Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵ)BMO(Rn)supj0∈Z2−j0λq1(1+ϵ)ϵθj0∑j=−∞∞∑l=j02q1(1+ϵ)σ(j−l)(α+β+nδ2−ns′)2lλq1(1+ϵ)×2−lλq1(1+ϵ)(l∑k=−∞2kαq1(1+ϵ)‖fχk‖q1(1+ϵ)Lp1(⋅)(Rn))≤Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵ)BMO(Rn)2−lλq1(1+ϵ)ϵθ(l∑k=−∞2kαq1(1+ϵ)‖fχk‖q1(1+ϵ)Lp1(⋅)(Rn))×supj0∈Z2−j0λq1(1+ϵ)j0∑j=−∞2q1(1+ϵ)σj(α+β+nδ2−ns′)∞∑l=j02q1(1+ϵ)l(λ−1σ(α+β+nδ2−ns′))≤Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵ)BMO(Rn)ϵθ‖f‖q1(1+ϵ)M˙Kα,λq1(1+ϵ),p1(⋅)(Rn)×supj0∈Z2−j0λq1(1+ϵ)2q1(1+ϵ)σj0(α+β+nδ2−ns′)2q1(1+ϵ)j0(λ−1σ(α+β+nδ2−ns′))≤Csupϵ>0Cq1(1+ϵ)Φ,s‖b‖q1(1+ϵ)BMO(Rn)ϵθ‖f‖q1(1+ϵ)M˙Kα,λq1(1+ϵ),p1(⋅)(Rn). |
Finally, when we combine all these estimates, we get
‖Hβ,bΦ,Ωf‖M˙Kα,q2),θλ,p2(⋅)(Rn)≤CCΦ,s‖b‖BMO(Rn)‖f‖M˙Kα,q1),θλ,p1(⋅)(Rn). |
We end this paper by stating the following theorem:
Theorem 3.2. Let 0≤β<n, 1<q1≤q2<∞, θ>0, Ω∈Ls(Sn−1), p1(⋅),p2(⋅)∈P(Rn), and satisfy the conditions in Proposition 2.1 with 1p1(⋅)=1p2(⋅)+βn, p1(⋅)<nβ and p′1(⋅)<s. Suppose δ1,δ2∈(0,1), ns′−nδ2−β<α<nδ1−ns, CΦ,s<∞, and b∈BMO(Rn). If Φ is a radial function, then Hβ,bΦ,Ω is bounded on grand-variable-Herz space and satisfies:
‖Hβ,bΦ,Ωf‖˙Kα,q2),θp2(⋅)(Rn)≤CCΦ,s‖b‖BMO(Rn)‖f‖˙Kα,q1),θp1(⋅)(Rn). |
Proof. The proof is similar to the proof of Theorem 3.1, so we omit the details.
In this note, we examined the boundedness of the Hausdorff operator's commutators on the variable exponent grand-Herz-Morrey spaces, assuming that the symbol functions originate from BMO spaces. We got affirmative results under certain conditions. The results of this study may stimulate the researchers to establish the same bounds on other function spaces with variable expomnents.
Javeria Younas: Writing – original draft, Software, Methodology, Formal analysis; Amjad Hussain: Validation, Supervision, Funding acquisition, Conceptualization; Hadil Alhazmi: Writing – review & editing, Visualization, Validation, Supervision; A. F. Aljohani: Investigation, Formal analysis, Conceptualization, Visualization, Validation, Supervision, Resources, Methodology, Funding acquisition, Conceptualization; Ilyas Khan: Methodology, Analysis, Writing – review & editing, Supervision. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors extend their appreciation to the Deanship of Postgraduate Studies and Scientific Research at Majmaah University for funding this research work through the project number (ER-2024-1191).
All authors declare no conflict of interest in this paper.
[1] |
G. Gao, A. Hussain, (Lp,Lq)-boundedness of Hausdorff operators with power weight on Euclidean spaces, Anal. Theor. Appl., 31 (2015), 101–108. https://doi.org/10.4208/ata.2015.v31.n2.1 doi: 10.4208/ata.2015.v31.n2.1
![]() |
[2] |
X. Lin, L. Sun, Some estimates on the Hausdorff operator, Acta Sci. Math., 78 (2012), 669–681. https://doi.org/10.1007/BF03651391 doi: 10.1007/BF03651391
![]() |
[3] |
J. Chen, D. Fan, J. Li, Hausdorff operators on function spaces, Chinese Ann. Math., 33 (2012), 537–556. https://doi.org/10.1007/s11401-012-0724-1 doi: 10.1007/s11401-012-0724-1
![]() |
[4] | E. Liflyand, F. Móricz, The Hausdorff operator is bounded on the real Hardy space H1(R), Proc. Am. Math. Soc., 128 (2000), 1391–1396. https://doi.org/10.1090/S0002-9939-99-05159-X |
[5] | E. Liflyand, A. Miyachi, Boundedness of the Hausdorff operators in Hp spaces, 0<p<1, Stud. Math., 194 (2009), 279–292. https://doi.org/10.4064/sm194-3-4 |
[6] |
D. Fan, X. Lin, Hausdorff operator on real Hardy spaces, Analysis, 34 (2014), 319–337. https://doi.org/10.1515/anly-2012-1183 doi: 10.1515/anly-2012-1183
![]() |
[7] | M. Ruzicka, Electroreological fluids: Modeling and mathematical theory, Lecture Notes in Math., Springer: Berlin/Heidelberg, Germany, 2000. |
[8] |
W. Orlicz, Über konjugierte exponentenfolgen, Stud. Math., 3 (1931), 200–211. https://doi.org/10.4064/sm-3-1-200-211 doi: 10.4064/sm-3-1-200-211
![]() |
[9] |
O. Kováčik, J. Rákosník, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 41 (1991), 592–618. https://doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
![]() |
[10] | D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, The maximal function on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223–238. |
[11] | A. Nekavinda, Hardy-Littlewood maximal operator on Lp(x)(R), Math. Inequal. Appl., 7 (2004), 255–265. |
[12] | D. C. Uribe, A. Fiorenza, Variable exponent Lebesgue space: Foundations and harmonic analysis, Birkhauser: Basel, Switzerland, 2013. |
[13] | L. Diening, P. Harjulehto, P. Hästö, M. Ru˘zicka, Lebesgue and Sobolev spaces with variable exponent, Lect. Notes Math., Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18363-8 |
[14] | V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in nonstandard function spaces: Variable exponent Lebesgue and amalgam spaces, Birkauser, Heidelberg, 1 (2016). |
[15] |
K. P. Ho, Extrapolation to Herz spaces with variable exponents and applications, Rev. Mat. Complut., 33 (2020), 437–463. https://doi.org/10.1007/s13163-019-00320-3 doi: 10.1007/s13163-019-00320-3
![]() |
[16] |
K. P. Ho, Spherical maximal function, maximal Bochner-Riesz mean and geometrical maximal function on Herz spaces with variable exponents, Rend. Circ. Mat. Palerm., 70 (2021), 559–574. https://doi.org/10.1007/s12215-020-00511-8 doi: 10.1007/s12215-020-00511-8
![]() |
[17] | M. Z. Abidin, M. Marwan, N. Ullah, A. M. Zidan, Well-Posedness in variable-exponent function spaces for the three-dimensional micropolar fluid equations, J. Math., 2023. https://doi.org/10.1155/2023/4083997 |
[18] | A. Hussain, I. Khan, A. Mohamed, Variable Herz-Morrey estimates for rough fractional Hausdorff operator, J. Inequal. Appl., 33 (2024). https://doi.org/10.1186/s13660-024-03110-8 |
[19] | T. Iwaniec, C. Sbordone, On integrability of the Jacobien under minimal hypotheses, Arch. Ration. Mech. An., 119 (1992), 129–143. |
[20] | L. Greco, T. Iwaniec, C. Sbordone, Inverting the p-harmonic operator, Manuscripta Math., 92 (1997), 249–258. |
[21] |
A. Meskhi, Maximal functions, potentials and singular integrals in grand Morrey spaces, Complex Var. Elliptic, 56 (2011), 1003–1019. https://doi.org/10.1080/17476933.2010.534793 doi: 10.1080/17476933.2010.534793
![]() |
[22] |
R. Bandaliyev, K. Safarova, On Hardy type inequalities in grand Lebesgue spaces Lp) for 0<p≤1, Linear Multilinear A., 70 (2022), 6053–6066. https://doi.org/10.1080/03081087.2021.1944968 doi: 10.1080/03081087.2021.1944968
![]() |
[23] |
S. G. Samko, S. M. Umarkhadzhiev, Weighted Hardy operators in grand Lebesgue spaces on Rn, J. Math. Sci., 268 (2022), 509–522. https://doi.org/10.1007/s10958-022-06208-w doi: 10.1007/s10958-022-06208-w
![]() |
[24] |
A. P. Singh, P. Jain, R. Panchal, On quasi-grand Lebesgue spaces and the Hausdorff operator, Bull. Malays. Math. Sci. Soc., 47 (2024), 14. https://doi.org/10.1007/s40840-023-01618-8 doi: 10.1007/s40840-023-01618-8
![]() |
[25] |
V. Kokilashvili, A. Meskhi, Maximal and Calderon-Zygmund operators in grand variable exponent Lebesgue spaces, Georgian Math. J., 21 (2014), 447–461. https://doi.org/10.1515/gmj-2014-0047 doi: 10.1515/gmj-2014-0047
![]() |
[26] |
H. Nafis, H. Rafeiro, M. Zaighum, A note on the boundedness of sublinear operators on grand variable Herz spaces, J. Inequal. Appl., 1 (2020), 2020. https://doi.org/10.1186/s13660-019-2265-6 doi: 10.1186/s13660-019-2265-6
![]() |
[27] |
M. Sultan, B. Sultan, A. Hussain, Grand Herz-Morrey spaces with variable exponent, Math. Notes, 114 (2023), 957–977. https://doi.org/10.1134/S0001434623110305 doi: 10.1134/S0001434623110305
![]() |
[28] |
S. Bashir, B. Sultan, A. Hussain, A. Khan, T. Abdeljawad, A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent, AIMS Math., 8 (2023), 22178–22191. https://doi.org/10.3934/math.20231130 doi: 10.3934/math.20231130
![]() |
[29] |
R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611–635. https://doi.org/10.2307/1970954 doi: 10.2307/1970954
![]() |
[30] |
R. Gong, N. M. Vempati, Q. Wu, P. Xie, Boundedness and compactness of Cauchy-type integral commutators on weighted Morrey spaces, J. Aust. Math. Soc., 113 (2022), 3656. https://doi.org/10.1017/S1446788722000015 doi: 10.1017/S1446788722000015
![]() |
[31] |
A. Hussain, A. Ajaib, Some results for commutators of generalized Hausdorff operator, J. Math. Inequal., 13 (2019), 1129–1146. https://doi.org/10.7153/jmi-2019-13-80 doi: 10.7153/jmi-2019-13-80
![]() |
[32] |
A. Ajaib, A. Hussain, Weighted CBMO estimates for commutators of matrix Hausdorff operator on the Heisenberg group, Open Math., 18 (2020), 496–511. https://doi.org/10.1515/math-2020-0175 doi: 10.1515/math-2020-0175
![]() |
[33] |
Y. Sun, J. Zhao, Two-weighted estimates for multilinear Hausdorff operators and commutators on stratified groups, J. Pseudo-Differ. Oper., 13 (2022), 49. https://doi.org/10.1007/s11868-022-00480-9 doi: 10.1007/s11868-022-00480-9
![]() |
[34] |
N. Sarfraz, F. Gürbüz, Weak and strong boundedness for p-adic fractional Hausdorff operator and its commutator, Int. J. Nonlinear Sci. Numer. Simulat., 24 (2023), 2281–2292. https://doi.org/10.1515/ijnsns-2020-0290 doi: 10.1515/ijnsns-2020-0290
![]() |
[35] |
E. Nakai, Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal., 262 (2012), 3665–3748. https://doi.org/10.1016/j.jfa.2012.01.004 doi: 10.1016/j.jfa.2012.01.004
![]() |
[36] |
M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J., 40 (2010), 343–355. https://doi.org/10.32917/hmj/1291818849 doi: 10.32917/hmj/1291818849
![]() |
[37] | M. Izuki, Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent, Math. Sci. Res. J., 13 (2009), 243–253. |
[38] |
M. Izuki, Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palerm., 59 (2010), 199–213. https://doi.org/10.1007/s12215-010-0015-1 doi: 10.1007/s12215-010-0015-1
![]() |
[39] |
S. Lu, L. Xu, Boundedness of rough singular integral operators on the homogeneous Morrey-Herz spaces, Hokkaido Math. J., 34 (2005), 299–314. https://doi.org/10.14492/hokmj/1285766224 doi: 10.14492/hokmj/1285766224
![]() |