Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Weighted estimates for commutators associated to singular integral operator satisfying a variant of Hörmander's condition

  • In this paper, we establish some boundedness for commutators generated by the singular integral operator satisfying a variant of Hörmander's condition and a weighted BMO function on weighted Hardy spaces and weighted Herz spaces. As an application, we obtain some classical results.

    Citation: Jie Sun, Jiamei Chen. Weighted estimates for commutators associated to singular integral operator satisfying a variant of Hörmander's condition[J]. AIMS Mathematics, 2023, 8(11): 25714-25728. doi: 10.3934/math.20231311

    Related Papers:

    [1] Yanqi Yang, Shuangping Tao, Guanghui Lu . Weighted and endpoint estimates for commutators of bilinear pseudo-differential operators. AIMS Mathematics, 2022, 7(4): 5971-5990. doi: 10.3934/math.2022333
    [2] Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051
    [3] Naqash Sarfraz, Muhammad Aslam . Some weighted estimates for the commutators of p-adic Hardy operator on two weighted p-adic Herz-type spaces. AIMS Mathematics, 2021, 6(9): 9633-9646. doi: 10.3934/math.2021561
    [4] Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for mth order commutators of ndimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022
    [5] Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007
    [6] Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888
    [7] Dazhao Chen . Endpoint estimates for multilinear fractional singular integral operators on Herz and Herz type Hardy spaces. AIMS Mathematics, 2021, 6(5): 4989-4999. doi: 10.3934/math.2021293
    [8] Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139
    [9] Pham Thi Kim Thuy, Kieu Huu Dung . Hardy–Littlewood maximal operators and Hausdorff operators on p-adic block spaces with variable exponents. AIMS Mathematics, 2024, 9(8): 23060-23087. doi: 10.3934/math.20241121
    [10] Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki . Boundedness of Hardy operators on grand variable weighted Herz spaces. AIMS Mathematics, 2023, 8(10): 24515-24527. doi: 10.3934/math.20231250
  • In this paper, we establish some boundedness for commutators generated by the singular integral operator satisfying a variant of Hörmander's condition and a weighted BMO function on weighted Hardy spaces and weighted Herz spaces. As an application, we obtain some classical results.



    In 1952, Calderˊon and Zygmund [1] introduced the concept of singular integral in the study of elliptic partial differential equations and proved the existence of singular integral. Later, Calderˊon and Zygmund [2] studied a class of singular integral of convolution type and proved the Lp-boundedness (1<p<).

    In the classical Calderˊon-Zygmund theory, the Hörmander's condition [3]

    |x|>2|y||K(xy)K(x)|dxC,  y0. (1.1)

    plays a foundational role in Harmonic analysis. As the development of singular integrals, the kernel K which does not satisfy the condition (1.1) has been extensively considered. In [4], Grubb and Moore introduced a variant of Hörmander's condition

    |x|>2|y||K(xy)mj=1Bj(x)ϕj(y)|dxC, (1.2)

    where Bj and ϕj are appropriate functions and proved the Lp-boundedness for the singular operator with kernel satisfying (1.2).

    Later, Trujillo-Gonzˊalez made the kernel's conditions stronger and established the weighted Lp-boundedness of singular integral operator as below.

    Theorem A. [5] Let KL2(Rn) satisfy

    (K1) ˆKC0,

    (K2) |K(x)|C0|x|n,

    (K3) there exist functions B1Bm and Φ={ϕ1,ϕm}L(Rn) such that |det[ϕj(yi)]|2RH(Rnm),

    (K4) for a fixed γ>0 and any |x|>2|y|>0,

    |K(xy)mj=1Bj(x)ϕj(y)|C0|y|γ|xy|n+γ. (1.3)

    For any fCc(Rn), we define the singular integral operator T related to the kernel K by:

    Tf(x)=RnK(xy)f(y)dy.

    Let 1<p<, ωAp, then there exists a constant C>0, such that

    Rn|Tf(x)|pω(x)dxCRn|f(x)|pω(x)dx.

    Remark A. When m=1, B1(x)=K(x), ϕ1(y)=1, then (1.2) is exactly Hörmander's condition and (1.3) is the classical Calderˊon-Zygmund kernel.

    With the development of singular integral operators, their commutators have been well studied. In 1976, Coifman, Rochberg and Weiss [6] established the boundedness of commutators on some Lp(Rn)(1<p<). Let b be a locally integrable function on Rn and let T be a Calderˊon-Zygmund singular integral operator. Consider the commutator Tb defined for suitable functions f by

    Tbf(x)=b(x)Tf(x)T(bf)(x).

    In 2004, Zhou [7] proved that the commutators generated by the singular integral operator and a BMO function are bounded on Hardy spaces. In 2009, Kong and Jiang [8] got the boundedness of commutators generated by the singular integral operator with a homogeneous kernel and a BMO function on weighted Hardy spaces and weighted Herz spaces. In 2010, Liu [9] showed that the commutators generated by the singular integral operator and a BMO function are bounded on Herz-Hardy spaces. For more information about this topic we refer to [10,11,12,13].

    In 2012, Zhang [14] studied the commutators generated by the singular integral operator satisfying a variant of Hörmander's condition and a BMO function are bounded on Hardy spaces. In 2015, Xie [15] discussed the boundedness of multilinear operators from Lebesgue spaces to Orlicz spaces when the kernel K satisfies the conditions (K1)(K4). In 2017, Pan [16] obtained the boundedness of multilinear operators satisfying a variant of Hörmander's condition on Morrey spaces.

    Motivated by these results, we will study the boundedness of commutators generated by the singular integral operator satisfying a variant of Hörmander's condition and a weighted BMO function on some function spaces in this paper. Now, we state our main results as follows.

    Theorem 1.1. Let T be the singular integral operator with the kernel K satisfying (K1)(K4). Let γ be as in K4. Suppose that μA1, nn+γ<p1 and bBMOμ. Then Tb is bounded from HpΦ,b(μ) to Lp(μ1p).

    Remark 1.1. When we take m=1,B1(x)=K(x),ϕ1(y)=1, then the commutator generated by the classical singular integral operator and a weighted BMO function is bounded from Hpb(μ) to Lp(μ1p).

    Theorem 1.2. Let T be the singular integral operator with the kernel K satisfying (K1)(K4). Suppose that μA1 and bBMOμ. Then Tb is bounded from H1Φ(μ) to weak L1(Rn). That is to say, for any λ>0, there exists C>0 such that

    |{xRn:|Tbf(x)|>λ}|CλfH1Φ(μ).

    Remark 1.2. When we take m=1,B1(x)=K(x),ϕ1(y)=1, then the commutator generated by the classical singular integral operator and a weighted BMO function is bounded from H1(μ) to weak L1(Rn).

    Theorem 1.3. Let T be the singular integral operator with the kernel K satisfying (K1)(K4). Suppose that μA1, 0<p,1<q<, nδq<η<nδnq and bBMOμ. Then Tb maps ˙Kη,pq(μ,μ) continuously into ˙Kη,pq(μ,μ1q).

    Remark 1.3. When we take m=1,B1(x)=K(x),ϕ1(y)=1, then the commutator generated by the classical singular integral operator and a weighted BMO function maps ˙Kη,pq(μ,μ) continuously into ˙Kη,pq(μ,μ1q).

    Theorem 1.4. Let T be the singular integral operator with the kernel K satisfying (K1)(K4). Suppose that μA1, 0<p1, 1<q<, η=nδnq, qδ1 and bBMOμ. Then Tb maps ˙Kη,pq(μ,μ) continuously into W˙Kη,pq(μ,μ1q).

    Remark 1.4. When we take m=1,B1(x)=K(x),ϕ1(y)=1, η=nδnq, then the commutator generated by the classical singular integral operator and a weighted BMO function maps ˙Kη,pq(μ,μ) continuously into W˙Kη,pq(μ,μ1q).

    Throughout this paper, we denote by p the conjugate index of p, that is 1p+1p=1. The letter C, sometimes with additional parameters, will stand for positive constants, not necessarily the same at each occurrence but is independent of the main parameters.

    Firstly, let us introduce some important notations that will help us further.

    Definition 2.1. [17] A non-negative locally integrable function is called a weight function. Let ω be a weight function, 1<p<. If there is a constant C>0, such that for any ball BRn,

    (1|B|Bω(x)dx)(1|B|Bω(x)1p1dx)p1C,

    then we say ωAp. We say ωA1, if there is a constant C>0, such that for any ball BRn,

    1|B|Bω(x)dxCω(x),a.e.xRn.

    A weight function ωA if it satisfies the Ap condition for some 1p<. The smallest constant satisfying the fomulas above is called Ap constant of ω and we denote it by [ω]Ap.

    For 1p<q<, we have A1ApAq and A=p1Ap.

    Definition 2.2. [5] Given a positive and locally integrable function g in Rn, we say that g satisfies the reverse Hölder RH condition, in short, gRH(Rn), if for any cube Q centered at the origin we have

    0<supxQg(x)C1|Q|Qg(x)dx

    with C>0 being an absolute constant independent of Q.

    Definition 2.3. [18] Suppose μA. We will say that a locally integrable function b(x) belongs to the weighted BMOμ, that is

    supB1μ(B)B|b(x)bB|dxC<,

    where the supremum is taken over all balls BRn, μ(B)=Bμ(x)dx, the smallest constant C is denoted as b,μ.

    For 1p,q, we have

    C1b,μsupB(1μ(B)B|b(x)bB|pμ(x)1pdx)1pC2b,μ.

    Similar to the definition of the Hardy space related to Φ in [19], we define the weighted Hardy space related to Φ.

    Definition 2.4. For 0<p1, ωA and Φ={ϕ1,,ϕm}L(Rn), a function a(x) is called an ω(p,,Φ) atom centered at x0, if

    (1)suppaB(x0,r) for some x0Rn and r>0,

    (2)aLω(B(x0,r))1p,

    (3)Rna(x)dx=Rna(x)ϕj(xx0)dx=0,j=1,2,,m.

    Definition 2.5. For 0<p1 and ωA, we say that a distribution f on Rn belongs to the weighted Hardy space HpΦ(ω), if in distributional sense, it can be written as f=Nj=Nλjaj, where each aj is an ω(p,,Φ) atom, NN, λjC and Nj=N|λj|p<. Moreover,

    fHpΦ(ω)=infNj=Nλjaj=f(Nj=N|λj|p)1p

    with the infimum taken over all decompositions of f.

    Similar to the Definition 2.5, we define the weighted Hardy space related to Φ and b.

    Definition 2.6. For 0<p1, ωA, Φ={ϕ1,,ϕm}L(Rn) and b is a locally integrable function, a function a(x) is called an ω(p,,Φ,b) atom centered at x0, if

    (1)suppaB(x0,r) for some x0Rn and r>0,

    (2)aLω(B(x0,r))1p,

    (3)Rna(x)dx=Rna(x)ϕj(xx0)dx=Rna(x)b(x)ϕj(xx0)dx=0,j=1,2,,m.

    Definition 2.7. For 0<p1 and ωA, we say that a distribution f on Rn belongs to the weighted Hardy space HpΦ,b(ω), if in distributional sense, it can be written as f=Nj=Nλjaj, where each aj is an ω(p,,Φ,b) atom, NN, λjC and Nj=N|λj|p<. Moreover,

    fHpΦ,b(ω)=infNj=Nλjaj=f(Nj=N|λj|p)1p

    with the infimum taken over all decompositions of f.

    For kZ, Bk=B(0,2k) and Ek=BkBk1. Let χk=χEk denote the characteristic function of the set Ek.

    Definition 2.8. [20] Let ηR, 0<p<, 1<q<, ω1 and ω2 be non-negative weighted functions. The homogeneous Herz space ˙Kη,pq(ω1,ω2) is defined by

    ˙Kη,pq(ω1,ω2)={fLqloc(Rn{0},ω2):f˙Kη,pq(ω1,ω2)<},

    where f˙Kη,pq(ω1,ω2)={k=ω1(Bk)ηpnfχkpLqω2}1p with the usual modification made when p=.

    Definition 2.9. [20] Let ηR, 0<p<, 1<q<, ω1 and ω2 be non-negative weighted functions. The measurable function f(x) belongs to the weighted weak Herz space W˙Kη,pq(ω1,ω2), if

    fW˙Kη,pq(ω1,ω2)=supλ>0λ{k=ω1(Bk)ηpnmk(λ,f)pq}1p<,

    where mk(λ,f)=ω2({xEk:|f(x)|>λ}) with the usual modification made when p=.

    Lemma 2.1. [18] Suppose that ωA1. Then there exist constant C1,C2>0 and 0<δ<1 for each measurable subset of BRn such that

    C1|E||B|ω(E)ω(B)C2(|E||B|)δ.

    Lemma 2.2. [8] Suppose that μA1 and bBMOμ(Rn). Then there exists a constant C>0 for each measurable subset of BRn such that

    |b2jBbB|Cb,μjμ(B)|B|.

    Lemma 2.3. [21] Suppose that μA1 and 1<q<. Then there exists a constant C>0 for each measurable subset of BRn such that

    2j+1Bμ(x)1qdx|2j+1B|qμ(2j+1B)q1.

    According to [22], we have the following lemma :

    Lemma 2.4. Let T be the singular integral operator with the kernel K satisfying (K1)(K4). Suppose that 1<p<, μA1 and bBMOμ. Then Tb is bounded from Lp(μ) to Lp(μ1p).

    Proof of Theorem 1.1. It suffices to prove that, for any μ(p,,Φ,b) atom a, the following inequality holds

    TbaLp(μ1p)C. (3.1)

    In fact, if (3.1) holds, then for any f=Nj=NλjajHpΦ,b(μ), where each aj is a μ(p,,Φ,b) atom, since nn+γ<p1, we have

    TbfLp(μ1p)=(Rn|Tb(Nj=Nλjaj)|pμ(y)1pdy)1p=(Rn|Nj=NλjTbaj(y)|pμ(y)1pdy)1p(Nj=N|λj|pTbajpLp(μ1p))1pC(Nj=N|λj|p)1p.

    Then the proof can be completed by taking the infimum for all atomic decompositionns of f.

    Now, we need to prove (3.1), suppose that suppaB=B(xB,r). Write

    TbaLp(μ1p)(2B|Tba(x)|pμ(x)1pdx)1p+((2B)c|Tba(x)|pμ(x)1pdx)1p:=I1+I2.

    By the Hölder inequality for q>1 and Lemma 2.4, we have

    I12B|Tba(x)|dxμ(2B)1p1=(2B|Tba(x)|μ(x)1q1μ(x)11qdx)μ(2B)1p1(2B|Tba(x)|qμ(x)1qdx)1q(2Bμ(x)dx)1qμ(2B)1p1TbaLq(μ1q)μ(2B)1qμ(2B)1p1aLq(μ)μ(2B)1qμ(2B)1p1Caμ(B)1qμ(2B)1qμ(2B)1p1Cμ(B)1pμ(B)1qμ(2B)1qμ(2B)1p1C.

    Let Ck=2k+1B2kB

    Ip2k=1Ck|(Tba)(x)|pμ(x)1pdxk=1(Ck|(Tba)(x)|dx)p(Ckμ(x)dx)1p.

    Write

    Ck|(Tba)(x)|dxCk|b(x)bB||Ta(x)|dx+Ck|T((bbB)a)(x)|dx:=I21+I22.

    For I21, when yB, x2k+1B2kB, we have |yx||xxB|2|yxB|, by the vanishing condition of a, we obtain

    I21=Ck|b(x)bB||BK(xy)a(y)dymj=1Ba(y)Bj(xxB)ϕj(yxB)dy|dxCk|b(x)bB|(B|K(xy)mj=1Bj(xxB)ϕj(yxB)||a(y)|dy)dxCCk|b(x)bB|B|yxB|γ|xxB|n+γ|a(y)|dydxCa|B|2kγ|2k+1B|12k+1B|b(x)bB|dxCμ(B)1p2kγ2(k+1)n(k+1)2(k+1)nμ(B)b,μCb,μ(k+1)2kγμ(B)11p.

    For I22, we have

    I22Ck|BK(xy)[b(y)bB]a(y)dymj=1Ba(y)[b(y)bB]Bj(xxB)ϕj(yxB)dy|dxCa2kγ|2k+1B|1B|b(y)bB|dy2k+1BdxCa2kγμ(B)b,μCb,μ2kγμ(B)11p.

    Since nn+γ<p1,

    I2C(k=1(k+1)p2kγpμ(B)p1μ(2k+1B)1p)1pC(k=1(k+1)p2k(nnpγp))1pC.

    Combining the estimates for I1 and I2, we finish the proof.

    Proof of Theorem 1.2. We can write f=Nj=NλjajH1Φ(μ) with each aj being a μ(1,,Φ) atom and Nj=N|λj|<. Suppose suppajBj=B(xj,rj). Write

    |Tbf(x)|Nj=N|λj[b(x)b2Bj]Taj(x)χ2Bj(x)|+Nj=N|λj[b(x)b2Bj]Taj(x)χ(2Bj)c(x)|    +|T(Nj=Nλj[bb2Bj]aj)(x)|:=J1(x)+J2(x)+J3(x).

    By the Hölder inequality and the Theorem A, we obtain

          [b()b2Bj]Taj()χ2Bj()L12Bj|b(x)b2Bj||Taj(x)|dxTajL2(μ)(2Bj|b(x)b2Bj|2μ(x)1dx)12ajL2(μ)μ(2Bj)12b,μC,

    and

    (b()b2Bj)Taj()χ(2Bj)c()L1                                                                                k=12k+1Bj2kBj|b(x)b2Bj|Bj|K(xs)mj=1Bj(xxj)ϕj(sxj)||aj(s)|dsdx       Ck=1|Bj|2kγ|2k+1Bj|1aj2k+1Bj|b(x)b2Bj|dx       Ck=12kγ2knnajk2knμ(2Bj)b,μ       Ck=1k2kγμ(Bj)1μ(2Bj)b,μ       Ck=1k2kγb,μ       C.

    Thus, we have

    |{xRn:|Ji(x)|>λ/3}|Cλ1JiL1Cλ1(Nj=N|λj|),   i=1,2.

    Noting that

    Bj|b(y)b2Bj||aj(y)|dyCb,μaμ(2Bj)C.

    By the weak (1,1) boundedness of T in [4], we obtain

    |{xRn:|J3(x)|>λ/3}|Cλ1Nj=Nλj(bb2Bj)ajL1Cλ1Nj=N|λj|.

    Therefore,

    |{xRn:|Tbf(x)|>λ}|C3i=1|{xRn:|Ji(x)|>λ/3}|Cλ1Nj=N|λj|.

    Taking the infimum over all decompositions of f, the proof is finished.

    Proof of Theorem 1.3. We only consider the case 0<p<. When p=, we can make appropriate modifications.

    Tbfp˙Kη,pq(μ,μ1q)Cj=μ(Bj)ηpn(j2k=Tb(fχk)χjLq(μ1q))p  +Cj=μ(Bj)ηpn(j+1k=j1Tb(fχk)χjLq(μ1q))p  +Cj=μ(Bj)ηpn(k=j+2Tb(fχk)χjLq(μ1q))p:=L1+L2+L3.

    Firstly, we estimate L2. By Lemma 2.4

    L2Cj=μ(Bj)ηpnj+1k=j1fχkpLq(μ)Cfp˙Kη,pq(μ,μ).

    Obviously

    Tb(fχk)χjLq(μ1q)C(Ej|(b(x)bBk)EkK(xy)f(y)χk(y)dy|qμ(x)1qdx)1q  +C(Ej|EkK(xy)(b(y)bBk)f(y)χk(y)dy|qμ(x)1qdx)1q:=H1+H2.

    Now, let us estimate L1, for jk+2, by Lemmas 2.1–2.3, we have

    H1C2jnfχkL1(Ej|b(x)bBk|qμ(x)1qdx)1qC2jnfχkLq(μ)(Bkμ(x)1qdx)1q(Bj|b(x)bBk|qμ(x)1qdx)1qC2jnfχkLq(μ)|Bk|μ(Bk)1qμ(Bj)1q(jk)2(jk)n(1δ)C2jn2kn2(jk)nq(jk)2(jk)n(1δ)fχkLq(μ)C(jk)2(jk)(nqnδ)fχkLq(μ),

    and

    H2C2jnEk|(b(y)bBk)fχk(y)|dy(Ejμ(x)1qdx)1qC2jnfχkLq(μ)(Bk|b(y)bBk|qμ(y)1qdy)1q(Bjμ(x)1qdx)1qC2jnfχkLq(μ)μ(Bk)1q|Bj|μ(Bj)1qC2nδq(kj)fχkLq(μ)=C2(jk)nδ(1q1)fχkLq(μ)=C2(jk)(nδqnδ)fχkLq(μ).

    When η>0, we have

    Tb(fχk)χjLq(μ1q)C2(kj)η(jk)2(jk)(η+nqnδ)fχkLq(μ)=C2(kj)ηW(j,k)fχkLq(μ).

    Thus

    L1Cj=μ(Bj)ηpn(j2k=2(kj)ηW(j,k)fχkLq(μ))pC{j=j2k=μ(Bk)ηpnW(j,k)pfχkpLq(μ)                                   p1j=(j2k=μ(Bk)ηpnW(j,k)fχkpLq(μ))(j2k=W(j,k))pp        p>1Ck=μ(Bk)ηpnfχkpLq(μ)j=k+2W(j,k)min(p,1)Cfp˙Kη,pq(μ,μ).

    When η<0, we have

    Tb(fχk)χjLq(μ1q)C2(kj)ηδ(jk)2(jk)(ηδ+nqnδ)fχkLq(μ)=C2(kj)ηδW1(j,k)fχkLq(μ).

    Thus

    L1Cj=μ(Bj)ηpn(j2k=2(kj)ηδW1(j,k)fχkLq(μ))pC{j=j2k=μ(Bk)ηpnW1(j,k)pfχkpLq(μ)                                    p1j=(j2k=μ(Bk)ηpnW1(j,k)fχkpLq(μ))(j2k=W1(j,k))pp       p>1Ck=μ(Bk)ηpnfχkpLq(μ)j=k+2W1(j,k)min(p,1)Cfp˙Kη,pq(μ,μ).

    Lastly, we estimate L3, for kj+2, by Lemmas 2.1–2.3, we have

                 H1C2knfχkL1(Ej|b(x)bBk|qμ(x)1qdx)1qC2knfχkLq(μ)(Bkμ(x)1qdx)1q(Bj|b(x)bBk|qμ(x)1qdx)1qC2knfχkLq(μ)|Bk|μ(Bk)1q(kj)μ(Bj)1qb,μC(kj)2(jk)nδqfχkLq(μ),

    and

    H2C2kn(Ek|(b(y)bBk)fχk(y)|dy)(Ejμ(x)1qdx)1qC2knfχkLq(μ)μ(Bk)1q|Bj|μ(Bj)1qC2jnkn2(kj)nqfχkLq(μ)C2(jk)n(11q)fχkLq(μ)C2(jk)nqfχkLq(μ).

    When η>0

    Tb(fχk)χjLq(μ1q)C2(kj)ηδ(kj)2(jk)(ηδ+nδq)fχkLq(μ)=C2(kj)ηδW2(j,k)fχkLq(μ).

    Thus

    L3Cj=μ(Bj)ηpn(k=j+22(kj)ηδW2(j,k)fχkLq(μ))pC{j=k=j+2μ(Bk)ηpnW2(j,k)pfχkpLq(μ)                                    p1j=(k=j+2μ(Bk)ηpnW2(j,k)fχkpLq(μ))(k=j+2W2(j,k))pp        p>1Ck=μ(Bk)ηpnfχkpLq(μ)k2j=W2(j,k)min(p,1)Cfp˙Kη,pq(μ,μ).

    Similarly, when η<0, we have

    Tb(fχk)χjLq(μ1q)C2(kj)η(kj)2(jk)(η+nδq)fχkLq(μ)=C2(kj)ηW3(j,k)fχkLq(μ).
    L3Cj=μ(Bj)ηpn(k=j+22(kj)ηW3(j,k)fχkLq(μ))pC{j=k=j+2μ(Bk)ηpnW3(j,k)pfχkpLq(μ)                                    p1j=(k=j+2μ(Bk)ηpnW3(j,k)fχkpLq(μ))(k=j+2W3(j,k))pp       p>1Ck=μ(Bk)ηpnfχkpLq(μ)k2j=W3(j,k)min(p,1)Cfp˙Kη,pq(μ,μ).

    Then we finish the proof.

    Proof of Theorem 1.4. For kZ, we can write f as

    f(x)=k2l=f(x)χl(x)+l=k1f(x)χl(x)=f1(x)+f2(x).

    Thus

    |Tbf(x)||Tbf1(x)|+|Tbf2(x)|,

    and

    TbfpW˙Kη,pq(μ,μ1q)                                                                                       supλ>0λpk=μ(Bk)pηnμ1q({xEk:|(b(x)bBk)Tf1(x)|>λ3})pq                                   +supλ>0λpk=μ(Bk)pηnμ1q({xEk:|T((b(x)bBk)f1)(x)|>λ3})pq                       +supλ>0λpk=μ(Bk)pηnμ1q({xEk:|Tbf2(x)|>λ3})pq                                     :=G1+G2+G3.                                                                                           

    By Lemma 2.4 and 0<p1, we obtain

    G3Ck=μ(Bk)pηn(Rn|Tbf2(x)|qμ(x)1qdx)pqCk=μ(Bk)pηn(Rn|f2(x)|qμ(x)dx)pqCk=μ(Bk)pηn(fχk1pLq(μ)+l=kfχlpLq(μ))C{k=(μ(Bk1)pηn2pηfχk1pLq(μ)+μ(Bl)pηnl=k2(kl)pδηfχlpLq(μ))       qδ>1k=(μ(Bk1)pηn2pδηfχk1pLq(μ)+μ(Bl)pηnl=k2(kl)pηfχlpLq(μ))       qδ<1Cl=μ(Bl)pηnfχlpLq(μ)Cfp˙Kη,pq(μ,μ).

    For G1, by the H¨older inequality and Lemmas 2.1–2.3, we have

    G1Ck=μ(Bk)pηn(Ek|(b(x)bBk)RnK(xy)f1(y)dy|qμ(x)1qdx)pq                     Ck=2knpμ(Bk)pηnf1pL1(Ek|b(x)bBk|qμ(x)1qdx)pqCk=2knpμ(Bk)pηnk2l=fχlpLq(μ)|Bl|pμ(Bl)pqμ(Bk)pqCl=μ(Bl)pηnfχlpLq(μ)k=l+2{2(kl)pn(δ1)                      qδ>12(kl)pn[(δ1)(1+1q)]             qδ<1Cfp˙Kη,pq(μ,μ).

    For G2, by Lemmas 2.1–2.3, we have

    G2Ck=μ(Bk)pηn(Ek|RnK(xy)(b(y)bBk)f1(y)dy|qμ(x)1qdx)pq                   Ck=2knpμ(Bk)pηnk2l=(El|(b(y)bBk)f(y)χl(y)|dy)p(Bkμ(x)1qdx)pqCk=2knpμ(Bk)pηnk2l=fχlpLq(μ)(kl)pμ(Bl)pq|Bk|pμ(Bk)pqCl=μ(Bl)pηnfχlpLq(μ)k=l+2(kl)p{2npq(kl)(δ1)              qδ>12npδ(kl)(δ1)             qδ<1Cfp˙Kη,pq(μ,μ).

    Then we finish the proof.

    Some new weighted inequalities for commutators related to singular integral operator satisfying a variant of Hörmander's condition are proved. Our results further generalize the corresponding results in [8] and include the unweighted case.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The author would like to thank the referee for his/her invaluable comments and suggestions.

    This work was supported by a Research Project of the Basic Scientific Research Expenses for Heilongjiang Provincial Higher Institutions (No.1355ZD010), the Reform and Development Foundation for Local Colleges and Universities of the Central Government (Excellent Young Talents Project of Heilongjiang Province) (No.2020YQ07), the project of Mudanjiang Normal University (No.GP2019006), the Ideology and Politics Project of Postgraduate course (No.KCSZKC-2022026, KCSZAL-2022013) and the project of Scientific Research Team of Education Department of Heilongjiang Province (No.1354MSYTD006; 2019-KYYWF-0909).

    All of authors in this article declare no conflict of interest.



    [1] A. P. Calderón, A. Y. Zygmund, On the existence of certain singular integrals, Acta Math., 88 (1952), 85–139. https://doi.org/10.1007/978-94-009-1045-4_3 doi: 10.1007/978-94-009-1045-4_3
    [2] A. P. Calderón, A. Y. Zygmund, On singular integrals, Am. J. Math., 78 (1956), 289–309. https://doi.org/10.1007/978-3-642-10918-8_3
    [3] L. Hörmander, Estimates for translation invariant operators in Lp spaces, Acta Math., 104 (1960), 93–140. https://doi.org/10.1007/BF02547187 doi: 10.1007/BF02547187
    [4] D. J. Grubb, C. N. Moore, A variant of Hörmander's condition for singular integrals, Colloq. Math., 73 (1997), 165–172.
    [5] R. Trujillo-González, Weighted norm inequalities for singular integral operators satisfying a variant of Hörmander's condition, Comment. Math. Univ. Ca., 44 (2003), 137–152.
    [6] R. R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611–635. https://doi.org/10.2307/1970954 doi: 10.2307/1970954
    [7] W. J. Zhou, Multilinear commutators generated by singular integrals, fractional integrals and smooth functions, Hunan Univ., 2004.
    [8] X. B. Kong, Y. S. Jiang, Weighted BMO estimates for commutators, Acta Math. Sin. Chinese Ser., 52 (2009), 429–440.
    [9] Z. G. Liu, J. Liu, Boundedness of Calderˊon-Zygmund operators and commutators, Acta Math. Sin. Chinese Ser., 53 (2010), 541–550.
    [10] B. T. Anh, X. T. Duong, On commutators of vector BMO functions and multilinear singular integrals with non-smooth kernels, J. Math. Anal. Appl., 371 (2010), 80–94. https://doi.org/10.1016/j.jmaa.2010.03.058 doi: 10.1016/j.jmaa.2010.03.058
    [11] I. Ekincioglu, C. Keskin, A. Serbetci, Multilinear commutators of Calderón-Zygmund operator on generalized variable exponent Morrey spaces, Positivity, 25 (2021), 1551–1567. https://doi.org/10.1007/s11117-021-00828-3 doi: 10.1007/s11117-021-00828-3
    [12] V. S. Guliyev, A. F. Ismayilova, Calderón-Zygmund operators with kernels of Dini's type and their multilinear commutators on generalized weighted Morrey spaces, Twms J. Pure Appl. Math., 12 (2021), 265–277. https://doi.org/10.1007/s11117-021-00846-1 doi: 10.1007/s11117-021-00846-1
    [13] F. Deringoz, V. S. Guliyev, M. N. Omarova, M. A Ragusa, Calderón-Zygmund operators and their commutators on generalized weighted Orlicz-Morrey spaces, B. Math. Sci., 13 (2023), 2250004. https://doi.org/10.48550/arXiv.2204.13898 doi: 10.48550/arXiv.2204.13898
    [14] D. Q. Zhang, Boundedness of commutators of singular integral operators satisfying a variant of Hörmander's condition, Heilongjiang Univ., 2011.
    [15] Z. Q. Xie, Boundedness of multilinear singular integral operators satisfying a variant of Hörmander's condition, Hunan Univ., 2017.
    [16] J. Pan, Boundedness on Morrey space of multilinear singular integral operators satisfing a variant of Hörmander's condition, J. Math. Inequal., 11 (2017), 99–112. https://doi.org/10.7153/jmi-11-09 doi: 10.7153/jmi-11-09
    [17] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Am. Math. Soc., 165 (1972), 207–226. https://doi.org/10.1090/S0002-9947-1972-0293384-6 doi: 10.1090/S0002-9947-1972-0293384-6
    [18] J. Garciá-Cuerva, J. L. R. de Francia, Weighted norm inequalities and related topics, Amsterdam: North Holland, 1985. https://doi.org/10.1016/s0304-0208(08)x7154-3
    [19] D. Q. Zhang, J. Sun, The boundedness of commutataors satisfying a variant of Hörmander's condition on Hardy spaces, J. Hebei Norm. Univ., 36 (2012), 230–233.
    [20] S. Z. Lu, D. C. Yang, The decomposition of weighted Herz space on Rn and its applications, Sci. China, 38A (1995), 147–158.
    [21] Y. Lin, Z. G. Liu, M. M. Song, Lipschitz estimates for commutators of singular integral operators on weighted Herz spaces, Jordan J. Math. Stat., 3 (2010), 53–64.
    [22] C. H. Wu, M. Zhang, Weighted sharp maximal function inequalities and boundedness of multilinear singular integral operator satisfying a variant of Hörmander's condition, J. Inequal. Appl., 2014 (2014), 1–16. https://doi.org/10.1186/1029-242X-2014-57 doi: 10.1186/1029-242X-2014-57
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1698) PDF downloads(275) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog