In this paper, we establish some boundedness for commutators generated by the singular integral operator satisfying a variant of Hörmander's condition and a weighted BMO function on weighted Hardy spaces and weighted Herz spaces. As an application, we obtain some classical results.
Citation: Jie Sun, Jiamei Chen. Weighted estimates for commutators associated to singular integral operator satisfying a variant of Hörmander's condition[J]. AIMS Mathematics, 2023, 8(11): 25714-25728. doi: 10.3934/math.20231311
[1] | Yanqi Yang, Shuangping Tao, Guanghui Lu . Weighted and endpoint estimates for commutators of bilinear pseudo-differential operators. AIMS Mathematics, 2022, 7(4): 5971-5990. doi: 10.3934/math.2022333 |
[2] | Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051 |
[3] | Naqash Sarfraz, Muhammad Aslam . Some weighted estimates for the commutators of p-adic Hardy operator on two weighted p-adic Herz-type spaces. AIMS Mathematics, 2021, 6(9): 9633-9646. doi: 10.3934/math.2021561 |
[4] | Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for mth order commutators of n−dimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022 |
[5] | Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007 |
[6] | Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888 |
[7] | Dazhao Chen . Endpoint estimates for multilinear fractional singular integral operators on Herz and Herz type Hardy spaces. AIMS Mathematics, 2021, 6(5): 4989-4999. doi: 10.3934/math.2021293 |
[8] | Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139 |
[9] | Pham Thi Kim Thuy, Kieu Huu Dung . Hardy–Littlewood maximal operators and Hausdorff operators on p-adic block spaces with variable exponents. AIMS Mathematics, 2024, 9(8): 23060-23087. doi: 10.3934/math.20241121 |
[10] | Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki . Boundedness of Hardy operators on grand variable weighted Herz spaces. AIMS Mathematics, 2023, 8(10): 24515-24527. doi: 10.3934/math.20231250 |
In this paper, we establish some boundedness for commutators generated by the singular integral operator satisfying a variant of Hörmander's condition and a weighted BMO function on weighted Hardy spaces and weighted Herz spaces. As an application, we obtain some classical results.
In 1952, Calderˊon and Zygmund [1] introduced the concept of singular integral in the study of elliptic partial differential equations and proved the existence of singular integral. Later, Calderˊon and Zygmund [2] studied a class of singular integral of convolution type and proved the Lp-boundedness (1<p<∞).
In the classical Calderˊon-Zygmund theory, the Hörmander's condition [3]
∫|x|>2|y||K(x−y)−K(x)|dx≤C, ∀y≠0. | (1.1) |
plays a foundational role in Harmonic analysis. As the development of singular integrals, the kernel K which does not satisfy the condition (1.1) has been extensively considered. In [4], Grubb and Moore introduced a variant of Hörmander's condition
∫|x|>2|y||K(x−y)−m∑j=1Bj(x)ϕj(y)|dx≤C, | (1.2) |
where Bj and ϕj are appropriate functions and proved the Lp-boundedness for the singular operator with kernel satisfying (1.2).
Later, Trujillo-Gonzˊalez made the kernel's conditions stronger and established the weighted Lp-boundedness of singular integral operator as below.
Theorem A. [5] Let K∈L2(Rn) satisfy
(K1) ‖ˆK‖∞≤C0,
(K2) |K(x)|≤C0|x|n,
(K3) there exist functions B1⋯Bm and Φ={ϕ1,⋯ϕm}⊂L∞(Rn) such that |det[ϕj(yi)]|2∈RH∞(Rnm),
(K4) for a fixed γ>0 and any |x|>2|y|>0,
|K(x−y)−m∑j=1Bj(x)ϕj(y)|≤C0|y|γ|x−y|n+γ. | (1.3) |
For any f∈C∞c(Rn), we define the singular integral operator T related to the kernel K by:
Tf(x)=∫RnK(x−y)f(y)dy. |
Let 1<p<∞, ω∈Ap, then there exists a constant C>0, such that
∫Rn|Tf(x)|pω(x)dx≤C∫Rn|f(x)|pω(x)dx. |
Remark A. When m=1, B1(x)=K(x), ϕ1(y)=1, then (1.2) is exactly Hörmander's condition and (1.3) is the classical Calderˊon-Zygmund kernel.
With the development of singular integral operators, their commutators have been well studied. In 1976, Coifman, Rochberg and Weiss [6] established the boundedness of commutators on some Lp(Rn)(1<p<∞). Let b be a locally integrable function on Rn and let T be a Calderˊon-Zygmund singular integral operator. Consider the commutator Tb defined for suitable functions f by
Tbf(x)=b(x)Tf(x)−T(bf)(x). |
In 2004, Zhou [7] proved that the commutators generated by the singular integral operator and a BMO function are bounded on Hardy spaces. In 2009, Kong and Jiang [8] got the boundedness of commutators generated by the singular integral operator with a homogeneous kernel and a BMO function on weighted Hardy spaces and weighted Herz spaces. In 2010, Liu [9] showed that the commutators generated by the singular integral operator and a BMO function are bounded on Herz-Hardy spaces. For more information about this topic we refer to [10,11,12,13].
In 2012, Zhang [14] studied the commutators generated by the singular integral operator satisfying a variant of Hörmander's condition and a BMO function are bounded on Hardy spaces. In 2015, Xie [15] discussed the boundedness of multilinear operators from Lebesgue spaces to Orlicz spaces when the kernel K satisfies the conditions (K1)–(K4). In 2017, Pan [16] obtained the boundedness of multilinear operators satisfying a variant of Hörmander's condition on Morrey spaces.
Motivated by these results, we will study the boundedness of commutators generated by the singular integral operator satisfying a variant of Hörmander's condition and a weighted BMO function on some function spaces in this paper. Now, we state our main results as follows.
Theorem 1.1. Let T be the singular integral operator with the kernel K satisfying (K1)–(K4). Let γ be as in K4. Suppose that μ∈A1, nn+γ<p≤1 and b∈BMOμ. Then Tb is bounded from HpΦ,b(μ) to Lp(μ1−p).
Remark 1.1. When we take m=1,B1(x)=K(x),ϕ1(y)=1, then the commutator generated by the classical singular integral operator and a weighted BMO function is bounded from Hpb(μ) to Lp(μ1−p).
Theorem 1.2. Let T be the singular integral operator with the kernel K satisfying (K1)–(K4). Suppose that μ∈A1 and b∈BMOμ. Then Tb is bounded from H1Φ(μ) to weak L1(Rn). That is to say, for any λ>0, there exists C>0 such that
|{x∈Rn:|Tbf(x)|>λ}|≤Cλ‖f‖H1Φ(μ). |
Remark 1.2. When we take m=1,B1(x)=K(x),ϕ1(y)=1, then the commutator generated by the classical singular integral operator and a weighted BMO function is bounded from H1(μ) to weak L1(Rn).
Theorem 1.3. Let T be the singular integral operator with the kernel K satisfying (K1)–(K4). Suppose that μ∈A1, 0<p≤∞,1<q<∞, −nδq<η<nδ−nq and b∈BMOμ. Then Tb maps ˙Kη,pq(μ,μ) continuously into ˙Kη,pq(μ,μ1−q).
Remark 1.3. When we take m=1,B1(x)=K(x),ϕ1(y)=1, then the commutator generated by the classical singular integral operator and a weighted BMO function maps ˙Kη,pq(μ,μ) continuously into ˙Kη,pq(μ,μ1−q).
Theorem 1.4. Let T be the singular integral operator with the kernel K satisfying (K1)–(K4). Suppose that μ∈A1, 0<p≤1, 1<q<∞, η=nδ−nq, qδ≠1 and b∈BMOμ. Then Tb maps ˙Kη,pq(μ,μ) continuously into W˙Kη,pq(μ,μ1−q).
Remark 1.4. When we take m=1,B1(x)=K(x),ϕ1(y)=1, η=nδ−nq, then the commutator generated by the classical singular integral operator and a weighted BMO function maps ˙Kη,pq(μ,μ) continuously into W˙Kη,pq(μ,μ1−q).
Throughout this paper, we denote by p′ the conjugate index of p, that is 1p+1p′=1. The letter C, sometimes with additional parameters, will stand for positive constants, not necessarily the same at each occurrence but is independent of the main parameters.
Firstly, let us introduce some important notations that will help us further.
Definition 2.1. [17] A non-negative locally integrable function is called a weight function. Let ω be a weight function, 1<p<∞. If there is a constant C>0, such that for any ball B⊂Rn,
(1|B|∫Bω(x)dx)(1|B|∫Bω(x)−1p−1dx)p−1≤C, |
then we say ω∈Ap. We say ω∈A1, if there is a constant C>0, such that for any ball B⊂Rn,
1|B|∫Bω(x)dx≤Cω(x),a.e.x∈Rn. |
A weight function ω∈A∞ if it satisfies the Ap condition for some 1≤p<∞. The smallest constant satisfying the fomulas above is called Ap constant of ω and we denote it by [ω]Ap.
For 1≤p<q<∞, we have A1⊂Ap⊂Aq and A∞=∪p≥1Ap.
Definition 2.2. [5] Given a positive and locally integrable function g in Rn, we say that g satisfies the reverse Hölder RH∞ condition, in short, g∈RH∞(Rn), if for any cube Q centered at the origin we have
0<supx∈Qg(x)≤C1|Q|∫Qg(x)dx |
with C>0 being an absolute constant independent of Q.
Definition 2.3. [18] Suppose μ∈A∞. We will say that a locally integrable function b(x) belongs to the weighted BMOμ, that is
supB1μ(B)∫B|b(x)−bB|dx≤C<∞, |
where the supremum is taken over all balls B⊂Rn, μ(B)=∫Bμ(x)dx, the smallest constant C is denoted as ‖b‖∗,μ.
For 1≤p,q≤∞, we have
C1‖b‖∗,μ≤supB(1μ(B)∫B|b(x)−bB|pμ(x)1−pdx)1p≤C2‖b‖∗,μ. |
Similar to the definition of the Hardy space related to Φ in [19], we define the weighted Hardy space related to Φ.
Definition 2.4. For 0<p≤1, ω∈A∞ and Φ={ϕ1,⋯,ϕm}⊂L∞(Rn), a function a(x) is called an ω−(p,∞,Φ) atom centered at x0, if
(1)suppa⊂B(x0,r) for some x0∈Rn and r>0,
(2)‖a‖L∞≤ω(B(x0,r))−1p,
(3)∫Rna(x)dx=∫Rna(x)ϕj(x−x0)dx=0,j=1,2,⋯,m.
Definition 2.5. For 0<p≤1 and ω∈A∞, we say that a distribution f on Rn belongs to the weighted Hardy space HpΦ(ω), if in distributional sense, it can be written as f=N∑j=−Nλjaj, where each aj is an ω−(p,∞,Φ) atom, N∈N, λj∈C and N∑j=−N|λj|p<∞. Moreover,
‖f‖HpΦ(ω)=infN∑j=−Nλjaj=f(N∑j=−N|λj|p)1p |
with the infimum taken over all decompositions of f.
Similar to the Definition 2.5, we define the weighted Hardy space related to Φ and b.
Definition 2.6. For 0<p≤1, ω∈A∞, Φ={ϕ1,⋯,ϕm}⊂L∞(Rn) and b is a locally integrable function, a function a(x) is called an ω−(p,∞,Φ,b) atom centered at x0, if
(1)suppa⊂B(x0,r) for some x0∈Rn and r>0,
(2)‖a‖L∞≤ω(B(x0,r))−1p,
(3)∫Rna(x)dx=∫Rna(x)ϕj(x−x0)dx=∫Rna(x)b(x)ϕj(x−x0)dx=0,j=1,2,⋯,m.
Definition 2.7. For 0<p≤1 and ω∈A∞, we say that a distribution f on Rn belongs to the weighted Hardy space HpΦ,b(ω), if in distributional sense, it can be written as f=N∑j=−Nλjaj, where each aj is an ω−(p,∞,Φ,b) atom, N∈N, λj∈C and N∑j=−N|λj|p<∞. Moreover,
‖f‖HpΦ,b(ω)=infN∑j=−Nλjaj=f(N∑j=−N|λj|p)1p |
with the infimum taken over all decompositions of f.
For k∈Z, Bk=B(0,2k) and Ek=Bk∖Bk−1. Let χk=χEk denote the characteristic function of the set Ek.
Definition 2.8. [20] Let η∈R, 0<p<∞, 1<q<∞, ω1 and ω2 be non-negative weighted functions. The homogeneous Herz space ˙Kη,pq(ω1,ω2) is defined by
˙Kη,pq(ω1,ω2)={f∈Lqloc(Rn∖{0},ω2):‖f‖˙Kη,pq(ω1,ω2)<∞}, |
where ‖f‖˙Kη,pq(ω1,ω2)={∞∑k=−∞ω1(Bk)ηpn‖fχk‖pLqω2}1p with the usual modification made when p=∞.
Definition 2.9. [20] Let η∈R, 0<p<∞, 1<q<∞, ω1 and ω2 be non-negative weighted functions. The measurable function f(x) belongs to the weighted weak Herz space W˙Kη,pq(ω1,ω2), if
‖f‖W˙Kη,pq(ω1,ω2)=supλ>0λ{∞∑k=−∞ω1(Bk)ηpnmk(λ,f)pq}1p<∞, |
where mk(λ,f)=ω2({x∈Ek:|f(x)|>λ}) with the usual modification made when p=∞.
Lemma 2.1. [18] Suppose that ω∈A1. Then there exist constant C1,C2>0 and 0<δ<1 for each measurable subset of B⊂Rn such that
C1|E||B|≤ω(E)ω(B)≤C2(|E||B|)δ. |
Lemma 2.2. [8] Suppose that μ∈A1 and b∈BMOμ(Rn). Then there exists a constant C>0 for each measurable subset of B⊂Rn such that
|b2jB−bB|≤C‖b‖∗,μjμ(B)|B|. |
Lemma 2.3. [21] Suppose that μ∈A1 and 1<q<∞. Then there exists a constant C>0 for each measurable subset of B⊂Rn such that
∫2j+1Bμ(x)1−qdx≤|2j+1B|qμ(2j+1B)q−1. |
According to [22], we have the following lemma :
Lemma 2.4. Let T be the singular integral operator with the kernel K satisfying (K1)–(K4). Suppose that 1<p<∞, μ∈A1 and b∈BMOμ. Then Tb is bounded from Lp(μ) to Lp(μ1−p).
Proof of Theorem 1.1. It suffices to prove that, for any μ−(p,∞,Φ,b) atom a, the following inequality holds
‖Tba‖Lp(μ1−p)≤C. | (3.1) |
In fact, if (3.1) holds, then for any f=N∑j=−Nλjaj∈HpΦ,b(μ), where each aj is a μ−(p,∞,Φ,b) atom, since nn+γ<p≤1, we have
‖Tbf‖Lp(μ1−p)=(∫Rn|Tb(N∑j=−Nλjaj)|pμ(y)1−pdy)1p=(∫Rn|N∑j=−NλjTbaj(y)|pμ(y)1−pdy)1p≤(N∑j=−N|λj|p‖Tbaj‖pLp(μ1−p))1p≤C(N∑j=−N|λj|p)1p. |
Then the proof can be completed by taking the infimum for all atomic decompositionns of f.
Now, we need to prove (3.1), suppose that suppa⊂B=B(xB,r). Write
‖Tba‖Lp(μ1−p)≤(∫2B|Tba(x)|pμ(x)1−pdx)1p+(∫(2B)c|Tba(x)|pμ(x)1−pdx)1p:=I1+I2. |
By the Hölder inequality for q>1 and Lemma 2.4, we have
I1≤∫2B|Tba(x)|dxμ(2B)1p−1=(∫2B|Tba(x)|μ(x)1q−1μ(x)1−1qdx)μ(2B)1p−1≤(∫2B|Tba(x)|qμ(x)1−qdx)1q(∫2Bμ(x)dx)1q′μ(2B)1p−1≤‖Tba‖Lq(μ1−q)μ(2B)1q′μ(2B)1p−1≤‖a‖Lq(μ)μ(2B)1q′μ(2B)1p−1≤C‖a‖∞μ(B)1qμ(2B)1q′μ(2B)1p−1≤Cμ(B)−1pμ(B)1qμ(2B)1q′μ(2B)1p−1≤C. |
Let Ck=2k+1B∖2kB
Ip2≤∞∑k=1∫Ck|(Tba)(x)|pμ(x)1−pdx≤∞∑k=1(∫Ck|(Tba)(x)|dx)p(∫Ckμ(x)dx)1−p. |
Write
∫Ck|(Tba)(x)|dx≤∫Ck|b(x)−bB||Ta(x)|dx+∫Ck|T((b−bB)a)(x)|dx:=I21+I22. |
For I21, when y∈B, x∈2k+1B∖2kB, we have |y−x|∼|x−xB|≥2|y−xB|, by the vanishing condition of a, we obtain
I21=∫Ck|b(x)−bB||∫BK(x−y)a(y)dy−m∑j=1∫Ba(y)Bj(x−xB)ϕj(y−xB)dy|dx≤∫Ck|b(x)−bB|(∫B|K(x−y)−m∑j=1Bj(x−xB)ϕj(y−xB)||a(y)|dy)dx≤C∫Ck|b(x)−bB|∫B|y−xB|γ|x−xB|n+γ|a(y)|dydx≤C‖a‖∞|B|2−kγ|2k+1B|−1∫2k+1B|b(x)−bB|dx≤Cμ(B)−1p2−kγ⋅2−(k+1)n⋅(k+1)⋅2(k+1)nμ(B)‖b‖∗,μ≤C‖b‖∗,μ(k+1)2−kγμ(B)1−1p. |
For I22, we have
I22≤∫Ck|∫BK(x−y)[b(y)−bB]a(y)dy−m∑j=1∫Ba(y)[b(y)−bB]Bj(x−xB)ϕj(y−xB)dy|dx≤C‖a‖∞2−kγ|2k+1B|−1∫B|b(y)−bB|dy∫2k+1Bdx≤C‖a‖∞2−kγμ(B)‖b‖∗,μ≤C‖b‖∗,μ2−kγμ(B)1−1p. |
Since nn+γ<p≤1,
I2≤C(∞∑k=1(k+1)p⋅2−kγp⋅μ(B)p−1⋅μ(2k+1B)1−p)1p≤C(∞∑k=1(k+1)p2k(n−np−γp))1p≤C. |
Combining the estimates for I1 and I2, we finish the proof.
Proof of Theorem 1.2. We can write f=N∑j=−Nλjaj∈H1Φ(μ) with each aj being a μ−(1,∞,Φ) atom and N∑j=−N|λj|<∞. Suppose suppaj⊂Bj=B(xj,rj). Write
|Tbf(x)|≤N∑j=−N|λj[b(x)−b2Bj]Taj(x)χ2Bj(x)|+N∑j=−N|λj[b(x)−b2Bj]Taj(x)χ(2Bj)c(x)| +|T(N∑j=−Nλj[b−b2Bj]aj)(x)|:=J1(x)+J2(x)+J3(x). |
By the Hölder inequality and the Theorem A, we obtain
‖[b(⋅)−b2Bj]Taj(⋅)χ2Bj(⋅)‖L1≤∫2Bj|b(x)−b2Bj||Taj(x)|dx≤‖Taj‖L2(μ)(∫2Bj|b(x)−b2Bj|2μ(x)−1dx)12≤‖aj‖L2(μ)μ(2Bj)12‖b‖∗,μ≤C, |
and
‖(b(⋅)−b2Bj)Taj(⋅)χ(2Bj)c(⋅)‖L1 ≤∞∑k=1∫2k+1Bj∖2kBj|b(x)−b2Bj|∫Bj|K(x−s)−m∑j=1Bj(x−xj)ϕj(s−xj)||aj(s)|dsdx ≤C∞∑k=1|Bj|2−kγ|2k+1Bj|−1‖aj‖∞∫2k+1Bj|b(x)−b2Bj|dx ≤C∞∑k=12−kγ2−kn−n‖aj‖∞k2knμ(2Bj)‖b‖∗,μ ≤C∞∑k=1k2−kγμ(Bj)−1μ(2Bj)‖b‖∗,μ ≤C∞∑k=1k2−kγ‖b‖∗,μ ≤C. |
Thus, we have
|{x∈Rn:|Ji(x)|>λ/3}|≤Cλ−1‖Ji‖L1≤Cλ−1(N∑j=−N|λj|), i=1,2. |
Noting that
∫Bj|b(y)−b2Bj||aj(y)|dy≤C‖b‖∗,μ‖a‖∞μ(2Bj)≤C. |
By the weak (1,1) boundedness of T in [4], we obtain
|{x∈Rn:|J3(x)|>λ/3}|≤Cλ−1‖N∑j=−Nλj(b−b2Bj)aj‖L1≤Cλ−1N∑j=−N|λj|. |
Therefore,
|{x∈Rn:|Tbf(x)|>λ}|≤C3∑i=1|{x∈Rn:|Ji(x)|>λ/3}|≤Cλ−1N∑j=−N|λj|. |
Taking the infimum over all decompositions of f, the proof is finished.
Proof of Theorem 1.3. We only consider the case 0<p<∞. When p=∞, we can make appropriate modifications.
‖Tbf‖p˙Kη,pq(μ,μ1−q)≤C∞∑j=−∞μ(Bj)ηpn(j−2∑k=−∞‖Tb(fχk)χj‖Lq(μ1−q))p +C∞∑j=−∞μ(Bj)ηpn(j+1∑k=j−1‖Tb(fχk)χj‖Lq(μ1−q))p +C∞∑j=−∞μ(Bj)ηpn(∞∑k=j+2‖Tb(fχk)χj‖Lq(μ1−q))p:=L1+L2+L3. |
Firstly, we estimate L2. By Lemma 2.4
L2≤C∞∑j=−∞μ(Bj)ηpnj+1∑k=j−1‖fχk‖pLq(μ)≤C‖f‖p˙Kη,pq(μ,μ). |
Obviously
‖Tb(fχk)χj‖Lq(μ1−q)≤C(∫Ej|(b(x)−bBk)∫EkK(x−y)f(y)χk(y)dy|qμ(x)1−qdx)1q +C(∫Ej|∫EkK(x−y)(b(y)−bBk)f(y)χk(y)dy|qμ(x)1−qdx)1q:=H1+H2. |
Now, let us estimate L1, for j≥k+2, by Lemmas 2.1–2.3, we have
H1≤C2−jn‖fχk‖L1(∫Ej|b(x)−bBk|qμ(x)1−qdx)1q≤C2−jn‖fχk‖Lq(μ)(∫Bkμ(x)1−q′dx)1q′(∫Bj|b(x)−bBk|qμ(x)1−qdx)1q≤C2−jn‖fχk‖Lq(μ)|Bk|μ(Bk)−1qμ(Bj)1q(j−k)2(j−k)n(1−δ)≤C2−jn⋅2kn⋅2(j−k)nq⋅(j−k)⋅2(j−k)n(1−δ)‖fχk‖Lq(μ)≤C(j−k)2(j−k)(nq−nδ)‖fχk‖Lq(μ), |
and
H2≤C2−jn∫Ek|(b(y)−bBk)fχk(y)|dy(∫Ejμ(x)1−qdx)1q≤C2−jn‖fχk‖Lq(μ)(∫Bk|b(y)−bBk|q′μ(y)1−q′dy)1q′(∫Bjμ(x)1−qdx)1q≤C2−jn‖fχk‖Lq(μ)μ(Bk)1q′|Bj|μ(Bj)−1q′≤C2nδq′(k−j)‖fχk‖Lq(μ)=C2(j−k)nδ(1q−1)‖fχk‖Lq(μ)=C2(j−k)(nδq−nδ)‖fχk‖Lq(μ). |
When η>0, we have
‖Tb(fχk)χj‖Lq(μ1−q)≤C2(k−j)η(j−k)2(j−k)(η+nq−nδ)‖fχk‖Lq(μ)=C2(k−j)ηW(j,k)‖fχk‖Lq(μ). |
Thus
L1≤C∞∑j=−∞μ(Bj)ηpn(j−2∑k=−∞2(k−j)ηW(j,k)‖fχk‖Lq(μ))p≤C{∞∑j=−∞j−2∑k=−∞μ(Bk)ηpnW(j,k)p‖fχk‖pLq(μ) p≤1∞∑j=−∞(j−2∑k=−∞μ(Bk)ηpnW(j,k)‖fχk‖pLq(μ))(j−2∑k=−∞W(j,k))pp′ p>1≤C∞∑k=−∞μ(Bk)ηpn‖fχk‖pLq(μ)∞∑j=k+2W(j,k)min(p,1)≤C‖f‖p˙Kη,pq(μ,μ). |
When η<0, we have
‖Tb(fχk)χj‖Lq(μ1−q)≤C2(k−j)ηδ(j−k)2(j−k)(ηδ+nq−nδ)‖fχk‖Lq(μ)=C2(k−j)ηδW1(j,k)‖fχk‖Lq(μ). |
Thus
L1≤C∞∑j=−∞μ(Bj)ηpn(j−2∑k=−∞2(k−j)ηδW1(j,k)‖fχk‖Lq(μ))p≤C{∞∑j=−∞j−2∑k=−∞μ(Bk)ηpnW1(j,k)p‖fχk‖pLq(μ) p≤1∞∑j=−∞(j−2∑k=−∞μ(Bk)ηpnW1(j,k)‖fχk‖pLq(μ))(j−2∑k=−∞W1(j,k))pp′ p>1≤C∞∑k=−∞μ(Bk)ηpn‖fχk‖pLq(μ)∞∑j=k+2W1(j,k)min(p,1)≤C‖f‖p˙Kη,pq(μ,μ). |
Lastly, we estimate L3, for k≥j+2, by Lemmas 2.1–2.3, we have
H1≤C2−kn‖fχk‖L1(∫Ej|b(x)−bBk|qμ(x)1−qdx)1q≤C2−kn‖fχk‖Lq(μ)(∫Bkμ(x)1−q′dx)1q′(∫Bj|b(x)−bBk|qμ(x)1−qdx)1q≤C2−kn‖fχk‖Lq(μ)|Bk|μ(Bk)−1q(k−j)μ(Bj)1q‖b‖∗,μ≤C(k−j)2(j−k)nδq‖fχk‖Lq(μ), |
and
H2≤C2−kn(∫Ek|(b(y)−bBk)fχk(y)|dy)(∫Ejμ(x)1−qdx)1q≤C2−kn‖fχk‖Lq(μ)μ(Bk)1q′|Bj|μ(Bj)−1q′≤C2jn−kn⋅2(k−j)nq′‖fχk‖Lq(μ)≤C2(j−k)n(1−1q′)‖fχk‖Lq(μ)≤C2(j−k)nq‖fχk‖Lq(μ). |
When η>0
‖Tb(fχk)χj‖Lq(μ1−q)≤C2(k−j)ηδ(k−j)2(j−k)(ηδ+nδq)‖fχk‖Lq(μ)=C2(k−j)ηδW2(j,k)‖fχk‖Lq(μ). |
Thus
L3≤C∞∑j=−∞μ(Bj)ηpn(∞∑k=j+22(k−j)ηδW2(j,k)‖fχk‖Lq(μ))p≤C{∞∑j=−∞∞∑k=j+2μ(Bk)ηpnW2(j,k)p‖fχk‖pLq(μ) p≤1∞∑j=−∞(∞∑k=j+2μ(Bk)ηpnW2(j,k)‖fχk‖pLq(μ))(∞∑k=j+2W2(j,k))pp′ p>1≤C∞∑k=−∞μ(Bk)ηpn‖fχk‖pLq(μ)k−2∑j=−∞W2(j,k)min(p,1)≤C‖f‖p˙Kη,pq(μ,μ). |
Similarly, when η<0, we have
‖Tb(fχk)χj‖Lq(μ1−q)≤C2(k−j)η(k−j)2(j−k)(η+nδq)‖fχk‖Lq(μ)=C2(k−j)ηW3(j,k)‖fχk‖Lq(μ). |
L3≤C∞∑j=−∞μ(Bj)ηpn(∞∑k=j+22(k−j)ηW3(j,k)‖fχk‖Lq(μ))p≤C{∞∑j=−∞∞∑k=j+2μ(Bk)ηpnW3(j,k)p‖fχk‖pLq(μ) p≤1∞∑j=−∞(∞∑k=j+2μ(Bk)ηpnW3(j,k)‖fχk‖pLq(μ))(∞∑k=j+2W3(j,k))pp′ p>1≤C∞∑k=−∞μ(Bk)ηpn‖fχk‖pLq(μ)k−2∑j=−∞W3(j,k)min(p,1)≤C‖f‖p˙Kη,pq(μ,μ). |
Then we finish the proof.
Proof of Theorem 1.4. For k∈Z, we can write f as
f(x)=k−2∑l=−∞f(x)χl(x)+∞∑l=k−1f(x)χl(x)=f1(x)+f2(x). |
Thus
|Tbf(x)|≤|Tbf1(x)|+|Tbf2(x)|, |
and
‖Tbf‖pW˙Kη,pq(μ,μ1−q) ≤supλ>0λp∞∑k=−∞μ(Bk)pηnμ1−q({x∈Ek:|(b(x)−bBk)Tf1(x)|>λ3})pq +supλ>0λp∞∑k=−∞μ(Bk)pηnμ1−q({x∈Ek:|T((b(x)−bBk)f1)(x)|>λ3})pq +supλ>0λp∞∑k=−∞μ(Bk)pηnμ1−q({x∈Ek:|Tbf2(x)|>λ3})pq :=G1+G2+G3. |
By Lemma 2.4 and 0<p≤1, we obtain
G3≤C∞∑k=−∞μ(Bk)pηn(∫Rn|Tbf2(x)|qμ(x)1−qdx)pq≤C∞∑k=−∞μ(Bk)pηn(∫Rn|f2(x)|qμ(x)dx)pq≤C∞∑k=−∞μ(Bk)pηn(‖fχk−1‖pLq(μ)+∞∑l=k‖fχl‖pLq(μ))≤C{∞∑k=−∞(μ(Bk−1)pηn2pη‖fχk−1‖pLq(μ)+μ(Bl)pηn∞∑l=k2(k−l)pδη‖fχl‖pLq(μ)) qδ>1∞∑k=−∞(μ(Bk−1)pηn2pδη‖fχk−1‖pLq(μ)+μ(Bl)pηn∞∑l=k2(k−l)pη‖fχl‖pLq(μ)) qδ<1≤C∞∑l=−∞μ(Bl)pηn‖fχl‖pLq(μ)≤C‖f‖p˙Kη,pq(μ,μ). |
For G1, by the H¨older inequality and Lemmas 2.1–2.3, we have
G1≤C∞∑k=−∞μ(Bk)pηn(∫Ek|(b(x)−bBk)∫RnK(x−y)f1(y)dy|qμ(x)1−qdx)pq ≤C∞∑k=−∞2−knpμ(Bk)pηn‖f1‖pL1(∫Ek|b(x)−bBk|qμ(x)1−qdx)pq≤C∞∑k=−∞2−knpμ(Bk)pηnk−2∑l=−∞‖fχl‖pLq(μ)|Bl|pμ(Bl)−pqμ(Bk)pq≤C∞∑l=−∞μ(Bl)pηn‖fχl‖pLq(μ)∞∑k=l+2{2(k−l)pn(δ−1) qδ>12(k−l)pn[(δ−1)(1+1q′)] qδ<1≤C‖f‖p˙Kη,pq(μ,μ). |
For G2, by Lemmas 2.1–2.3, we have
G2≤C∞∑k=−∞μ(Bk)pηn(∫Ek|∫RnK(x−y)(b(y)−bBk)f1(y)dy|qμ(x)1−qdx)pq ≤C∞∑k=−∞2−knpμ(Bk)pηnk−2∑l=−∞(∫El|(b(y)−bBk)f(y)χl(y)|dy)p(∫Bkμ(x)1−qdx)pq≤C∞∑k=−∞2−knpμ(Bk)pηnk−2∑l=−∞‖fχl‖pLq(μ)(k−l)pμ(Bl)pq′|Bk|pμ(Bk)−pq′≤C∞∑l=−∞μ(Bl)pηn‖fχl‖pLq(μ)∞∑k=l+2(k−l)p{2npq(k−l)(δ−1) qδ>12npδ(k−l)(δ−1) qδ<1≤C‖f‖p˙Kη,pq(μ,μ). |
Then we finish the proof.
Some new weighted inequalities for commutators related to singular integral operator satisfying a variant of Hörmander's condition are proved. Our results further generalize the corresponding results in [8] and include the unweighted case.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The author would like to thank the referee for his/her invaluable comments and suggestions.
This work was supported by a Research Project of the Basic Scientific Research Expenses for Heilongjiang Provincial Higher Institutions (No.1355ZD010), the Reform and Development Foundation for Local Colleges and Universities of the Central Government (Excellent Young Talents Project of Heilongjiang Province) (No.2020YQ07), the project of Mudanjiang Normal University (No.GP2019006), the Ideology and Politics Project of Postgraduate course (No.KCSZKC-2022026, KCSZAL-2022013) and the project of Scientific Research Team of Education Department of Heilongjiang Province (No.1354MSYTD006; 2019-KYYWF-0909).
All of authors in this article declare no conflict of interest.
[1] |
A. P. Calderón, A. Y. Zygmund, On the existence of certain singular integrals, Acta Math., 88 (1952), 85–139. https://doi.org/10.1007/978-94-009-1045-4_3 doi: 10.1007/978-94-009-1045-4_3
![]() |
[2] | A. P. Calderón, A. Y. Zygmund, On singular integrals, Am. J. Math., 78 (1956), 289–309. https://doi.org/10.1007/978-3-642-10918-8_3 |
[3] |
L. Hörmander, Estimates for translation invariant operators in Lp spaces, Acta Math., 104 (1960), 93–140. https://doi.org/10.1007/BF02547187 doi: 10.1007/BF02547187
![]() |
[4] | D. J. Grubb, C. N. Moore, A variant of Hörmander's condition for singular integrals, Colloq. Math., 73 (1997), 165–172. |
[5] | R. Trujillo-González, Weighted norm inequalities for singular integral operators satisfying a variant of Hörmander's condition, Comment. Math. Univ. Ca., 44 (2003), 137–152. |
[6] |
R. R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611–635. https://doi.org/10.2307/1970954 doi: 10.2307/1970954
![]() |
[7] | W. J. Zhou, Multilinear commutators generated by singular integrals, fractional integrals and smooth functions, Hunan Univ., 2004. |
[8] | X. B. Kong, Y. S. Jiang, Weighted BMO estimates for commutators, Acta Math. Sin. Chinese Ser., 52 (2009), 429–440. |
[9] | Z. G. Liu, J. Liu, Boundedness of Calderˊon-Zygmund operators and commutators, Acta Math. Sin. Chinese Ser., 53 (2010), 541–550. |
[10] |
B. T. Anh, X. T. Duong, On commutators of vector BMO functions and multilinear singular integrals with non-smooth kernels, J. Math. Anal. Appl., 371 (2010), 80–94. https://doi.org/10.1016/j.jmaa.2010.03.058 doi: 10.1016/j.jmaa.2010.03.058
![]() |
[11] |
I. Ekincioglu, C. Keskin, A. Serbetci, Multilinear commutators of Calderón-Zygmund operator on generalized variable exponent Morrey spaces, Positivity, 25 (2021), 1551–1567. https://doi.org/10.1007/s11117-021-00828-3 doi: 10.1007/s11117-021-00828-3
![]() |
[12] |
V. S. Guliyev, A. F. Ismayilova, Calderón-Zygmund operators with kernels of Dini's type and their multilinear commutators on generalized weighted Morrey spaces, Twms J. Pure Appl. Math., 12 (2021), 265–277. https://doi.org/10.1007/s11117-021-00846-1 doi: 10.1007/s11117-021-00846-1
![]() |
[13] |
F. Deringoz, V. S. Guliyev, M. N. Omarova, M. A Ragusa, Calderón-Zygmund operators and their commutators on generalized weighted Orlicz-Morrey spaces, B. Math. Sci., 13 (2023), 2250004. https://doi.org/10.48550/arXiv.2204.13898 doi: 10.48550/arXiv.2204.13898
![]() |
[14] | D. Q. Zhang, Boundedness of commutators of singular integral operators satisfying a variant of Hörmander's condition, Heilongjiang Univ., 2011. |
[15] | Z. Q. Xie, Boundedness of multilinear singular integral operators satisfying a variant of Hörmander's condition, Hunan Univ., 2017. |
[16] |
J. Pan, Boundedness on Morrey space of multilinear singular integral operators satisfing a variant of Hörmander's condition, J. Math. Inequal., 11 (2017), 99–112. https://doi.org/10.7153/jmi-11-09 doi: 10.7153/jmi-11-09
![]() |
[17] |
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Am. Math. Soc., 165 (1972), 207–226. https://doi.org/10.1090/S0002-9947-1972-0293384-6 doi: 10.1090/S0002-9947-1972-0293384-6
![]() |
[18] | J. Garciá-Cuerva, J. L. R. de Francia, Weighted norm inequalities and related topics, Amsterdam: North Holland, 1985. https://doi.org/10.1016/s0304-0208(08)x7154-3 |
[19] | D. Q. Zhang, J. Sun, The boundedness of commutataors satisfying a variant of Hörmander's condition on Hardy spaces, J. Hebei Norm. Univ., 36 (2012), 230–233. |
[20] | S. Z. Lu, D. C. Yang, The decomposition of weighted Herz space on Rn and its applications, Sci. China, 38A (1995), 147–158. |
[21] | Y. Lin, Z. G. Liu, M. M. Song, Lipschitz estimates for commutators of singular integral operators on weighted Herz spaces, Jordan J. Math. Stat., 3 (2010), 53–64. |
[22] |
C. H. Wu, M. Zhang, Weighted sharp maximal function inequalities and boundedness of multilinear singular integral operator satisfying a variant of Hörmander's condition, J. Inequal. Appl., 2014 (2014), 1–16. https://doi.org/10.1186/1029-242X-2014-57 doi: 10.1186/1029-242X-2014-57
![]() |