Processing math: 64%
Research article Special Issues

Boundedness of sublinear operators on weighted grand Herz-Morrey spaces

  • In this paper, we introduce weighted grand Herz-Morrey type spaces and prove the boundedness of sublinear operators and their multilinear commutators on these spaces. The results are still new even in the unweighted setting.

    Citation: Wanjing Zhang, Suixin He, Jing Zhang. Boundedness of sublinear operators on weighted grand Herz-Morrey spaces[J]. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888

    Related Papers:

    [1] Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352
    [2] Yueping Zhu, Yan Tang, Lixin Jiang . Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652
    [3] Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139
    [4] Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051
    [5] Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for $ m $th order commutators of $ n- $dimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022
    [6] Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki . Boundedness of Hardy operators on grand variable weighted Herz spaces. AIMS Mathematics, 2023, 8(10): 24515-24527. doi: 10.3934/math.20231250
    [7] Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007
    [8] Babar Sultan, Mehvish Sultan, Mazhar Mehmood, Fatima Azmi, Maryam Ali Alghafli, Nabil Mlaiki . Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent. AIMS Mathematics, 2023, 8(1): 752-764. doi: 10.3934/math.2023036
    [9] Yanqi Yang, Qi Wu . Vector valued bilinear Calderón-Zygmund operators with kernels of Dini's type in variable exponents Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 25688-25713. doi: 10.3934/math.20231310
    [10] Mehvish Sultan, Babar Sultan, Ahmad Aloqaily, Nabil Mlaiki . Boundedness of some operators on grand Herz spaces with variable exponent. AIMS Mathematics, 2023, 8(6): 12964-12985. doi: 10.3934/math.2023653
  • In this paper, we introduce weighted grand Herz-Morrey type spaces and prove the boundedness of sublinear operators and their multilinear commutators on these spaces. The results are still new even in the unweighted setting.



    Motivated by applications to fluid dynamics, variational integrals and partial differential equations with non-standard growth conditions, many research papers focus on the function spaces with variable exponent in harmonic analysis. As a special case of the Musielak-Orlicz spaces, variable exponent Lebesgue spaces Lq() (together with Sobolev spaces built upon them) were first studied in [1] and some of the properties of the Lebesgue spaces were readily generalized to Lq(). Subsequently, besides the variable Lebesgue and Sobolev spaces, there are diverse spaces with variable exponent were introduced and studied. For example, see [2] for variable exponent Bessel potential spaces, the variable exponent Besov and Triebel-Lizorkin spaces were defined on [3,4,5], and the variable exponent Morrey spaces and Campanato spaces were also introduced on [6,7]. The list is not exhausted.

    Herz spaces with variable exponent was initially defined by Izuki [8], who used the Haar functions to obtain wavelet characterization of this spaces. Later, Izuki [9] established the boundedness of sublinear operators and their commutators on Herz spaces with variable exponent. As a generalization, Herz-Morrey spaces with variable exponent also were introduced by Izuki in [10]. Indeed, Izuki established the boundedness of vector-valued sublinear operators satisfying a size condition on Herz-Morrey spaces with variable exponent M˙Kα,λp,q(). Furthermore, Wang and Xu [11] generalized Izuki's result for the wighted Herz-Morrey spaces with variable exponent M˙Kα(),λp(),q()(ω).

    Recently, Sultan et al. [12] introduced weighted grand Herz space ˙Kα,p),θq()(ω) and they obtained the boundedness of fractional integrals. Inspired by the results of [11,12], the aim of this paper is to introduce the weighted grand Herz-Morrey spaces and prove the boundedness of sublinear operators and their multilinear commutators on these spaces.

    The paper is organized as follows. In Section 2, we will recall some related definitions and auxiliary lemmas, including some basic notions regarding Lebesgue space with variable exponent and grand Lebesgue sequence spaces which are the main ingredients to define weighted grand Herz-Morrey spaces. In Section 3, we introduce the concept of weighted grand Herz-Morrey spaces and investigate the relationship between weighted grand Herz-Morrey spaces and weighted Herz-Morrey spaces. In Section 4, we prove the boundedness of sublinear operators with certain weak size conditions on weighted grand Herz-Morrey spaces. As an application, we obtain the boundedness estimation for some classical sublinear operators on weighted grand Herz-Morrey spaces. Finally, basing on the theories of variable exponent and the generalization of BMO norm, we prove the boundedness for multilinear commutators of sublinear operators on weighted grand Herz-Morrey spaces in Section 5.

    Throughout this paper, we denote χk=χRk,Rk=BkBk1 and Bk={xRn:|x|2k} for all kZ. Constants (often different constant in the same series of inequalities) will mainly be denoted by c or C.fg means that fCg and fg means that fgf.

    In this section, we will recall some necessary definitions and auxiliary results.

    To begin with, we recall some basic definitions and results on the variable exponent Lebesgue spaces. We can refer to the monographs [13,14] for more informations. Let q():Rn[1,) be a measurable function. Lq()(Rn) denotes the spaces of all measurable functions f on Rn such that

    Iq()(f):=Rn|f(x)|q(x)dx<.

    This is Banach space with respect to the norm

    fLq()(Rn)=inf{λ>0:Iq()(f/λ)1}.

    Given an open set ΩRn, the space Lq()loc(Ω) is defined by

    Lq()loc(Ω)={f:fLq()(K)forallcompactsubsetsKΩ}.

    For conciseness, we denote by P(Rn) the set of all measurable functions q(x) on Rn with range in [1,) such that

    1<qq(x)q+<, (2.1)
    B(Rn):={q()P(Rn):MisboundedonLq()(Rn)},

    where M is the Hardy-Littlewood maximal operator defined by

    Mf(x)=supxRn,r>0rnB(x,r)|f(y)|dy.

    A real-valued measurable function g():Rn(0,) is called globally log-Hölder continuous if there exists a constant Clog>0 such that

    |g(x)g(y)|Cloglog(e+1|xy|),x,yRn, (2.2)

    if, for some g(0,) and Clog>0, there hold

    |g(x)g(0)|Cloglog(e+1|x|),xRn, (2.3)
    |g(x)g|Cloglog(e+|x|),xRn, (2.4)

    then we say g() is log-Hölder continuous at the origin (or has a log decay at the origin) and at infinity (or has a log decay at infinity), respectively.

    The set P0(Rn) consists of all measurable functions q() satisfying q>0 and q+<. By Plog0(Rn) and Plog(Rn) can be denoted the class of exponents q()P(Rn), which satisfies conditions (2.3) and (2.4), respectively. Plog(Rn) is the set of functions q()P(Rn) satisfying conditions (2.3) and (2.4), with q:=lim|x|q(x). In particular, we note that if q()Plog(Rn) with 1<qq+<, then the Hardy-Littlewood maximal operator M is bounded on Lq()(Rn), namely, q()B(Rn), see [14,15,16].

    Lemma 2.1. [1] (Generalized Hölder's inequality) Let q()P(Rn),fLq()(Rn) and gLq()(Rn), the generalized Hölder's inequality holds in the form

    Rn|f(x)g(x)|dxrpfLq()(Rn)gLq()(Rn), (2.5)

    where rp=1+1/q1/q+.

    Let q()P(Rn) and ω be a nonnegative measurable function on Rn. Then the weighted variable exponent Lebesgue space Lq()(ω) is the set of all complex-valued measurable functions f such that fωLq(). The space Lq()(ω) is a Banach space equipped with the norm

    fLq()(ω):=fωLq().

    Lemma 2.2. [11] Let q()P(Rn). A positive measurable function ωAq(), if there exists a positive constant C for all balls B in Rn such that

    1BωχBLq()ω1χBLq()C.

    The variable Muckenhoupt Aq() was introduced by Cruz-Uribe et al. in [17]. It is easy to see that if q()P(Rn) and ωAq(), then ω1Aq().

    Lemma 2.3. [18] Let q()Plog(Rn),ωAq(). Then there exist constants δ1,δ2(0,1) and C>0, such that for all balls in Rn and all measurable subsets SB,

    χSLq()(ω)χBLq()(ω)C(|S||B|)δ1,
    χSLq()(ω1)χBLq()(ω1)C(|S||B|)δ2.

    A locally integrable function b is called a BMO function, if it satisfies

    b:=supxRn,r>01|B|B|b(y)bB|dy<,

    where B is a ball-centered at x and radius of r, bB=1|B|Bb(t)dt.

    Given a positive integer m and 1jm, we denote by Cmj the family of all finite subsets σ={σ(1),,σ(j)} of {1,,m} with j different elements. For any σCmj, the complementary sequence σc={1,,m}σ. For b=(b1,,bm) and σ={σ(1),,σ(j)}Cmj with 1jm, we denote

    bσ:=(bσ(1),,bσ(j)),[b(x)b(y)]σ:=[bσ(1)(x)bσ(1)(y)][bσ(j)(x)bσ(j)(y)],[(b)Bb(y)]σ:=[(bσ(1))Bbσ(1)(y)][(bσ(j))Bbσ(j)(y)],bσ=bσ(1)bσ(j)forbσ(i)BMO(Rn).

    In particular,

    b=b1bm.

    Lemma 2.4. Let ωAq(),q()B(Rn),biBMO(Rn),i=1,2,...,m,k>j(k,jN). Then we have

    supBRn1χBLq()(ω)mi=1(bi(bi)B)χBLq()(ω)mi=1bi,

    and

    mi=1(bi(bi)Bj)χBkLq()(ω)(kj)mmi=1biχBkLq()(ω).

    Lemma 2.4 is a generalization of the well-known properties for BMO spaces (see [19]) and it's also a generalized version of Izuki's and Wang's results in [9,20].

    In this subsection, we recall definition of the weighted Herz-Morrey spaces with variable exponent.

    Definition 2.1. [11] Let 0λ<,0<p<,q()P0(Rn), α():RnR,andα()L(Rn).

    (i) The homogeneous weighted Herz-Morrey space M˙Kα(),λp,q()(ω) with variable exponent is defined by

    M˙Kα(),λp,q()(ω)={fLq()loc(Rn{0},ω):fM˙Kα(),λp,q()(ω)<},

    where

    fM˙Kα(),λp,q()(ω):=supk0Z2k0λ(k0k=2kα()fχkpLq()(ω))1p.

    (ii) The non-homogeneous weighted Herz-Morrey space MKα(),λp,q()(ω) with variable exponent is defined by

    MKα(),λp,q()(ω)={fLq()loc(Rn,ω):fMKα(),λp,q()(ω)<},

    where

    fMKα(),λp,q()(ω):=supk0N02k0λ(k0k=02kα()fχkpLq()(ω))1p.

    In this subsection, we introduce grand Lebesgue sequence space. X stands for one of the sets Zn,Z,N and N0.

    Definition 2.2. [21] Let 1p< and θ>0. The grand Lebesgue sequence space lp),θ is defined by the norm

    xlp),θ(X):=supε>0(εθkX|xk|p(1+ε))1p(1+ε)=supε>0εθp(1+ε)xlp(1+ε)(X),

    where x={xk}kX.

    Note that the following nesting properties hold:

    lp(1ε)lplp),θ1lp),θ2lp(1+δ), (2.6)

    for 0<ε<1p,δ>0 and 0<θ1θ2.

    In this section, we give the definition of weighted grand Herz-Morrey spaces in a natuaral way from Definition 2.2.

    Definition 3.1. Let 0λ<,kZ,1p<,q()P0(Rn),α():RnR,α()L(Rn) and θ>0. We define the homogeneous weighted grand Herz-Morrey space by

    M˙Kα(),λ,θp),q()(ω)={fLq()loc(Rn{0},ω):fM˙Kα(),λ,θp),q()(ω)<},

    where

    fM˙Kα(),λ,θp),q()(ω):=supε>0supk0Z2k0λ(εθk0k=2kα()fχkp(1+ε)Lq()(ω))1p(1+ε)=supε>0εθp(1+ε)fM˙Kα(),λ,θp(1+ε),q()(ω).

    The non-homogeneous weighted grand Herz-Morrey space by

    MKα(),λ,θp),q()(ω)={fLq()loc(Rn,ω):fMKα(),λ,θp),q()(ω)<},

    where

    fMKα(),λ,θp),q()(ω):=supε>0supk0N02k0λ(εθk0k=02kα()fχkp(1+ε)Lq()(ω))1p(1+ε)=supε>0εθp(1+ε)fMKα(),λ,θp(1+ε),q()(ω).

    Remark 3.1. From Definition 3.1, it is not hard to see that if α()=c and λ=0, M˙Kα(),λ,θp),q()(ω)=˙Kα,p),θq()(ω) is weighted grand Herz space with variable exponent in [12]. If α(),q() are constants and λ=0, then M˙Kα(),λ,θp),q()(ω)=˙Kα,p),θq(ω) in [22]. When θ=0, the weighed grand Herz-Morrey space M˙Kα(),λ,θp),q()(ω) is weighed Herz-Morrey space in [11]. In the meantime, there is a analog for the non-homogeneous case.

    In the following theorem, we prove that homogeneous weighed Herz-Morrey space is contained in homogeneous weighed grand Herz-Morrey space.

    Theorem 3.1. For q()P0(Rn), λ[0,), kZ, α():RnR,α()L(Rn) and 1p<. We have M˙Kα(),λp,q()(ω)M˙Kα(),λ,θp),q()(ω), θ>0.

    Proof. Let fM˙Kα(),λp,q()(ω), from (2.6), we can obtained that

    fM˙Kα(),λ,θp),q()(ω)=supε>0supk0Z2k0λ(εθk0k=2kα()fχkp(1+ε)Lq()(ω))1p(1+ε)=supk0Z2k0λ2kα()fχkLq()(ω)lp),θCsupk0Z2k0λ2kα()fχkLq()(ω)lp=CfM˙Kα(),λp,q()(ω).

    In this section, we show that sublinear operators are bounded on homogeneous weighted grand Herz-Morrey spaces. To this end, we need the following lemma.

    Lemma 4.1. Let q()P0(Rn), ω be a weight, λ[0,), α():RnR,α()L(Rn), kZ and 1p<. If α() is log-Hölder continuous both at the origin and at infinity, then

    fM˙Kα(),λ,θp),q()(ω)max{supε>0supk00,k0Z2k0λ(εθk0k=2kα(0)p(1+ε)fχkp(1+ε)Lq()(ω))1p(1+ε),supε>0supk0>0,k0Z2k0λ(εθ1k=2kα(0)p(1+ε)fχkp(1+ε)Lq()(ω)+εθk0k=02kαp(1+ε)fχkp(1+ε)Lq()(ω))1p(1+ε)}.

    The proof of this lemma is essentially similar to the proof of Proposition 3.8 in [23] of ˙Kα(),λp,q()(Rn) space. Indeed, when α()L(Rn) and α() is log-Hölder continuous both at the origin and at infinity, there exist positive constants C1, C2 such that if k0 and xRk, then C12kα(0)2kα(x)C22kα(0); if k>0 and xRk, then C12kα2kα(x)C22kα. Thus, we obtain Lemma 4.1, which is also true for non-homogeneous weighted grand Herz-Morrey space.

    Theorem 4.2. Let 1<p<,q()Plog(Rn),ωAq(), α()L(Rn)Plog0(Rn)Plog(Rn)P0(Rn) such that nδ1<α(0),α<nδ2, where 0<δ1,δ2<1 be the constants in Lemma 2.2. Suppose that sublinear operator T satisfies the size conditions

    |Tf(x)|fL1(Rn)/|x|n, (4.1)

    when suppfRk and |x|2k+1 with kZ and

    |Tf(x)|2knfL1(Rn), (4.2)

    when suppfRk and |x|2k2 with kZ. If T is bounded on Lq()(ω), then T is bounded on M˙Kα(),λ,θp),q()(ω).

    Proof. Let fM˙Kα(),λ,θp),q()(ω). We decompose

    f(x)=l=f(x)χl(x).

    From Lemma 4.1, we have

    TfM˙Kα(),λ,θp),q()(ω)max{supε>0supk00,k0Z2k0λ(εθk0k=2kα(0)p(1+ε)T(f)χkp(1+ε)Lq()(ω))1p(1+ε),supε>0supk0>0,k0Z2k0λ(εθ1k=2kα(0)p(1+ε)T(f)χkp(1+ε)Lq()(ω)+εθk0k=02kαp(1+ε)T(f)χkp(1+ε)Lq()(ω))1p(1+ε)}=:max{E,F+G},

    where

    E=supε>0supk00,k0Z2k0λ(εθk0k=2kα(0)p(1+ε)(χkl=T(fχl)Lq()(ω))p(1+ε))1p(1+ε),F=supε>0supk0>0,k0Z2k0λ(εθ1k=2kα(0)p(1+ε)(χkl=T(fχl)Lq()(ω))p(1+ε))1p(1+ε),G=supε>0supk0>0,k0Z2k0λ(εθk0k=02kαp(1+ε)(χkl=T(fχl)Lq()(ω))p(1+ε))1p(1+ε).

    Since the estimate of F is essentially similar to the estimate of E, it suffices to show that E and G are bounded on homogeneous weighted grand Herz-Morrey space. It is easy to see that

    E3i=1Ei,G3i=1Gi,

    where

    E1=supε>0supk00,k0Z2k0λ(εθk0k=2kα(0)p(1+ε)(k2l=χkT(fχl)Lq()(ω))p(1+ε))1p(1+ε),E2=supε>0supk00,k0Z2k0λ(εθk0k=2kα(0)p(1+ε)(k+1l=k1χkT(fχl)Lq()(ω))p(1+ε))1p(1+ε),E3=supε>0supk00,k0Z2k0λ(εθk0k=2kα(0)p(1+ε)(l=k+2χkT(fχl)Lq()(ω))p(1+ε))1p(1+ε),G1=supε>0supk0>0,k0Z2k0λ(εθk0k=02kαp(1+ε)(k2l=χkT(fχl)Lq()(ω))p(1+ε))1p(1+ε),G2=supε>0supk0>0,k0Z2k0λ(εθk0k=02kαp(1+ε)(k+1l=k1χkT(fχl)Lq()(ω))p(1+ε))1p(1+ε),G3=supε>0supk0>0,k0Z2k0λ(εθk0k=02kαp(1+ε)(l=k+2χkT(fχl)Lq()(ω))p(1+ε))1p(1+ε).

    Firstly, we consider E1. For a.e. xRk with kZ and lk2, from size condition of T and generalized Hölder's inequality, it follows that

    |T(fχl)(x)|2knRl|f(y)|dy2knfχlωLq()(Rn)χlω1Lq()(Rn)2knfχlLq()(ω)χlLq()(ω1). (4.3)

    By Lemma 2.2 and Lemma 2.3, we get

    χkT(fχl)Lq()(ω)2knfχlLq()(ω)χlLq()(ω1)χkLq()(ω)2knfχlLq()(ω)χlLq()(ω1)|Bk|χk1Lq()(ω1)2(lk)nδ2fχlLq()(ω). (4.4)

    From (4.4), it follows that

    E1supε>0supk00,k0Z2k0λ(εθk0k=2kα(0)p(1+ε)(k2l=fχlLq()(ω)2(lk)nδ2)p(1+ε))1p(1+ε)supε>0supk00,k0Z2k0λ(εθk0k=(k2l=2α(0)lfχlLq()(ω)2v(lk))p(1+ε))1p(1+ε),

    where v:=nδ2α(0)>0. And then, by Hölder's inequality, Fubini's theorem for series and 2p(1+ε)<2p, we obtain that

    E1supε>0supk00,k0Z2k0λ(εθk0k=(k2l=2α(0)lp(1+ε)fχlp(1+ε)Lq()(ω)2vp(1+ε)(lk)/2)×(k2l=2v(lk)(p(1+ε))/2)p(1+ε)/(p(1+ε)))1p(1+ε)supε>0supk00,k0Z2k0λ(εθk0k=(k2l=2α(0)lp(1+ε)fχlp(1+ε)Lq()(ω)2v(lk)p(1+ε)/2))1p(1+ε)supε>0supk00,k0Z2k0λ(εθk0l=2α(0)lp(1+ε)fχlp(1+ε)Lq()(ω)k0k=l+22v(lk)p(1+ε)/2)1p(1+ε)supε>0supk00,k0Z2k0λ(εθk0l=2α(0)lp(1+ε)fχlp(1+ε)Lq()(ω)k0k=l+22v(lk)p/2)1p(1+ε)supε>0supk00,k0Z2k0λ(εθk0l=2lα(0)p(1+ε)fχlp(1+ε)Lq()(ω))1p(1+ε)fM˙Kα(),λ,θp),q()(ω).

    Next we show E2, since the operator T is bounded on Lq()(ω), we get

    E2supε>0supk00,k0Z2k0λ(εθk0k=2kα(0)p(1+ε)fχkp(1+ε)Lq()(ω))1p(1+ε)fM˙Kα(),λ,θp),q()(ω).

    Now we turn to estimate E3. For each kZ,lk+2 and a.e. xRk, size condition of T and generalized Hölder's inequality imply that

    |T(fχl)(x)|2lnRl|f(y)|dy2lnfχlωLq()(Rn)χlω1Lq()(Rn)2lnfχlLq()(ω)χlLq()(ω1). (4.5)

    Splitting E3 by means of Minkowski's inequality, we deduce

    E3supε>0supk00,k0Z2k0λ(εθk0k=2kα(0)p(1+ε)(1l=k+2χkT(fχl)Lq()(ω))p(1+ε))1p(1+ε)+supε>0supk00,k0Z2k0λ(εθk0k=2kα(0)p(1+ε)(l=0χkT(fχl)Lq()(ω))p(1+ε))1p(1+ε)=:E31+E32.

    By Lemma 2.2 and Lemma 2.3, we have

    χkT(fχl)Lq()(ω)2lnfχlLq()(ω)χlLq()(ω1)χkLq()(ω)2lnfχlLq()(ω)χkLq()(ω)|Bl|χl1Lq()(ω)2(kl)nδ1fχlLq()(ω). (4.6)

    For E31, using (4.6) we get

    E31supε>0supk00,k0Z2k0λ(εθk0k=(1l=k+22kα(0)2(kl)nδ1fχlLq()(ω))p(1+ε))1p(1+ε)supε>0supk00,k0Z2k0λ(εθk0k=(1l=k+22lα(0)fχlLq()(ω)2kα(0)lα(0)+(kl)nδ1)p(1+ε))1p(1+ε)supε>0supk00,k0Z2k0λ(εθk0k=2lα(0)p(1+ε)(1l=k+2fχlLq()(ω)2(nδ1+α(0))(kl))p(1+ε))1p(1+ε)supε>0supk00,k0Z2k0λ(εθk0k=(1l=k+22lα(0)p(1+ε)fχlLq()(ω)2d(kl))p(1+ε))1p(1+ε),

    where d:=nδ1+α(0)>0. Then applying Hölder's inequality, Fubini's theorem for series and 2p(1+ε)<2p, we obtain that

    E31supε>0supk00,k0Z2k0λ(εθk0k=(1l=k+22α(0)lp(1+ε)fχlp(1+ε)Lq()(ω)2dp(1+ε)(kl)/2)×(1l=k+22d(kl)(p(1+ε))/2)p(1+ε)/(p(1+ε)))1p(1+ε)supε>0supk00,k0Z2k0λ(εθk0k=(1l=k+22α(0)lp(1+ε)fχlp(1+ε)Lq()(ω)2d(kl)p(1+ε)/2))1p(1+ε)supε>0supk00,k0Z2k0λ(εθk0l=2α(0)lp(1+ε)fχlp(1+ε)Lq()(ω)l2k=2d(kl)p(1+ε)/2)1p(1+ε)supε>0supk00,k0Z2k0λ(εθk0l=2α(0)lp(1+ε)fχlp(1+ε)Lq()(ω)l2k=2d(kl)p/2)1p(1+ε)supε>0supk00,k0Z2k0λ(εθk0l=2lα(0)p(1+ε)fχlp(1+ε)Lq()(ω))1p(1+ε)fM˙Kα(),λ,θp),q()(ω).

    On the other hand, applying Hölder's inequality, (4.6) and note that h:=nδ1+α>0, for E32 we get

    E32supε>0supk00,k0Z2k0λ(εθk0k=2kα(0)p(1+ε)(l=02(kl)nδ1fχlLq()(ω))p(1+ε))1p(1+ε)supε>0supk00,k0Z2k0λ(εθk0k=2k(α(0)+nδ1)p(1+ε)(l=02lnδ1fχlLq()(ω))p(1+ε))1p(1+ε)supε>0supk00,k0Z2k0λ(εθ(l=02lαfχlLq()(ω)2lh)p(1+ε))1p(1+ε)supε>0supk00,k0Z2k0λ(εθ(l=02lαp(1+ε)fχlp(1+ε)Lq()(ω))×(l=02lh(p(1+ε)))p(1+ε)/(p(1+ε)))1p(1+ε)fM˙Kα(),λ,θp),q()(ω).

    This combine the estimate of E31 implies that E3fM˙Kα(),λ,θp),q()(ω). Furthermore, we can get EfM˙Kα(),λ,θp),q()(ω).

    Next, we consider G1. By the notion of G1, splitting G1 as follows

    G1supε>0supk0>0,k0Z2k0λ(εθk0k=02kα(0)p(1+ε)(1l=χkT(fχl)Lq()(ω))p(1+ε))1p(1+ε)+supε>0supk0>0,k0Z2k0λ(εθk0k=02kα(0)p(1+ε)(k2l=0χkT(fχl)Lq()(ω))p(1+ε))1p(1+ε)=:G11+G12.

    To estimate G11, by (4.4) and the fact that e:=nδ2α>0, we get

    G11supε>0supk0>0,k0Z2k0λ(εθk0k=02kαp(1+ε)(1l=fχlLq()(ω)2(lk)nδ2)p(1+ε))1p(1+ε)supε>0supk0>0,k0Z2k0λ(εθk0k=02k(αnδ2)p(1+ε)(1l=fχlLq()(ω)2lnδ2)p(1+ε))1p(1+ε)supε>0supk0>0,k0Z2k0λ(εθ(1l=fχlLq()(ω)2lnδ2)p(1+ε))1p(1+ε)supε>0supk0>0,k0Z2k0λ(εθ(1l=2lα(0)fχlLq()(ω)2lv)p(1+ε))1p(1+ε).

    According to Hölder inequality and noting that v: = n\delta_{2}-\alpha(0) > 0 , we further have

    \begin{align*} \rm G_{11}&\lesssim \sup\limits_{\varepsilon > 0}\sup\limits_{k_{0} > 0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda} \left({\varepsilon^{\theta}}\left({\sum\limits_{l = -\infty}^{-1}2^{l\alpha(0)p(1+\varepsilon)}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}^{p(1+\varepsilon)}}\right)\right.\\ &\times\left.{\left(\sum\limits_{l = -\infty}^{-1}2^{lv(p(1+\varepsilon))'}\right)^{p(1+\varepsilon)/(p(1+\varepsilon))'}}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim\|f\|_{M\dot{K}_{p),q(\cdot)}^{\alpha(\cdot),\lambda,\theta}(\omega)}. \end{align*}

    The estimate for \rm G_{12} follows from a similar method to \rm E_{1} and using the fact that e: = n\delta_{2}-\alpha_{\infty} > 0, k > 0 . So we cancel the proof of \rm G_{12} .

    For \rm G_{2} , in the view of the boundedness of T on L^{q(\cdot)}(\omega) , we obtain that

    \begin{align*} \rm G_{2} &\lesssim \sup\limits_{\varepsilon > 0}\sup\limits_{k_{0} > 0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda}\left(\varepsilon^{\theta}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha_{\infty}p(1+\varepsilon)}\|f\chi_{k}\|_{L^{q(\cdot)}(\omega)}^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim\|f\|_{M\dot{K}_{p),q(\cdot)}^{\alpha(\cdot),\lambda,\theta}(\omega)}. \end{align*}

    We cancel the proof of \rm G_{3} . Since the estimate for \rm G_{3} can be obtained by similar way to \rm E_{31} and note that h: = n\delta_{1}+\alpha_{\infty} > 0, \; k > 0.

    Therefore, combining the estimates for \rm E and \rm G to deduce that

    \begin{equation*} \|Tf\|_{M\dot{K}_{p),q(\cdot)}^{\alpha(\cdot),\lambda,\theta}(\omega)}\lesssim\|f\|_{M\dot{K}_{p),q(\cdot)}^{\alpha(\cdot),\lambda,\theta}(\omega)}. \end{equation*}

    This finishes the proof of Theorem 4.2.

    Corollary 4.1. Let p, \alpha(\cdot) and q(\cdot) as in Theorem 4.2. If a sublinear operator T satisfies the condition

    \begin{equation} |Tf(x)|\lesssim \int_{\mathbb{R}^{n}}\frac{|f(y)|}{|x-y|^{n}}{\rm d}y,\; \; x\notin {\rm supp}f \end{equation} (4.7)

    for any integrable function f with compact support and T is bounded on L^{q(\cdot)}(\omega) , then T is bounded on {M\dot{K}_{p), q(\cdot)}^{\alpha(\cdot), \lambda, \theta}(\omega)} .

    Remark 4.1. We remark (4.7) is satisfied by many operators in harmonic analysis, such as Calder \acute{o} n-Zygmund operators, the Carleson maximal operator and Bochner-Riesz means and so on. In particular, the Hardy-Littlewood maximal function also satisfies the hypotheses of Theorem 4.2. Due to the proof for the non-homogenous case can be treated by the similar method, in this article, our results are valid for the homogenous weighted grand Herz-Morrey space.

    In this section, we study the boundedness for multilinear commutators of sublinear operators on homogeneous weighted grand Herz-Morrey space.

    Let \boldsymbol{b} = (b_{1}, b_{2}, \cdot\cdot\cdot, b_{m}), \; {b_{j}}\in {\rm BMO}(\mathbb{R}^{n}), \; j\in \{1, 2, \cdot\cdot\cdot, m\}, \; m\in \mathbb{N}, \; x\notin \rm supp \; f . The multilinear commutators of sublinear operators T^{\boldsymbol{b}} is defined as

    \begin{equation*} T^{\boldsymbol{b}}(f)(x) = \int_{\mathbb{R}^{n}}\prod\limits_{j = 1}^{m}|b_{j}(x)-b_{j}(y)|K(x,y)f(y){\rm d}y, \end{equation*}

    where K(x, y) is the integral kernel of the operator T , see [24].

    Theorem 5.1. Let \boldsymbol{b} = (b_{1}, b_{2}, \cdot\cdot\cdot, b_{m}), \; {b_{j}}\in {\rm BMO}(\mathbb{R}^{n}), \; j\in \{1, 2, \cdot\cdot\cdot, m\}, \; m\in \mathbb{N}. For 1 < p < \infty, \; q(\cdot)\in \mathcal{P}^{\rm log}(\mathbb{R}^{n}), \; \omega\in A_{q(\cdot)} , \alpha(\cdot)\in L^{\infty}(\mathbb{R}^{n})\cap \mathcal{P}^{\rm log}_{0}(\mathbb{R}^{n})\cap \mathcal{P}^{\rm log}_{\infty}(\mathbb{R}^{n})\cap \mathcal{P}_{0}(\mathbb{R}^{n}) , such that -n\delta_{1} < \alpha(0), \alpha_{\infty} < n\delta_{2} , where 0 < \delta_{1}, \delta_{2} < 1 be the constants in Lemma 2.3. Suppose that sublinear operator T satisfying the size conditions (4.1) and (4.2). If T^{\boldsymbol{b}} is bounded on L^{q(\cdot)}(\omega) , then T^{\boldsymbol{b}} is bounded on {M\dot{K}_{p), q(\cdot)}^{\alpha(\cdot), \lambda, \theta}(\omega)} .

    Proof. Let f\in{M\dot{K}_{p), q(\cdot)}^{\alpha(\cdot), \lambda, \theta}(\omega)} , we decompose

    f(x) = \sum\limits_{l = -\infty}^{\infty}f(x)\chi_{l}(x).

    From Lemma 4.1, we have

    \begin{align*} \|T^{\boldsymbol{b}}f\|_{M\dot{K}_{p),q(\cdot)}^{\alpha(\cdot),\lambda,\theta}(\omega)}\approx &{\rm max}\Big\{\sup\limits_{\varepsilon > 0}{\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}}2^{-k_{0}\lambda}\Big(\varepsilon^{\theta}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0)p(1+\varepsilon)} \|T^{\boldsymbol{b}}(f)\chi_{k}\|_{L^{q(\cdot)}(\omega)}^{p(1+\varepsilon)}\Big)^{\frac{1}{p(1+\varepsilon)}},\\ &\sup\limits_{\varepsilon > 0}{\sup\limits_{k_{0} > 0,k_{0}\in{\mathbb{Z}}}}2^{-k_{0}\lambda}\Big(\varepsilon^{\theta}\sum\limits_{k = -\infty}^{-1}2^{k\alpha(0)p(1+\varepsilon)} \|T^{\boldsymbol{b}}(f)\chi_{k}\|_{L^{q(\cdot)}(\omega)}^{p(1+\varepsilon)}\\ &+\varepsilon^{\theta}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha_{\infty}p(1+\varepsilon)} \|T^{\boldsymbol{b}}(f)\chi_{k}\|_{L^{q(\cdot)}(\omega)}^{p(1+\varepsilon)}\Big)^{\frac{1}{p(1+\varepsilon)}}\Big\}\\ & = :\max\{\rm A, \rm N+\rm S\}, \end{align*}

    where

    \begin{align*} \rm A& = \sup\limits_{\varepsilon > 0}{\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}}2^{-k_{0}\lambda}\left(\varepsilon^{\theta}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0)p(1+\varepsilon)} \left(\left\|\chi_{k}\sum\limits_{l = -\infty}^{\infty}T^{\boldsymbol{b}}(f\chi_{l})\right\|_{L^{q(\cdot)}(\omega)}\right)^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}},\\ \rm N& = \sup\limits_{\varepsilon > 0}{\sup\limits_{k_{0} > 0,k_{0}\in{\mathbb{Z}}}}2^{-k_{0}\lambda}\left(\varepsilon^{\theta}\sum\limits_{k = -\infty}^{-1}2^{k\alpha(0)p(1+\varepsilon)} \left(\left\|\chi_{k}\sum\limits_{l = -\infty}^{\infty}T^{\boldsymbol{b}}(f\chi_{l})\right\|_{L^{q(\cdot)}(\omega)}\right)^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}},\\ \rm S& = \sup\limits_{\varepsilon > 0}{\sup\limits_{k_{0} > 0,k_{0}\in{\mathbb{Z}}}}2^{-k_{0}\lambda}\left(\varepsilon^{\theta}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha_{\infty}p(1+\varepsilon)} \left(\left\|\chi_{k}\sum\limits_{l = -\infty}^{\infty}T^{\boldsymbol{b}}(f\chi_{l})\right\|_{L^{q(\cdot)}(\omega)}\right)^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}}. \end{align*}

    Since the estimate of \rm N is essentially similar to the estimate of \rm A , it suffices to show that \rm A and \rm S are bounded on homogeneous grand weighted Herz-Morrey space. It is easy to see that

    \begin{align*} \rm E\lesssim\sum\limits_{i = 1}^{3}A_{i},\; \; \; \; \; \; \; \; \; \; S\lesssim\sum\limits_{i = 1}^{3}S_{i}, \end{align*}

    where

    \begin{align*} \rm A_{1}& = \sup\limits_{\varepsilon > 0}{\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}}2^{-k_{0}\lambda}\left(\varepsilon^{\theta}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0)p(1+\varepsilon)} \left(\sum\limits_{l = -\infty}^{k-2}\|\chi_{k}T^{\boldsymbol{b}}(f\chi_{l})\|_{L^{q(\cdot)}(\omega)}\right)^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}},\\ \rm A_{2}& = \sup\limits_{\varepsilon > 0}{\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}}2^{-k_{0}\lambda}\left(\varepsilon^{\theta}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0)p(1+\varepsilon)} \left(\sum\limits_{l = k-1}^{k+1}\|\chi_{k}T^{\boldsymbol{b}}(f\chi_{l})\|_{L^{q(\cdot)}(\omega)}\right)^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}},\\ \rm A_{3}& = \sup\limits_{\varepsilon > 0}{\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}}2^{-k_{0}\lambda}\left(\varepsilon^{\theta}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0)p(1+\varepsilon)} \left(\sum\limits_{l = k+2}^{\infty}\|\chi_{k}T^{\boldsymbol{b}}(f\chi_{l})\|_{L^{q(\cdot)}(\omega)}\right)^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}},\\ \rm S_{1}& = \sup\limits_{\varepsilon > 0}{\sup\limits_{k_{0} > 0,k_{0}\in{\mathbb{Z}}}}2^{-k_{0}\lambda}\left(\varepsilon^{\theta}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha_{\infty}p(1+\varepsilon)} \left(\sum\limits_{l = -\infty}^{k-2}\|\chi_{k}T^{\boldsymbol{b}}(f\chi_{l})\|_{L^{q(\cdot)}(\omega)}\right)^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}},\\ \rm S_{2}& = \sup\limits_{\varepsilon > 0}{\sup\limits_{k_{0} > 0,k_{0}\in{\mathbb{Z}}}}2^{-k_{0}\lambda}\left(\varepsilon^{\theta}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha_{\infty}p(1+\varepsilon)} \left(\sum\limits_{l = k-1}^{k+1}\|\chi_{k}T^{\boldsymbol{b}}(f\chi_{l})\|_{L^{q(\cdot)}(\omega)}\right)^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}},\\ \rm S_{3}& = \sup\limits_{\varepsilon > 0}{\sup\limits_{k_{0} > 0,k_{0}\in{\mathbb{Z}}}}2^{-k_{0}\lambda}\left(\varepsilon^{\theta}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha_{\infty}p(1+\varepsilon)} \left(\sum\limits_{l = k+2}^{\infty}\|\chi_{k}T^{\boldsymbol{b}}(f\chi_{l})\|_{L^{q(\cdot)}(\omega)}\right)^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}}. \end{align*}

    Firstly, we consider \rm A_{1} . For a.e. x\in R_{k} with k\in \mathbb{Z} and l\leq k-2 , from size condition of T and generalized Hölder's inequality, it follows that

    \begin{align} |T^{\boldsymbol{b}}(f\chi_{l})(x)|&\lesssim 2^{-kn}\int\limits_{R_{l}}\prod\limits_{j = 1}^{m}|b_{j}(x)-b_{j}(y)||f(y)|{\rm d}y\\ &\lesssim 2^{-kn}\int\limits_{R_{l}}\prod\limits_{j = 1}^{m}|b_{j}(x)-(b_{j})_{B_{l}}+(b_{j})_{B_{l}}-b_{j}(y)||f(y)|{\rm d}y\\ &\lesssim 2^{-kn}\sum\limits_{j = 0}^{m}\sum\limits_{\sigma\in C_{j}^{m}}|[b(x)-(b)_{B_{l}}]_{\sigma}|\int\limits_{R_{l}}|[b(y)-(b)_{B_{l}}]_{\sigma^{c}}||f(y)|{\rm d}y\\ &\lesssim 2^{-kn}\sum\limits_{j = 0}^{m}\sum\limits_{\sigma\in C_{j}^{m}}|[b(x)-(b)_{B_{l}}]_{\sigma}|\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}\|[b(y)-(b)_{B_{l}}]_{\sigma^{c}}\chi_{l}\|_{L^{q'(\cdot)}(\omega^{-1})}. \end{align} (5.1)

    By Lemmas 2.2–2.4, we get

    \begin{align} \|\chi_{k}T^{\boldsymbol{b}}(f\chi_{l})\|_{L^{q(\cdot)}(\omega)} &\lesssim \|\boldsymbol{b}\|_{* }2^{-kn}(k-l)^{m}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}\|\chi_{l}\|_{L^{q'(\cdot)}(\omega^{-1})}\|\chi_{k}\|_{L^{q(\cdot)}(\omega)}\\ &\lesssim \|\boldsymbol{b}\|_{* }2^{-kn}(k-l)^{m}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}\|\chi_{l}\|_{L^{q'(\cdot)}(\omega^{-1})}|B_{k}|\|\chi_{k}\|^{-1}_{L^{q'(\cdot)}(\omega^{-1})}\\ &\lesssim \|\boldsymbol{b}\|_{* }(k-l)^{m}2^{(l-k)n\delta_{2}}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}. \end{align} (5.2)

    From (5.2) , it follows that

    \begin{align*} \rm A_{1}&\lesssim\|\boldsymbol{b}\|_{* }\sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda}\left({\varepsilon^{\theta}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0)p(1+\varepsilon)}}\right.\\ &\left.{\times\left(\sum\limits_{l = -\infty}^{k-2}(k-l)^{m}2^{(l-k)n\delta_{2}} \|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}\right)^{p(1+\varepsilon)}}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim \|\boldsymbol{b}\|_{*}\sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda} \left(\varepsilon^{\theta}\sum\limits_{k = -\infty}^{k_{0}}\left(\sum\limits_{l = -\infty}^{k-2}2^{\alpha(0)l}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}(k-l)^{m}2^{v(l-k)}\right)^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}}, \end{align*}

    where v: = n\delta_{2}-\alpha(0) > 0 . And then, by Hölder's inequality, Fubini's theorem for series and 2^{-p(1+\varepsilon)} < 2^{-p} , we obtain that

    \begin{align*} \rm A_{1}&\lesssim \|\boldsymbol{b}\|_{*}\sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda} \left({\varepsilon^{\theta}\sum\limits_{k = -\infty}^{k_{0}}\left(\sum\limits_{l = -\infty}^{k-2}2^{\alpha(0)lp(1+\varepsilon)}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}^{p(1+\varepsilon)}2^{vp(1+\varepsilon)(l-k)/2}\right)}\right.\\ &\times\left.{\left(\sum\limits_{l = -\infty}^{k-2}(k-l)^{m(p(1+\varepsilon))'}2^{v(l-k)(p(1+\varepsilon))'/2}\right)^{p(1+\varepsilon)/(p(1+\varepsilon))'}}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim \|\boldsymbol{b}\|_{*}\sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda} \left(\varepsilon^{\theta}\sum\limits_{k = -\infty}^{k_{0}}\left(\sum\limits_{l = -\infty}^{k-2}2^{\alpha(0)lp(1+\varepsilon)}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}^{p(1+\varepsilon)}2^{v(l-k)p(1+\varepsilon)/2}\right)\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim\|\boldsymbol{b}\|_{*}\sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda} \left(\varepsilon^{\theta}\sum\limits_{l = -\infty}^{k_{0}}2^{\alpha(0)lp(1+\varepsilon)}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}^{p(1+\varepsilon)}\sum\limits_{k = l+2}^{k_{0}}2^{v(l-k)p(1+\varepsilon)/2}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim\|\boldsymbol{b}\|_{*} \sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda} \left(\varepsilon^{\theta}\sum\limits_{l = -\infty}^{k_{0}}2^{\alpha(0)lp(1+\varepsilon)}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}^{p(1+\varepsilon)}\sum\limits_{k = l+2}^{k_{0}}2^{v(l-k)p/2}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim \|\boldsymbol{b}\|_{*} \sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda}\left(\varepsilon^{\theta}\sum\limits_{l = -\infty}^{k_{0}}2^{l\alpha(0)p(1+\varepsilon)}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim\|\boldsymbol{b}\|_{*}\|f\|_{M\dot{K}_{p),q(\cdot)}^{\alpha(\cdot),\lambda,\theta}(\omega)}. \end{align*}

    To show \rm A_{2} , if T^{\boldsymbol{b}} is bounded on L^{q(\cdot)}(\omega) , we get

    \begin{align*} \rm A_{2}&\lesssim \|\boldsymbol{b}\|_{*}\sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda}\left(\varepsilon^{\theta}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0)p(1+\varepsilon)}\|f\chi_{k}\|_{L^{q(\cdot)}(\omega)}^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim\|\boldsymbol{b}\|_{*}\|f\|_{M\dot{K}_{p),q(\cdot)}^{\alpha(\cdot),\lambda,\theta}(\omega)}. \end{align*}

    Now we turn to estimate \rm A_{3} . For each k\in \mathbb{Z}, \; l\geq k+2 and a.e. x\in R_{k} , size condition of T and generalized Hölder's inequality imply that

    \begin{align} |T^{\boldsymbol{b}}(f\chi_{l})(x)|&\lesssim 2^{-ln}\int\limits_{R_{l}}\prod\limits_{j = 1}^{m}|b_{j}(x)-b_{j}(y)||f(y)|{\rm d}y\\ &\lesssim 2^{-ln}\int\limits_{R_{l}}\prod\limits_{j = 1}^{m}|b_{j}(x)-(b_{j})_{B_{l}}+(b_{j})_{B_{l}}-b_{j}(y)||f(y)|{\rm d}y\\ &\lesssim 2^{-ln}\sum\limits_{j = 0}^{m}\sum\limits_{\sigma\in C_{j}^{m}}|[b(x)-(b)_{B_{l}}]_{\sigma}|\int\limits_{R_{l}}|[b(y)-(b)_{B_{l}}]_{\sigma^{c}}||f(y)|{\rm d}y\\ &\lesssim 2^{-ln}\sum\limits_{j = 0}^{m}\sum\limits_{\sigma\in C_{j}^{m}}|[b(x)-(b)_{B_{l}}]_{\sigma}|\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}\| [b(y)-(b)_{B_{l}}]_{\sigma^{c}}\chi_{l}\|_{L^{q'(\cdot)}(\omega^{-1})}. \end{align} (5.3)

    Applying Lemmas 2.2–2.4, we get

    \begin{align} \|\chi_{k}T^{\boldsymbol{b}}f\chi_{l}\|_{L^{q(\cdot)}(\omega)} &\lesssim \|\boldsymbol{b}\|_{* }(l-k)^{m}2^{-ln}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}\|\chi_{l}\|_{L^{q'(\cdot)}(\omega^{-1})}\|\chi_{k}\|_{L^{q(\cdot)}(\omega)}\\ &\lesssim \|\boldsymbol{b}\|_{* }(l-k)^{m}2^{-ln}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}\|\chi_{k}\|_{L^{q(\cdot)}(\omega)}|B_{l}|\|\chi_{l}\|^{-1}_{L^{q'(\cdot)}(\omega)}\\ &\lesssim \|\boldsymbol{b}\|_{* }(l-k)^{m}2^{(k-l)n\delta_{1}}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}. \end{align} (5.4)

    Splitting \rm A_{3} by means of Minkowski's inequality, we deduce

    \begin{align*} \rm A_{3}&\lesssim \sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda}\left(\varepsilon^{\theta}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0)p(1+\varepsilon)}\left(\sum\limits_{l = k+2}^{-1}\|\chi_{k}T^{\boldsymbol{b}}(f\chi_{l})\|_{L^{q(\cdot)}(\omega)}\right)^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &+\sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda}\left(\varepsilon^{\theta}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0)p(1+\varepsilon)}\left(\sum\limits_{l = 0}^{\infty}\|\chi_{k}T^{\boldsymbol{b}}(f\chi_{l})\|_{L^{q(\cdot)}(\omega)}\right)^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}}\\ & = :\rm A_{31}+\rm A_{32}. \end{align*}

    For \rm A_{31} , according to (5.4), we have

    \begin{align*} \rm A_{31}&\lesssim \|\boldsymbol{b}\|_{* }\sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda}\left({\varepsilon^{\theta}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0)p(1+\varepsilon)}(l-k)^{m}}\right.\\ &\left.{\times\left(\sum\limits_{l = k+2}^{-1}2^{(k-l)n\delta_{1}} \|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}\right)^{p(1+\varepsilon)}}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim \|\boldsymbol{b}\|_{*}\sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda} \left(\varepsilon^{\theta}\sum\limits_{k = -\infty}^{k_{0}}\left(\sum\limits_{l = k+2}^{-1}2^{\alpha(0)l}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}(l-k)^{m}2^{d(k-l)}\right)^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}}, \end{align*}

    where d: = n\delta_{1}+\alpha(0) > 0 . Then applying Hölder's inequality, Fubini's theorem for series and 2^{-p(1+\varepsilon)} < 2^{-p} , we obtain that

    \begin{align*} \rm A_{31}&\lesssim\|\boldsymbol{b}\|_{*} \sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda} \left({\varepsilon^{\theta}\sum\limits_{k = -\infty}^{k_{0}}\left(\sum\limits_{l = k+2}^{-1}2^{\alpha(0)lp(1+\varepsilon)}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}^{p(1+\varepsilon)}2^{dp(1+\varepsilon)(k-l)/2}\right)}\right.\\ &\times\left.{\left(\sum\limits_{l = k+1}^{-1}(l-k)^{m(p(1+\varepsilon))'}2^{d(k-l)(p(1+\varepsilon))'/2}\right)^{p(1+\varepsilon)/(p(1+\varepsilon))'}}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim\|\boldsymbol{b}\|_{*} \sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda} \left(\varepsilon^{\theta}\sum\limits_{k = -\infty}^{k_{0}}\left(\sum\limits_{l = k+2}^{-1}2^{\alpha(0)lp(1+\varepsilon)}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}^{p(1+\varepsilon)}2^{d(k-l)p(1+\varepsilon)/2}\right)\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim\|\boldsymbol{b}\|_{*}\sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda} \left(\varepsilon^{\theta}\sum\limits_{l = -\infty}^{k_{0}}2^{\alpha(0)lp(1+\varepsilon)}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}^{p(1+\varepsilon)}\sum\limits_{k = -\infty}^{l-2}2^{d(k-l)p(1+\varepsilon)/2}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim\|\boldsymbol{b}\|_{*} \sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda} \left(\varepsilon^{\theta}\sum\limits_{l = -\infty}^{k_{0}}2^{\alpha(0)lp(1+\varepsilon)}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}^{p(1+\varepsilon)}\sum\limits_{k = -\infty}^{l-2}2^{d(k-l)p/2}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim \|\boldsymbol{b}\|_{*} \sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda}\left(\varepsilon^{\theta}\sum\limits_{l = -\infty}^{k_{0}}2^{l\alpha(0)p(1+\varepsilon)}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim\|\boldsymbol{b}\|_{*}\|f\|_{M\dot{K}_{p),q(\cdot)}^{\alpha(\cdot),\lambda,\theta}(\omega)}. \end{align*}

    On the other hand, applying Hölder's inequality, (5.4), and note that h: = n\delta_{1}+\alpha_{\infty} > 0 , for \rm A_{32} we get

    \begin{align*} \rm A_{32}&\lesssim\|\boldsymbol{b}\|_{*}\sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda} \left(\varepsilon^{\theta}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0)p(1+\varepsilon)}\right.\\ &\left.{\times\left(\sum\limits_{l = 0}^{\infty}(l-k)^{m}2^{(k-l)n\delta_{1}}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}\right)^{p(1+\varepsilon)}}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim \|\boldsymbol{b}\|_{*}\sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda} \left(\varepsilon^{\theta}\sum\limits_{k = -\infty}^{k_{0}}2^{k(\alpha(0)+n\delta_{1})p(1+\varepsilon)}\right.\\ &\left.{\times\left(\sum\limits_{l = 0}^{\infty}(l-k)^{m}2^{-ln\delta_{1}}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}\right)^{p(1+\varepsilon)}}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim \|\boldsymbol{b}\|_{*}\sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda} \left(\varepsilon^{\theta}\left(\sum\limits_{l = 0}^{\infty}2^{l\alpha_{\infty}}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}(l-k)^{m}2^{-lh}\right)^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim \|\boldsymbol{b}\|_{*}\sup\limits_{\varepsilon > 0}\sup\limits_{k_{0}\leq0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda} \left(\varepsilon^{\theta}\left(\sum\limits_{l = 0}^{\infty}2^{l\alpha_{\infty}p(1+\varepsilon)}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}^{p(1+\varepsilon)}\right)\right.\\ &\times\left.{\left(\sum\limits_{l = 0}^{\infty}(l-k)^{m(p(1+\varepsilon))'}2^{-lh(p(1+\varepsilon))'}\right)^{p(1+\varepsilon)/(p(1+\varepsilon))'}}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim\|\boldsymbol{b}\|_{*}\|f\|_{M\dot{K}_{p),q(\cdot)}^{\alpha(\cdot),\lambda,\theta}(\omega)}. \end{align*}

    This combine with the estimate of \rm A_{31} to obtained that {\rm A_{3}}\lesssim\|\boldsymbol{b}\|_{*}\|f\|_{M\dot{K}_{p), q(\cdot)}^{\alpha(\cdot), \lambda, \theta}(\omega)}. Furthermore, we can get {\rm A}\lesssim \; \|\boldsymbol{b}\|_{*}\|f\|_{M\dot{K}_{p), q(\cdot)}^{\alpha(\cdot), \lambda, \theta}(\omega)}.

    Next, we consider \rm S_{1} . By the notion of \rm S_{1} , splitting \rm S_{1} as follows

    \begin{align*} \rm S_{1}&\lesssim \sup\limits_{\varepsilon > 0}\sup\limits_{k_{0} > 0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda}\left(\varepsilon^{\theta}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha_{\infty}p(1+\varepsilon)}\left(\sum\limits_{l = -\infty}^{-1}\|\chi_{k}T^{\boldsymbol{b}}(f\chi_{l})\|_{L^{q(\cdot)}(\omega)}\right)^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &+\sup\limits_{\varepsilon > 0}\sup\limits_{k_{0} > 0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda}\left(\varepsilon^{\theta}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha_{\infty}p(1+\varepsilon)}\left(\sum\limits_{l = 0}^{k-2}\|\chi_{k}T^{\boldsymbol{b}}(f\chi_{l})\|_{L^{q(\cdot)}(\omega)}\right)^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}}\\ & = :\rm S_{11}+\rm S_{12}. \end{align*}

    To show \rm S_{11} , using (5.2) and note that e: = n\delta_{2}-\alpha_{\infty} > 0 , we have

    \begin{align*} \rm S_{11}&\lesssim\|\boldsymbol{b}\|_{*} \sup\limits_{\varepsilon > 0}\sup\limits_{k_{0} > 0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda}\left({\varepsilon^{\theta}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha_{\infty}p(1+\varepsilon)}}\right.\\ &\left.{\times\left(\sum\limits_{l = -\infty}^{-1}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}(k-l)^{m}2^{(l-k)n\delta_{2}}\right)^{p(1+\varepsilon)}}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim\|\boldsymbol{b}\|_{*} \sup\limits_{\varepsilon > 0}\sup\limits_{k_{0} > 0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda}\left({\varepsilon^{\theta}\sum\limits_{k = 0}^{k_{0}}2^{k(\alpha_{\infty}-n\delta_{2})p(1+\varepsilon)}}\right.\\ &\left.{\times\left(\sum\limits_{l = -\infty}^{-1}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}(k-l)^{m}2^{ln\delta_{2}}\right)^{p(1+\varepsilon)}}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim\|\boldsymbol{b}\|_{*} \sup\limits_{\varepsilon > 0}\sup\limits_{k_{0} > 0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda}\left({\varepsilon^{\theta}} \left(\sum\limits_{l = -\infty}^{-1}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}(k-l)^{m}2^{ln\delta_{2}}\right)^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim\|\boldsymbol{b}\|_{*} \sup\limits_{\varepsilon > 0}\sup\limits_{k_{0} > 0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda}\left({\varepsilon^{\theta}} \left(\sum\limits_{l = -\infty}^{-1}2^{l\alpha(0)}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}(k-l)^{m}2^{lv}\right)^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}}. \end{align*}

    We can obtained \rm S_{11} further caculation by Hölder inequality and use the fact that v: = n\delta_{2}-\alpha(0) > 0 , we get

    \begin{align*} \rm S_{11}&\lesssim\|\boldsymbol{b}\|_{*} \sup\limits_{\varepsilon > 0}\sup\limits_{k_{0} > 0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda} \left({\varepsilon^{\theta}}\left({\sum\limits_{l = -\infty}^{-1}2^{l\alpha(0)p(1+\varepsilon)}\|f\chi_{l}\|_{L^{q(\cdot)}(\omega)}^{p(1+\varepsilon)}}\right)\right.\\ &\times\left.{\left(\sum\limits_{l = -\infty}^{-1}(k-l)^{m(p(1+\varepsilon))'}2^{lv(p(1+\varepsilon))'}\right)^{p(1+\varepsilon)/(p(1+\varepsilon))'}}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim\|\boldsymbol{b}\|_{*}\|f\|_{M\dot{K}_{p),q(\cdot)}^{\alpha(\cdot),\lambda,\theta}(\omega)}. \end{align*}

    The estimate for \rm S_{12} follows from a similar method to \rm A_{1} and note that e: = n\delta_{2}-\alpha_{\infty} > 0, k > 0 . So we cancel the proof of \rm S_{12} .

    For \rm S_{2} , in the view of the boundedness of T^{\boldsymbol{b}} on L^{q(\cdot)}(\omega) , we obtain that

    \begin{align*} \rm S_{2} &\lesssim \|\boldsymbol{b}\|_{*}\sup\limits_{\varepsilon > 0}\sup\limits_{k_{0} > 0,k_{0}\in{\mathbb{Z}}}2^{-k_{0}\lambda}\left(\varepsilon^{\theta}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha_{\infty}p(1+\varepsilon)}\|f\chi_{k}\|_{L^{q(\cdot)}(\omega)}^{p(1+\varepsilon)}\right)^{\frac{1}{p(1+\varepsilon)}}\\ &\lesssim\|\boldsymbol{b}\|_{*}\|f\|_{M\dot{K}_{p),q(\cdot)}^{\alpha(\cdot),\lambda,\theta}(\omega)}. \end{align*}

    We cancel the proof of \rm S_{3} . Since the estimate for \rm S_{3} can be obtained by similar way to \rm A_{31} and using the fact that h: = n\delta_{1}+\alpha_{\infty} > 0, \; k > 0.

    Therefore, combining the estimates for \rm A and \rm S to deduce that

    \begin{equation*} \|T^{\boldsymbol{b}}f\|_{M\dot{K}_{p),q(\cdot)}^{\alpha(\cdot),\lambda,\theta}(\omega)}\lesssim\|\boldsymbol{b}\|_{*} \|f\|_{M\dot{K}_{p),q(\cdot)}^{\alpha(\cdot),\lambda,\theta}(\omega)}, \end{equation*}

    which ends the proof.

    Corollary. Let p, \alpha(\cdot) and q(\cdot) as in Theorem 5.1. If a sublinear operator T satisfies the condition (4.7) , for any integrable function f with compact support and T^{\boldsymbol{b}} is bounded on L^{q(\cdot)}(\omega) , then T^{\boldsymbol{b}} is bounded on {M{K}_{p), q(\cdot)}^{\alpha(\cdot), \lambda, \theta}(\omega)} .

    In this article, we introduced the concept of weighted grand Herz-Morrey spaces and investigate the relationship between weighted grand Herz-Morrey spaces and weighted Herz-Morrey spaces. In addition, we proved the boundedness of sublinear operators with certain weak size conditions on weighted grand Herz-Morrey spaces. As an application, we obtained the boundedness estimation for multilinear commutators of sublinear operators on weighted grand Herz-Morrey spaces. These results are new even in unweighted setting.

    The authors declare that we have not used Artificial Intelligence (AI) tools in the creation of this article.

    We would like to thank the editors and reviewers for their helpful suggestions.

    This research is supported by the National Natural Science Foundation of Xinjiang Province of China (Nos: 2021D01C463, 2022D01C734), Yili Normal University High-level Talents Program of Academic Integrity (No: YSXSJS22001) and Scientific Research Project (No: 22XKZY11).

    The authors declare that there is no conflict of interest.



    [1] O. Kov\rm \acute{a}\rm \breve{c}ik, J. R\rm \acute{a}kosník, On spaces L^{p(x)} and W^{k, p(x)}, Czechoslovak Math. J., 41 (1991), 592–618. http://dx.doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
    [2] P. Gurka, P. Harjulehto, A. Nekvinda, Bessel potential spaces with variable exponent, Math. Inequal. Appl., 10 (2007), 661–676. http://dx.doi.org/10.7153/mia-10-61 doi: 10.7153/mia-10-61
    [3] A. Almeida, P. H\rm\ddot{a}st\rm \ddot{o}, Besov spaces with variable smoothness and integrability, J. Funct. Anal., 258 (2010), 1628–1655. http://dx.doi.org/10.1016/j.jfa.2009.09.012
    [4] D. Drihem, Atomic decomposition of Besov spaces with variable smoothness and integrability, J. Math. Anal. Appl., 389 (2012), 15–31. http://dx.doi.org/10.1016/j.jmaa.2011.11.035 doi: 10.1016/j.jmaa.2011.11.035
    [5] J. S. Xu, Variable Besov spaces and Triebel-Lizorkin spaces, Ann. Acad. Sci. Fenn. Math., 33 (2008), 511–522.
    [6] X. L. Fan, Variable exponent Morrey and Campanato spaces, Nonlinear Anal., 72 (2010), 4148–4161. http://dx.doi.org/10.1016/j.na.2010.01.047 doi: 10.1016/j.na.2010.01.047
    [7] H. Rafeiro, S. Samko, Variable exponent Campanato spaces, J. Math. Sci., 172 (2011), 143–164. http://dx.doi.org/10.1007/S10958-010-0189-2 doi: 10.1007/S10958-010-0189-2
    [8] M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 36 (2010), 33–50. http://dx.doi.org/10.1007/S10476-010-0102-8 doi: 10.1007/S10476-010-0102-8
    [9] M. Izuki, Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59 (2010), 199–213. http://dx.doi.org/10.1007/S12215-010-0015-1 doi: 10.1007/S12215-010-0015-1
    [10] M. Izuki, Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent, Math. Sci. Res. J., 13 (2009), 243–253.
    [11] S. R. Wang, J. S. Xu, Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents, Open Math., 19 (2021), 412–426. http://dx.doi.org/10.1515/math-2021-0024 doi: 10.1515/math-2021-0024
    [12] B. Sultan, M. Sultan, M. Mehmood, F. Azmi, M. A. Alghafli, N. Mlaiki, Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent, AIMS Math., 8 (2023), 752–764. http://dx.doi.org/10.3934/math.2023036 doi: 10.3934/math.2023036
    [13] D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: foundations and harmonic analysis, Basel: Bikh{\rm \ddot{a}}user, 2013.
    [14] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Berlin: Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8
    [15] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, The maximal function on variable L^{p} spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223–238.
    [16] L. Diening, Maximal function on generalized Lebesgue spaces L^{p(\cdot)}, Math. Inequal. Appl., 7 (2004), 245–253. http://dx.doi.org/10.7153/mia-07-27 doi: 10.7153/mia-07-27
    [17] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl., 394 (2012), 744–760. http://dx.doi.org/10.1016/j.jmaa.2012.04.044 doi: 10.1016/j.jmaa.2012.04.044
    [18] M. Izuki, T. Noi, Boundedness of fractional integrals on weighted Herz spaces with variable exponent, J. Inequal. Appl., 2016 (2016), 1–15. http://dx.doi.org/10.1186/S13660-016-1142-9 doi: 10.1186/S13660-016-1142-9
    [19] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton: Princeton University Press, 1993.
    [20] L. W. Wang, L. S. Shu, Multilinear commutators of singular integral operators in variable exponent Herz-type spaces, Bull. Malays. Math. Sci. Soc., 42 (2019), 1413–1432. http://dx.doi.org/10.1007/S40840-017-0554-0 doi: 10.1007/S40840-017-0554-0
    [21] H. Rafeiro, S. Samko, S. Umarkhadzhiev, Grand Lebesgue sequence spaces, Georgian Math. J., 25 (2018), 291–302. http://dx.doi.org/10.1515/gmj-2018-0017 doi: 10.1515/gmj-2018-0017
    [22] X. Yu, Z. G. Liu, Weighted grand Herz-type spaces and its applications, J. Funct. Spaces, 2022 (2022), 1–12. http://dx.doi.org/10.1155/2022/1369159 doi: 10.1155/2022/1369159
    [23] A. Almeida, D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. Appl., 394 (2012), 781–795. http://dx.doi.org/10.1016/j.jmaa.2012.04.043 doi: 10.1016/j.jmaa.2012.04.043
    [24] C. Pérez, R. Trujillo-Goneález, Sharp weighted estimates for multilinear commutators, J. Lond. Math. Soc., 65 (2002), 672–692. http://dx.doi.org/10.1112/S0024610702003174 doi: 10.1112/S0024610702003174
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1852) PDF downloads(141) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog