In this paper, we introduce grand weighted Herz spaces with variable exponent and prove the boundedness of fractional integrals on these spaces.
Citation: Babar Sultan, Mehvish Sultan, Mazhar Mehmood, Fatima Azmi, Maryam Ali Alghafli, Nabil Mlaiki. Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent[J]. AIMS Mathematics, 2023, 8(1): 752-764. doi: 10.3934/math.2023036
In this paper, we introduce grand weighted Herz spaces with variable exponent and prove the boundedness of fractional integrals on these spaces.
[1] | A. Almeida, D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. Appl., 394 (2012), 965–974. https://doi.org/10.1016/j.jmaa.2012.04.043 doi: 10.1016/j.jmaa.2012.04.043 |
[2] | D. Cruz-Uribe, L. Diening, P. Hästö, The maximal operator on weighted variable Lebesgue spaces, Fract. Calc. Appl. Anal., 14 (2011), 361–374. https://doi.org/10.2478/s13540-011-0023-7 doi: 10.2478/s13540-011-0023-7 |
[3] | D. Cruz-Uribe, A. Fiorenza, J. M. Martell, C. Pérez, The boundedness of classical operators on variable $L^p$ spaces, Ann. Acad. Sci. Fenn. Math., 31 (2006), 239–264. https://doi.org/10.1146/annurev.energy.31.020105.100323 doi: 10.1146/annurev.energy.31.020105.100323 |
[4] | D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: Foundations and harmonic analysis, Applied and Numerical Harmonic Analysis, Heidelberg: Birkhäuser Basel, 2013. https://doi.org/10.1007/978-3-0348-0548-3 |
[5] | D. Cruz-Uribe, A Fiorenza, C. J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl., 394 (2012), 744–760. https://doi.org/10.1016/j.jmaa.2012.04.044 doi: 10.1016/j.jmaa.2012.04.044 |
[6] | D. Cruz-Uribe, L. A. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Amer. Math. Soc., 369 (2017), 1205–1235. https://doi.org/10.1090/tran/6730 doi: 10.1090/tran/6730 |
[7] | L. Diening, P. Hästö, A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, Fsdona04 Proc., 2004, 38–58. |
[8] | L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8 |
[9] | H. G. Feichtinger, F. Weisz, Herz spaces and summability of Fourier transforms, Math. Nachr., 281 (2008), 309–324. https://doi.org/10.1002/mana.200510604 doi: 10.1002/mana.200510604 |
[10] | L. Grafakos, X. Li, D. Yang, Bilinear operators on Herz-type Hardy spaces, Trans. Amer. Math. Soc., 350 (1998), 1249–1275. https://doi.org/10.1090/S0002-9947-98-01878-9 doi: 10.1090/S0002-9947-98-01878-9 |
[11] | E. Hernández, D. Yang, Interpolation of Herz spaces and applications, Math. Nachr., 205 (1999), 69–87. https://doi.org/10.1002/mana.3212050104 doi: 10.1002/mana.3212050104 |
[12] | C. S. Herz, Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms, J. Math. Mech., 18 (1968), 283–323. https://doi.org/10.1512/iumj.1969.18.18024 doi: 10.1512/iumj.1969.18.18024 |
[13] | M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 36 (2010), 33–50. https://doi.org/10.1007/s10476-010-0102-8 doi: 10.1007/s10476-010-0102-8 |
[14] | M. Izuki, Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponents, Math. Sci. Res. J., 13 (2009), 243–253. |
[15] | M. Izuki, T. Noi, An intrinsic square function on weighted Herz spaces with variable exponents, arXiv, 2016. https://doi.org/10.48550/arXiv.1606.01019 |
[16] | M. Izuki, T. Noi, Boundedness of fractional integrals on weighted Herz spaces with variable exponents, J. Inequal. Appl., 2016 (2016), 199. |
[17] | R. Johnson, Lipschitz spaces, Littlewood-Paley spaces, and convoluteurs, Proc. Lond. Math. Soc., 3 (1974), 127–141. https://doi.org/10.1112/plms/s3-29.1.127 |
[18] | R. Johnson, Temperatures, Riesz potentials, and the Lipschitz spaces of Herz, Proc. Lond. Math. Soc., 3 (1973), 290–316. https://doi.org/10.1112/plms/s3-27.2.290 doi: 10.1112/plms/s3-27.2.290 |
[19] | V. Kokilashvili, S. Samko, On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponents, Z. Anal. Anwend., 22 (2003), 899–910. https://doi.org/10.4171/zaa/1178 doi: 10.4171/zaa/1178 |
[20] | V. M. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces, Vol. 1, Variable Exponent Lebesgue and Amalgam Spaces Birkhäuser Cham, 2016. https://doi.org/10.1007/978-3-319-21015-5 |
[21] | Y. Komori, Notes on singular integrals on some inhomogeneous Herz spaces, Taiwan. J. Math., 8 (2004), 547–556. https://doi.org/10.11650/twjm/1500407672 doi: 10.11650/twjm/1500407672 |
[22] | A. Meskhi, H. Rafeiro, M. A. Zaighum, On the boundedness of Marcinkiewicz integrals on continual variable exponent Herz spaces, Georgian Math. J., 26 (2019), 105–116. https://doi.org/10.1515/gmj-2017-0050 doi: 10.1515/gmj-2017-0050 |
[23] | C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126–166. https://doi.org/10.2307/1989904 doi: 10.2307/1989904 |
[24] | B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226. |
[25] | H. Nafis, H. Rafeiro, M. Zaighum, A note on the boundedness of sublinear operators on grand variable Herz spaces, J. Inequal. Appl., 2020 (2020), 1. https://doi.org/10.1186/s13660-019-2265-6 doi: 10.1186/s13660-019-2265-6 |
[26] | H. Nafis, H. Rafeiro, M. A. Zaighum, Boundedness of the Marcinkiewicz integral on grand Herz spaces, J. Math. Inequal., 15 (2021), 739–753. http://dx.doi.org/10.7153/jmi-2021-15-52 doi: 10.7153/jmi-2021-15-52 |
[27] | H. Rafeiro, S. Samko, Riesz potential operator in continual variable exponents Herz spaces, Math. Nachr., 288 (2015), 465–475. https://doi.org/10.1002/mana.201300270 doi: 10.1002/mana.201300270 |
[28] | S. Samko, Variable exponent Herz spaces, Mediterr. J. Math., 10 (2013), 2007–2025. https://doi.org/10.1007/s00009-013-0285-x doi: 10.1007/s00009-013-0285-x |
[29] | S. Umarkhadzhiev, The boundedness of the Riesz potential operator from generalized grand Lebesgue spaces to generalized grand Morrey spaces, In: M. Bastos, A. Lebre, S. Samko, I. Spitkovsky, Operator theory, operator algebras and applications, Vol. 242, Birkhäuser, Basel, 2014,363–373. https://doi.org/10.1007/978-3-0348-0816-3_22 |
[30] | J. L. Wu, W. J. Zhao, Boundedness for higher order commutators of fractional integrals on variable exponent Herz–Morrey spaces, Mediterr. J. Math., 14 (2017), 198. https://doi.org/10.1007/s00009-017-1002-y doi: 10.1007/s00009-017-1002-y |
[31] | S. Polidoro, M. A Ragusa, Harnack inequality for hypoelliptic ultraparabolic equations with a singular lower order term, Rev. Mat. Iberoamericana, 24 (2008), 1011–1046. |
[32] | M. A. Ragusa, Homogeneous Herz spaces and regularity results, Nonlinear Anal.: Theory Methods Appl., 71 (2009), e1909–e1914. https://doi.org/10.1016/j.na.2009.02.075 doi: 10.1016/j.na.2009.02.075 |
[33] | A. Scapellato, Regularity of solutions to elliptic equations on Herz spaces with variable exponents, Bound. Value Probl., 2019 (2019), 2. https://doi.org/10.1186/s13661-018-1116-6 doi: 10.1186/s13661-018-1116-6 |
[34] | A. Scapellato, Homogeneous Herz spaces with variable exponents and regularity results, Electron. J. Qual. Theory Differ. Equ., 2018 (2018), 1–11. https://doi.org/10.14232/ejqtde.2018.1.82 doi: 10.14232/ejqtde.2018.1.82 |
[35] | A. Abdalmonem, A. Scapellato, Fractional operators with homogeneous kernels in weighted Herz spaces with variable exponent, J. Appl. Anal., 101 (2022), 1953–1962. https://doi.org/10.1080/00036811.2020.1789602 doi: 10.1080/00036811.2020.1789602 |