The energy inequality method (or a priori estimation) known in classical cases has been adopted for fractional evolution equations associated with initial conditions and boundary integral conditions. We prove the existence and uniqueness of the solution to the problem described in the following.
Citation: Hacene Mecheri, Maryam G. Alshehri. A priori estimate for resolving the boundary fractional problem[J]. AIMS Mathematics, 2023, 8(1): 765-774. doi: 10.3934/math.2023037
The energy inequality method (or a priori estimation) known in classical cases has been adopted for fractional evolution equations associated with initial conditions and boundary integral conditions. We prove the existence and uniqueness of the solution to the problem described in the following.
[1] | A. A. Alikhanov, A priori estimates for solutions of boundary value problems for fractional-order equations, Diff. Equat., 46 (2010), 660–666. https://doi.org/10.1134/S0012266110050058 doi: 10.1134/S0012266110050058 |
[2] | N. H. Abel, Resolution d'un probleme de mecanique, In: Oeuvres completes de Niels Henrik Abel, Cambridge University Press, 2012, 97–101. https://doi.org/10.1017/CBO9781139245807.010 |
[3] | M. Caputo, Elasticita e Dissipazione, Bologna: Zanichelli, 1969. |
[4] | A. M. Keightley, J. C. Myland, K. B. Oldham, P. G. Symons, Reversible cyclic voltammetry in the presence of product, J. Electroanal. Chem., 322 (1992), 25–54. https://doi.org/10.1016/0022-0728(92)80065-C doi: 10.1016/0022-0728(92)80065-C |
[5] | O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, (Russian), Moscow: Nauka, 1973. |
[6] | S. Messloub, Existence and uniqueness results for a fractional two-times evolution problem with constraints of purely integral type, Math. Method. Appl. Sci., 39 (2016), 1558–1567. https://doi.org/10.1002/mma.3589 doi: 10.1002/mma.3589 |
[7] | S. Mesloub, A nonlinear nonlocal mixed problem for a second order pseudoparabolic equation, J. Math. Anal. Appl., 316 (2006), 189–209. https://doi.org/10.1016/j.jmaa.2005.04.072 doi: 10.1016/j.jmaa.2005.04.072 |
[8] | A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, (Russian), Moscow, 2003. |
[9] | A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, (Russian), Moscow: Nauka, 2005. |
[10] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, (Russian), Minsk: Naukai Tekhnika, 1987. |
[11] | F. I. Taukenova, M. Kh. Shkhanukov-Lafishev, Difference methods for solving boundary value problems for fractional differential quations, Comput. Math. and Math. Phys., 46 (2006), 1785–1795. https://doi.org/10.1134/S0965542506100149 doi: 10.1134/S0965542506100149 |