In this paper, for the first time, we study the existence and uniqueness of solutions of a Caputo variable-order initial value problem (IVP) in the impulsive settings. Our existence results are proved by using two fixed point theorems. The Ulam-Hyers stability of solutions is established for the variable order impulsive initial value problem. Finally, we provide an example to show the correctness of the results.
Citation: Amar Benkerrouche, Sina Etemad, Mohammed Said Souid, Shahram Rezapour, Hijaz Ahmad, Thongchai Botmart. Fractional variable order differential equations with impulses: A study on the stability and existence properties[J]. AIMS Mathematics, 2023, 8(1): 775-791. doi: 10.3934/math.2023038
In this paper, for the first time, we study the existence and uniqueness of solutions of a Caputo variable-order initial value problem (IVP) in the impulsive settings. Our existence results are proved by using two fixed point theorems. The Ulam-Hyers stability of solutions is established for the variable order impulsive initial value problem. Finally, we provide an example to show the correctness of the results.
[1] |
R. Rizwan, A. Zada, X. Wang, Stability analysis of nonlinear implicit fractional Langevin equation with noninstantaneous impulses, Adv. Differ. Equ., 2019 (2019), 85. https://doi.org/10.1186/s13662-019-1955-1 doi: 10.1186/s13662-019-1955-1
![]() |
[2] |
S. Rezapour, B. Ahmad, S. Etemad, On the new fractional configurations of integro-differential Langevin boundary value problems, Alex. Eng. J., 60 (2021), 4865–4873. https://doi.org/10.1016/j.aej.2021.03.070 doi: 10.1016/j.aej.2021.03.070
![]() |
[3] |
A. Zada, J. Alzabut, H. Waheed, I. L. Popa, Ulam-Hyers stability of impulsive integrodifferential equations with Riemann-Liouville boundary conditions, Adv. Differ. Equ., 2020 (2020), 64. https://doi.org/10.1186/s13662-020-2534-1 doi: 10.1186/s13662-020-2534-1
![]() |
[4] |
D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64. https://doi.org/10.1186/s13661-020-01361-0 doi: 10.1186/s13661-020-01361-0
![]() |
[5] |
J. J. Nieto, J. Pimentel, Positive solutions of a fractional thermostat model, Bound. Value Probl., 2013 (2013), 5. https://doi.org/10.1186/1687-2770-2013-5 doi: 10.1186/1687-2770-2013-5
![]() |
[6] |
E. Bonyah, C. W. Chukwu, M. L. Juga, Fatmawati, Modeling fractional-order dynamics of Syphilis via Mittag-Leffler law, AIMS Math., 6 (2021), 8367–8389. https://doi.org/10.3934/math.2021485 doi: 10.3934/math.2021485
![]() |
[7] |
H. Afshari, H. R. Marasi, J. Alzabut, Applications of new contraction mappings on existence and uniqueness results for implicit $\phi$-Hilfer fractional pantograph differential equations, J. Inequal. Appl., 2021 (2021), 185. https://doi.org/10.1186/s13660-021-02711-x doi: 10.1186/s13660-021-02711-x
![]() |
[8] |
S. Etemad, S. K. Ntouyas, B. Ahmad, S. Rezapour, J. Tariboon, Sequential fractional hybrid inclusions: A theoretical study via Dhage's technique and special contractions, Mathematics, 10 (2022), 2090. https://doi.org/10.3390/math10122090 doi: 10.3390/math10122090
![]() |
[9] |
J. Jiang, L. Liu, Existence of solutions for a sequential fractional differential system with coupled boundary conditions, Bound. Value Probl., 2016 (2016), 159. https://doi.org/10.1186/s13661-016-0666-8 doi: 10.1186/s13661-016-0666-8
![]() |
[10] |
A. Khan, K. Shah, T. Abdeljawad, M. A. Alqudah, Existence of results and computational analysis of a fractional order two strain epidemic model, Results Phys., 39 (2022), 105649. https://doi.org/10.1016/j.rinp.2022.105649 doi: 10.1016/j.rinp.2022.105649
![]() |
[11] |
Y. Wu, S. Ahmad, A. Ullah, K. Shah, Study of the fractional-order HIV-1 infection model with uncertainty in initial data, Math. Probl. Eng., 2022 (2022), 7286460. https://doi.org/10.1155/2022/7286460 doi: 10.1155/2022/7286460
![]() |
[12] |
H. Mohammad, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Soliton. Fract., 144 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668
![]() |
[13] |
S. Ahmad, A. Ullah, A. Akgul, D. Baleanu, Analysis of the fractional tumour-immune-vitamins model with Mittag-Leffler kernel, Results Phys., 19 (2020), 103559. https://doi.org/10.1016/j.rinp.2020.103559 doi: 10.1016/j.rinp.2020.103559
![]() |
[14] |
J. K. K. Asamoah, E. Okyere, E. Yankson, A. A. Opoku, A. Adom-Konadu, E. Acheampong, et al., Non-fractional and fractional mathematical analysis and simulations for Q fever, Chaos Soliton. Fract., 156 (2022), 111821. https://doi.org/10.1016/j.chaos.2022.111821 doi: 10.1016/j.chaos.2022.111821
![]() |
[15] |
A. Alkhazzan, W. Al-Sadi, V. Wattanakejorn, H. Khan, T. Sitthiwirattham, S. Etemad, et al., A new study on the existence and stability to a system of coupled higher-order nonlinear BVP of hybrid FDEs under the p-Laplacian operator, AIMS Math., 7 (2022), 14187–14207. https://doi.org/10.3934/math.2022782 doi: 10.3934/math.2022782
![]() |
[16] |
A. Boutiara, M. S. Abdo, M. A. Almalahi, K. Shah, B. Abdalla, T. Abdeljawad, Study of Sturm-Liouville boundary value problems with p-Laplacian by using generalized form of fractional order derivative, AIMS Math., 7 (2022), 18360–18376. https://doi.org/10.3934/math.20221011 doi: 10.3934/math.20221011
![]() |
[17] |
H. Waheed, A. Zada, R. Rizwan, I. L. Poapa, Hyers-Ulam stability for a coupled system of fractional differential equation with p-Laplacian operator having integral boundary conditions, Qual. Theory Dyn. Syst., 21 (2022), 92. https://doi.org/10.1007/s12346-022-00624-8 doi: 10.1007/s12346-022-00624-8
![]() |
[18] |
S. Rezapour, P. Kumar, V. S. Erturk, S. Etemad, A study on the 3D Hopfield neural network model via nonlocal Atangana-Baleanu operators, Complexity, 2022 (2022), 6784886. https://doi.org/10.1155/2022/6784886 doi: 10.1155/2022/6784886
![]() |
[19] |
S. Etemad, I. Avci, P. Kumar, D. Baleanu, S. Rezapour, Some novel mathematical analysis on the fractal-fractional model of the AH1N1/09 virus and its generalized Caputo-type version, Chaos Soliton. Fract., 162 (2022), 112511. https://doi.org/10.1016/j.chaos.2022.112511 doi: 10.1016/j.chaos.2022.112511
![]() |
[20] |
H. Khan, J. Alzabut, A. shah, S. Etemad, S. Rezapour, C. Park, A study on the fractal-fractional tobacco smoking model, AIMS Math., 7 (2022), 13887–13909. https://doi.org/10.3934/math.2022767 doi: 10.3934/math.2022767
![]() |
[21] |
S. Rezapour, S. Etemad, M. Sinan, J. Alzabut, A. Vinodkumar, A mathematical analysis on the new fractal-fractional model of second-hand smokers via the power law type kernel: Numerical solutions, equilibrium points and sensitivity analysis, J. Funct. Space., 2022 (2022), 3553021. https://doi.org/10.1155/2022/3553021 doi: 10.1155/2022/3553021
![]() |
[22] |
H. Najafi, S. Etemad, N. Patanarapeelert, J. K. K. Asamoah, S. Rezapour, T. Sitthiwirattham, A study on dynamics of CD4$^+$ T-cells under the effect of HIV-1 infection based on a mathematical fractal-fractional model via the Adams-Bashforth scheme and Newton polynomials, Mathematics, 10 (2022), 1366. https://doi.org/10.3390/math10091366 doi: 10.3390/math10091366
![]() |
[23] |
H. M. Ahmed, M. A. Ragusa, Nonlocal controllability of Sobolev-type conformable fractional stochastic evolution inclusions with Clarke subdifferential, Bull. Malays. Math. Sci. Soc., 2022. https://doi.org/10.1007/s40840-022-01377-y doi: 10.1007/s40840-022-01377-y
![]() |
[24] |
A. O. Akdemir, A. Karaoglan, M. A. Ragusa, E. Set, Fractional integral inequalities via Atangana-Baleanu operators for convex and concave functions, J. Funct. Space., 2021 (2021), 1055434. https://doi.org/10.1155/2021/1055434 doi: 10.1155/2021/1055434
![]() |
[25] |
L. Xie, J. Zhou, H. Deng, Y. He, Existence and stability of solution for multi-order nonlinear fractional differential equations, AIMS Math., 7 (2022), 16440–16448. https://doi.org/10.3934/math.2022899 doi: 10.3934/math.2022899
![]() |
[26] |
A. Benkerrouche, D. Baleanu, M. S. Souid, A. Hakem, M. Inc, Boundary value problem for nonlinear fractional differential equations of variable order via Kuratowski MNC technique, Adv. Differ. Equ., 2021 (2021), 365. https://doi.org/10.1186/s13662-021-03520-8 doi: 10.1186/s13662-021-03520-8
![]() |
[27] |
A. Benkerrouche, M. S. Souid, S. Etemad, A. Hakem, P. Agarwal, S. Rezapour, et al., Qualitative study on solutions of a Hadamard variable order boundary problem via the Ulam-Hyers-Rassias stability, Fractal Fract., 5 (2021), 108. https://doi.org/10.3390/fractalfract5030108 doi: 10.3390/fractalfract5030108
![]() |
[28] |
A. Benkerrouche, M. S. Souid, E. Karapinar, A. Hakem, On the boundary value problems of Hadamard fractional differential equations of variable order, Math. Method. Appl. Sci., 2022. https://doi.org/10.1002/mma.8306 doi: 10.1002/mma.8306
![]() |
[29] |
A. Benkerrouche, M. S. Souid, K. Sitthithakerngkiet, A. Hakem, Implicit nonlinear fractional differential equations of variable order, Bound. Value Probl., 2021 (2021), 64. https://doi.org/10.1186/s13661-021-01540-7 doi: 10.1186/s13661-021-01540-7
![]() |
[30] |
S. Rezapour, M. S. Souid, Z. Bouazza, A. Hussain, S. Etemad, On the fractional variable order thermostat model: Existence theory on cones via piece-wise constant functions, J. Funct. Space., 2022 (2022), 8053620. https://doi.org/10.1155/2022/8053620 doi: 10.1155/2022/8053620
![]() |
[31] |
A. Refice, M. S. Souid, I. Stamova, On the boundary value problems of Hadamard fractional differential equations of variable order via Kuratowski MNC technique, Mathematics, 9 (2021), 1134. https://doi.org/10.3390/math9101134 doi: 10.3390/math9101134
![]() |
[32] |
M. Feckan, Y. Zhou, J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci., 17 (2012), 3050–3060. https://doi.org/10.1016/j.cnsns.2011.11.017 doi: 10.1016/j.cnsns.2011.11.017
![]() |
[33] |
R. P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973–1033. https://doi.org/10.1007/s10440-008-9356-6 doi: 10.1007/s10440-008-9356-6
![]() |
[34] |
J. Wang, M. Feckan, Y. Zhou, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806–831. https://doi.org/10.1515/fca-2016-0044 doi: 10.1515/fca-2016-0044
![]() |
[35] |
G. Wang, B. Ahmad, L. Zhang, Impulsive anti-periodic boundary value problem for non-linear differential equations of fractional order, Nonlinear Anal. Theor., 74 (2010), 792–804. https://doi.org/10.1016/j.na.2010.09.030 doi: 10.1016/j.na.2010.09.030
![]() |
[36] |
N. Mahmudov, S. Unul, On existence of BVP's for impulsive fractional differential equations, Adv. Differ. Equ., 2017 (2017), 15. https://doi.org/10.1186/s13662-016-1063-4 doi: 10.1186/s13662-016-1063-4
![]() |
[37] |
B. Pervaiz, A. Zada, S. Etemad, S. Rezapour, An analysis on the controllability and stability to some fractional delay dynamical systems on time scales with impulsive effects, Adv. Differ. Equ., 2021 (2021), 491. https://doi.org/10.1186/s13662-021-03646-9 doi: 10.1186/s13662-021-03646-9
![]() |
[38] |
M. Benchohra, D. Seba, Impulsive fractional differential equations in Banach spaces, Electro. J. Qual. Theory Differ. Equ., 8 (2009), 1–14. https://doi.org/10.14232/ejqtde.2009.4.8 doi: 10.14232/ejqtde.2009.4.8
![]() |
[39] |
S. G. Samko, Fractional integration and differentiation of variable order: An overview, Nonlinear Dyn., 71 (2013), 653–662. https://doi.org/10.1007/s11071-012-0485-0 doi: 10.1007/s11071-012-0485-0
![]() |
[40] |
H. G. Sun, W. Chen, Y. Q. Chen, Variable-order fractional differential operators in anomalous diffusion modeling, Phys. A, 388 (2009), 4586–4592. https://doi.org/10.1016/j.physa.2009.07.024 doi: 10.1016/j.physa.2009.07.024
![]() |
[41] |
D. Valerio, J. S. da Costa, Variable-order fractional derivatives and their numerical approximations, Signal Process., 91 (2011), 470–483. https://doi.org/10.1016/j.sigpro.2010.04.006 doi: 10.1016/j.sigpro.2010.04.006
![]() |
[42] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differenatial equations, Elsevier, 2006. |
[43] |
A. Benkerrouche, M. S. Souid, S. Chandok, A. Hakem, Existence and stability of a Caputo variable-order boundary value problem, J. Math., 2021 (2021), 7967880. https://doi.org/10.1155/2021/7967880 doi: 10.1155/2021/7967880
![]() |
[44] | S. Zhang, S. Sun, L. Hu, Approximate solutions to initial value problem for differential equation of variable order, J. Frac. Calc. Appl., 9 (2018), 93–112. |
[45] |
P. Ivady, A note on a gamma function inequality, J. Math. Inequal., 3 (2009), 227–236. https://doi.org/10.7153/JMI-03-23 doi: 10.7153/JMI-03-23
![]() |
[46] | T. Odzijewicz, A. B. Malinowska, D. F. M. Torres, Fractional variational calculus of variable order, In: Advances in harmonic analysis and operator theory, 2013,291–301. https://doi.org/10.1007/978-3-0348-0516-2_16 |
[47] | A. Jiahui, C. Pengyu, Uniqueness of solutions to initial value problem of fractional differential equations of variable-order, Dyn. Syst. Appl., 28 (2019), 607–623. |
[48] |
M. Benchohra, J. E. Lazreg, Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Stud. Univ. Babes-Bolyai Math., 62 (2017), 27–38. https://doi.org/10.24193/SUBBMATH.2017.0003 doi: 10.24193/SUBBMATH.2017.0003
![]() |