Research article

Existence of solutions to a generalized quasilinear Schrödinger equation with concave-convex nonlinearities and potentials vanishing at infinity

  • Received: 10 July 2023 Revised: 20 September 2023 Accepted: 25 September 2023 Published: 07 October 2023
  • MSC : 35J20, 35J62, 35Q35

  • In this paper, we investigate the existence of solutions to a generalized quasilinear Schrödinger equation with concave-convex nonlinearities and potentials vanishing at infinity. Using the mountain pass theorem, we get the existence of a positive solution.

    Citation: Xiaojie Guo, Zhiqing Han. Existence of solutions to a generalized quasilinear Schrödinger equation with concave-convex nonlinearities and potentials vanishing at infinity[J]. AIMS Mathematics, 2023, 8(11): 27684-27711. doi: 10.3934/math.20231417

    Related Papers:

  • In this paper, we investigate the existence of solutions to a generalized quasilinear Schrödinger equation with concave-convex nonlinearities and potentials vanishing at infinity. Using the mountain pass theorem, we get the existence of a positive solution.



    加载中


    [1] J. F. L. Aires, M. A. S. Souto, Existence of solutions for a quasilinear Schrödinger equation with vanishing potentials, J. Math. Anal. Appl., 416 (2014), 924–946. http://doi.org/10.1016/j.jmaa.2014.03.018 doi: 10.1016/j.jmaa.2014.03.018
    [2] C. O. Alves, M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differ. Equations, 254 (2013), 1977–1991. http://doi.org/10.1016/j.jde.2012.11.013 doi: 10.1016/j.jde.2012.11.013
    [3] A. Ambrosetti, V. Felli, A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117–144. http://doi.org/10.4171/JEMS/24 doi: 10.4171/JEMS/24
    [4] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
    [5] A. De Bouard, N. Hayashi, J. C. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Commun. Math. Phys., 189 (1997), 73–105. https://doi.org/10.1007/s002200050191 doi: 10.1007/s002200050191
    [6] J. H. Chen, X. J. Huang, B. T. Cheng, Positive solutions for a class of quasilinear Schrödinger equations with superlinear condition, Appl. Math. Lett., 87 (2019), 165–171. https://doi.org/10.1016/j.aml.2018.07.035 doi: 10.1016/j.aml.2018.07.035
    [7] J. H. Chen, X. H. Tang, B. T. Cheng, Non-Nehari manifold method for a class of generalized quasilinear Schrödinger equations, Appl. Math. Lett., 74 (2017), 20–26. http://doi.org/10.1016/j.aml.2017.04.032 doi: 10.1016/j.aml.2017.04.032
    [8] S. T. Chen, X. H. Tang, Ground state solutions for generalized quasilinear Schrödinger equations with variable potentials and Berestycki-Lions nonlinearities, J. Math. Phys., 59 (2018), 081508. https://doi.org/10.1063/1.5036570 doi: 10.1063/1.5036570
    [9] S. X. Chen, X. Wu, Existence of positive solutions for a class of quasilinear Schrödinger equations of Choquard type, J. Math. Anal. Appl., 475 (2019), 1754–1777. https://doi.org/10.1016/j.jmaa.2019.03.051 doi: 10.1016/j.jmaa.2019.03.051
    [10] Y. B. Deng, S. J. Peng, S. S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differ. Equations, 258 (2015), 115–147. http://doi.org/10.1016/j.jde.2014.09.006 doi: 10.1016/j.jde.2014.09.006
    [11] Y. B. Deng, W. Shuai, Positive solutions for quasilinear schrödinger equations with critical growth and potential vanishing at infinity, Commun. Pure Appl. Anal., 13 (2014), 2273–2287. https://doi.org/10.3934/cpaa.2014.13.2273 doi: 10.3934/cpaa.2014.13.2273
    [12] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. https://doi.org/10.1016/0022-247X(74)90025-0 doi: 10.1016/0022-247X(74)90025-0
    [13] X. D. Fang, A positive solution for an asymptotically cubic quasilinear Schrödinger equation, Commun. Pure Appl. Anal., 18 (2019), 51–64. https://doi.org/10.3934/cpaa.2019004 doi: 10.3934/cpaa.2019004
    [14] M. F. Furtado, E. D. Silva, M. L. Silva, Existence of solution for a generalized quasilinear elliptic problem, J. Math. Phys., 58 (2017), 031503. http://doi.org/10.1063/1.4977480 doi: 10.1063/1.4977480
    [15] M. F. Furtado, E. D. Silva, M. L. Silva, Soliton solutions for a generalized quasilinear elliptic problem, Potential Anal., 53 (2020), 1097–1122. https://doi.org/10.1007/s11118-019-09799-3 doi: 10.1007/s11118-019-09799-3
    [16] R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B Condens. Matter, 37 (1980), 83–87. http://doi.org/10.1007/BF01325508 doi: 10.1007/BF01325508
    [17] A. M. Kosevich, B. A. Ivanov, A. S. Kovalev, Magnetic solitons, Phys. Rep., 194 (1990), 117–238. https://doi.org/10.1016/0370-1573(90)90130-T
    [18] S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Jpn., 50 (1981), 3262–3267. https://doi.org/10.1143/JPSJ.50.3262 doi: 10.1143/JPSJ.50.3262
    [19] E. W. Laedke, K. H. Spatschek, L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764–2769. https://doi.org/10.1063/1.525675 doi: 10.1063/1.525675
    [20] F. Y. Li, X. L. Zhu, Z. P. Liang, Multiple solutions to a class of generalized quasilinear Schrödinger equations with a Kirchhoff-type perturbation, J. Math. Anal. Appl., 443 (2016), 11–38. https://doi.org/10.1016/j.jmaa.2016.05.005 doi: 10.1016/j.jmaa.2016.05.005
    [21] Z. Li, Existence of positive solutions for a class of $p$-Laplacian type generalized quasilinear Schrödinger equations with critical growth and potential vanishing at infinity, Electron. J. Qual. Theory Differ. Equations, 2023 (2023), 3. https://doi.org/10.14232/ejqtde.2023.1.3 doi: 10.14232/ejqtde.2023.1.3
    [22] H. D. Liu, L. G. Zhao, Existence results for quasilinear Schrödinger equations with a general nonlinearity, Commun. Pure Appl. Anal., 19 (2020), 3429–3444. https://doi.org/10.3934/cpaa.2020059 doi: 10.3934/cpaa.2020059
    [23] J. Q. Liu, Y. Q. Wang, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, II, J. Differ. Equations, 187 (2003), 473–493. https://doi.org/10.1016/S0022-0396(02)00064-5 doi: 10.1016/S0022-0396(02)00064-5
    [24] J. Q. Liu, Y. Q. Wang, Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Commun. Partial Differ. Equations, 29 (2004), 879–890. https://doi.org/10.1081/PDE-120037335 doi: 10.1081/PDE-120037335
    [25] Y. Meng, X. J. Huang, J. H. Chen, Positive solutions for a class of generalized quasilinear Schrödinger equations involving concave and convex nonlinearities in Orlicz space, Electron. J. Qual. Theory Differ. Equations, 2021 (2021), 87. https://doi.org/10.14232/ejqtde.2021.1.87 doi: 10.14232/ejqtde.2021.1.87
    [26] A. Nakamura, Damping and modification of exciton solitary waves, J. Phys. Soc. Jpn., 42 (1977), 1824–1835. http://doi.org/10.1143/JPSJ.42.1824 doi: 10.1143/JPSJ.42.1824
    [27] J. C. O. Junior, S. I. Moreira, Generalized quasilinear equations with sign-changing unbounded potential, Appl. Anal., 101 (2022), 3192–3209. https://doi.org/10.1080/00036811.2020.1836356 doi: 10.1080/00036811.2020.1836356
    [28] G. R. W. Quispel, H. W. Capel, Equation of motion for the Heisenberg spin chain, Phys. A, 110 (1982), 41–80. https://doi.org/10.1016/0378-4371(82)90104-2 doi: 10.1016/0378-4371(82)90104-2
    [29] U. B. Severo, D. De S. Germano, Asymptotically periodic quasilinear Schrödinger equations with critical exponential growth, J. Math. Phys., 62 (2021), 111509. https://doi.org/10.1063/5.0053794 doi: 10.1063/5.0053794
    [30] Y. T. Shen, Y. J. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal., 80 (2013), 194–201. https://doi.org/10.1016/j.na.2012.10.005 doi: 10.1016/j.na.2012.10.005
    [31] E. A. B. Silva, G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differ. Equations, 39 (2010), 1–33. https://doi.org/10.1007/s00526-009-0299-1 doi: 10.1007/s00526-009-0299-1
    [32] Y. Su, Positive solution to Schrödinger equation with singular potential and double critical exponents, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., 31 (2020), 667–698. https://doi.org/10.4171/RLM/910 doi: 10.4171/RLM/910
    [33] Y. Su, Z. S. Feng, Fractional Sobolev embedding with radial potential, J. Differ. Equations, 340 (2022), 1–44. https://doi.org/10.1016/j.jde.2022.08.030 doi: 10.1016/j.jde.2022.08.030
    [34] Y. Su, Z. S. Feng, Lions-type theorem of the $p$-Laplacian and applications, Adv. Nonlinear Anal., 10 (2021), 1178–1200. https://doi.org/10.1515/anona-2020-0167 doi: 10.1515/anona-2020-0167
    [35] Y. Su, H. X. Shi, Quasilinear Choquard equation with critical exponent, J. Math. Anal. Appl., 508 (2022), 125826. https://doi.org/10.1016/j.jmaa.2021.125826 doi: 10.1016/j.jmaa.2021.125826
    [36] Y. J. Wang, Y. X. Yao, Standing waves for quasilinear Schrödinger equations, J. Math. Anal. Appl., 400 (2013), 305–310. https://doi.org/10.1016/j.jmaa.2012.11.054 doi: 10.1016/j.jmaa.2012.11.054
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(874) PDF downloads(41) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog