In this article, we consider a three dimensional compressible Navier-Stokes-Korteweg equations with the effect of external potential force. Under the smallness assumptions on both the external potential force and the initial perturbation of the stationary solution in H2(R3)×H1(R3), we prove the global existence and regularity of strong solutions for the Navier-Stokes-Korteweg equations.
Citation: Kaile Chen, Yunyun Liang, Nengqiu Zhang. Global existence of strong solutions to compressible Navier-Stokes-Korteweg equations with external potential force[J]. AIMS Mathematics, 2023, 8(11): 27712-27724. doi: 10.3934/math.20231418
[1] | Kaile Chen, Yunyun Liang, Nengqiu Zhang . Correction: Global existence of strong solutions to compressible Navier-Stokes-Korteweg equations with external potential force. AIMS Mathematics, 2024, 9(3): 5480-5481. doi: 10.3934/math.2024265 |
[2] | Hui Fang, Yihan Fan, Yanping Zhou . Energy equality for the compressible Navier-Stokes-Korteweg equations. AIMS Mathematics, 2022, 7(4): 5808-5820. doi: 10.3934/math.2022321 |
[3] | Xiaoxia Wang, Jinping Jiang . The pullback attractor for the 2D g-Navier-Stokes equation with nonlinear damping and time delay. AIMS Mathematics, 2023, 8(11): 26650-26664. doi: 10.3934/math.20231363 |
[4] | Jianxia He, Ming Li . Existence of global solution to 3D density-dependent incompressible Navier-Stokes equations. AIMS Mathematics, 2024, 9(3): 7728-7750. doi: 10.3934/math.2024375 |
[5] | Abdelkader Moumen, Ramsha Shafqat, Azmat Ullah Khan Niazi, Nuttapol Pakkaranang, Mdi Begum Jeelani, Kiran Saleem . A study of the time fractional Navier-Stokes equations for vertical flow. AIMS Mathematics, 2023, 8(4): 8702-8730. doi: 10.3934/math.2023437 |
[6] | Qingkun Xiao, Jianzhu Sun, Tong Tang . Uniform regularity of the isentropic Navier-Stokes-Maxwell system. AIMS Mathematics, 2022, 7(4): 6694-6701. doi: 10.3934/math.2022373 |
[7] | Yina Lin, Qian Zhang, Meng Zhou . Global existence of classical solutions for the 2D chemotaxis-fluid system with logistic source. AIMS Mathematics, 2022, 7(4): 7212-7233. doi: 10.3934/math.2022403 |
[8] | Yasir Nadeem Anjam . The qualitative analysis of solution of the Stokes and Navier-Stokes system in non-smooth domains with weighted Sobolev spaces. AIMS Mathematics, 2021, 6(6): 5647-5674. doi: 10.3934/math.2021334 |
[9] | Jianlong Wu . Regularity criteria for the 3D generalized Navier-Stokes equations with nonlinear damping term. AIMS Mathematics, 2024, 9(6): 16250-16259. doi: 10.3934/math.2024786 |
[10] | Jae-Myoung Kim . Time decay rates for the coupled modified Navier-Stokes and Maxwell equations on a half space. AIMS Mathematics, 2021, 6(12): 13423-13431. doi: 10.3934/math.2021777 |
In this article, we consider a three dimensional compressible Navier-Stokes-Korteweg equations with the effect of external potential force. Under the smallness assumptions on both the external potential force and the initial perturbation of the stationary solution in H2(R3)×H1(R3), we prove the global existence and regularity of strong solutions for the Navier-Stokes-Korteweg equations.
The theory of capillarity with diffuse interfaces was first introduced by Korteweg and derived rigorously by Dunn and Serrin [7]. The Navier-Stokes-Korteweg (NSK) equations can be used to describe the motion of a compressible fluid with capillarity effect (see [2,5,10]). In this work, we consider the following compressible Navier-Stokes-Korteweg equations in three dimensional (3D) space:
{ρt+∇⋅(ρu)=0,ρ[ut+(u⋅∇)u]+∇P(ρ)=μΔu+(μ+ν)∇(∇⋅u)+κρ∇△ρ+ρF(x), | (1.1) |
where ρ>0,u and P(ρ) represent the density, velocity and pressure, respectively. The constants μ and ν are the viscosity coefficients satisfying μ>0 and 2μ+3ν≥0. In addition, κ>0 is the capillary coefficient. F(x)=(F1(x),F2(x),F3(x)) is a given external force.
Due to the important role of Navier-Stokes-Korteweg (NSK) equations in the field of applied and computational mathematics, there is much literature on the mathematical theory of the NSK model. In particular, the local existence and global existence of smooth solutions in Sobolev space without external force was proved by Hattori and Li [11,12]. The existence and uniqueness results of suitably smooth solutions in critical Besov spaces was obtained by Danchin and Desjardins [8]. The existence and stability of time-periodic solution was verified by Tsuda [26]. The global existence of weak solutions has been investigated by Bresch, Desjardins and Lin [3] in 2D and 3D periodic domain and by Haspot [13] in 2D space. Kotschote proved the local existence of strong solutions in [16]. Li [17] investigated the global existence and L2-decay rate of smooth solutions for the compressible NSK equations with small initial data and small external potential force. Tan, Wang and Xu [24] established the global existence and optimal L2-decay rate for the strong solutions to the compressible NSK equations without external force. More mathematical theories about NSK model can be found in [4,6,15,18,25,27,28], and other theories of related or similar models can be found in [9,14,19,21,22,23,29,30] etc.
In this paper, we consider the global existence of the solutions to the compressible Navier-Stokes-Korteweg equations with only external potential force, i.e., F=−∇ϕ and we consider the following initial value problem in three dimensional space:
{ρt+∇⋅(ρu)=0,ut+(u⋅∇)u+∇P(ρ)ρ=μρΔu+(μ+ν)ρ∇(∇⋅u)+κ∇△ρ−∇ϕ,(ρ,u)(x,0)=(ρ0,u0)(x)→(ρ∞,0)as |x|→∞, ρ∞>0. | (1.2) |
The corresponding steady-state problem can be expressed as follows:
{∇⋅(˜ρ˜u)=0,˜ρ(˜u⋅∇)˜u+∇P(˜ρ)−μΔ˜u−(μ+ν)∇(∇⋅˜u)−κ˜ρ∇△˜ρ+˜ρ∇ϕ=0,(˜ρ,˜u)→(ρ∞,0)as |x|→∞, ρ∞>0. | (1.3) |
Note that the existence of the solution to problem (1.3) has been established in [17], which is the following proposition.
Proposition 1.1. Let P(⋅) be smooth (at least C2) in a neighborhood of ρ∞ with P′(⋅)>0, if ‖ϕ‖3≤ϵ0 with ε0 be a small positive constant, then the problem (1.3) has a unique solution (˜ρ,˜u)(x) satisfying
˜ρ−ρ∞∈H5(R3),˜u=0, |
and
12ρ∞≤˜ρ(x)≤2ρ∞, ‖˜ρ−ρ∞‖5≤Cϵ0. | (1.4) |
We mention that the global existence, regularity and time decay rates of the solution (ρ,u) to the steady state (˜ρ,0) have been established in [17,28] when the initial perturbations (ρ0−˜ρ,u0)(x) are small in H4(R3)×H3(R3) and H3(R3)×H2(R3), respectively. In the absence of external force, the work [24] proved the global existence of solutions when the initial perturbation ‖ρ0−˜ρ‖2+‖u0‖1 is small and ˜ρ is a positive constant. However, there is no result on the existence of the global solutions to (1.2) with external force when ‖ρ0−˜ρ‖2+‖u0‖1 is small and ˜ρ is not a constant. In this paper, a promising answer to this question is given. The major results are stated in the following theorem.
Theorem 1.1. Let P(⋅) be smooth (at least C2) in a neighborhood of ρ∞ with P′(⋅)>0 and assume that (ρ0−˜ρ,u0)(x)∈H2(R3)×H1(R3), ‖ρ0−˜ρ‖2+‖u0‖1≤ε1 and ‖ϕ(x)‖≤ε1 for some small constant ε1>0, then the Cauchy problem (1.2) admits a unique global solution (ρ,u)(x,t) satisfying
‖ρ−˜ρ‖22+‖u‖21+∫t0(‖∇(ρ−˜ρ)‖22+‖∇u‖21)dτ≤C0(‖ρ0−˜ρ‖22+‖u0‖21), ∀t≥0, | (1.5) |
where C0 is a positive constant.
The idea of the proof is outlined as follows. First, we recall the existence and uniqueness of the stationary solution. Then, combining the local existence and global a-prior estimates derived by the elaborate energy method, we apply the continuity argument to establish the global existence of solutions for the nonlinear problem.
The rest of this article is organized as follows. In Section 2, we make some preliminaries and Section 3 is devoted to establishing the existence and regularity of global strong solutions for the initial value problem (1.2).
In this section, we first introduce some notations and function spaces, and then recall some important inequalities.
Throughout this paper, we denote the usual Lebesgue space and Sobolev space on R3 by Lp(R3) and Wm,p(R3) endowed with norms ‖⋅‖Lp and ‖⋅‖m,p, respectively. Especially, we denote Hm(Ω):=Wm,2(Ω) with norm ‖⋅‖m. For a multi-index α=(α1,α2,α3), ∂αx=∂α1x1∂α2x2∂α3x3,|α|=3∑i=1αi. C represents a generic positive constant. In addition, let
Lp(I;X):=space of strongly measurable functions on the closed interval I,with values in the Banach space X,endowed with norm |
‖φ‖Lp(I;X):=(∫I‖φ‖pXdt)1/p, 1≤p<∞, |
Ck(I;X):=space of the k-times continuously differentiable functions on the interval I,with values in the space X,endowed with the usual norm. |
Next, we recall some important inequalities as follows.
Lemma 2.1. (see [1])
(i) If φ(x)∈H1(R3), then the following inequalities hold:
‖φ‖L6≤C‖∇φ‖,‖φ‖Lq≤C(‖φ‖+‖φ‖L6)≤C‖φ‖1, 2≤q≤6. |
(ii) Assume φ(x)∈H2(R3), then
‖φ‖L∞≤C‖∇φ‖1. |
In this section, we concentrate on establishing the existence and stability of global-in-time solutions to the problem (1.2).
Since ˜u=0, it follows from (1.3) that the stationary solution ˜ρ satisfies
{∇P(˜ρ)−κ˜ρ∇△˜ρ+˜ρ∇ϕ=0,˜ρ→ρ∞as |x|→∞. | (3.1) |
Let (n,u)=(ρ−˜ρ,u), then problem (1.2) can be transformed into the following problem
{nt+∇⋅((n+˜ρ)u)=0,ut−μn+˜ρΔu−μ+νn+˜ρ∇(∇⋅u)+P′(ρ∞)ρ∞∇n=κ∇△n+f,(n,u)(x,0)=(n0,u0)(x)=(ρ0−˜ρ,u0)(x)→(0,0)as |x|→∞, | (3.2) |
where
f=−(u⋅∇)u−(P′(n+˜ρ)n+˜ρ−P′(˜ρ)˜ρ)∇˜ρ−(P′(n+˜ρ)n+˜ρ−P′(ρ∞)ρ∞)∇n. | (3.3) |
Now, we define a function space
X(0,T):={(n,u)|n∈C0(0,T;H2(R3))∩C1(0,T;H1(R3)),u∈C0(0,T;H1(R3))∩C1(0,T;L2(R3)),∇n∈L2(0,T;H2(R3)), ∇u∈L2(0,T;H1(R3))}, |
and for any T≥0, let
N(0,T)2:=sup0≤t≤T{‖n(⋅,t)‖22+‖u(⋅,t)‖21}+∫T0(‖∇n(⋅,t)‖22+‖∇u(⋅,t)‖21)dt. |
Before proving the existence of global solutions, we first give the results about the existence of local solutions as follows.
Proposition 3.1. (Local existence) Assume that (n0,u0)(x)∈H2(R3)×H1(R3) and ‖ϕ(x)‖≤ε1 with the positive constant ε1 small enough. Then there exists a positive constant T1>0 depending on n0 and u0, such that the initial value problem (3.2) has a unique solution (n,u)∈X(0,T1) satisfying N(0,T1)≤2N(0,0).
Note that the conclusions can be proved using a similar method to that in [16,20]. Since the method is standard, we omit it here.
Next, to obtain the global existence of the solution (n,u)(x,t) of system (3.2), based on standard continuity argument, some a-priori estimates need to be established first. To this end, we assume that, for T>0,
E(T):=sup0≤t≤T(‖n(⋅,t)‖2+‖u(⋅,t)‖1)≤δ≪1. | (3.4) |
By the above assumption (3.4) and the Sobolev's inequality, we have
‖n(⋅,t)‖L∞≤Cδ. | (3.5) |
In addition, under the conditions of Theorem 1.1, it follows from Proposition 1.1 and Lemma 2.1 that
‖˜ρ(⋅)−ρ∞‖L∞∩H5≤Cε1. | (3.6) |
Therefore,
14ρ∞≤‖n+˜ρ‖L∞≤4ρ∞. | (3.7) |
In what follows, we concentrate on establishing some important a-priori estimates.
Lemma 3.1. Assume that (3.4) hold and let (n,u)(x,t) be a solution of system (3.2) in [0,T], then, under the conditions of Theorem 1.1, we have the estimate
12ddt∫R3(P′(ρ∞)ρ∞n2+(n+˜ρ)u2+κ(∇n)2)dx+μ∫R3(∇u)2dx+(μ+ν)∫R3(∇⋅u)2dx≤Cρ∞(δ+ε1)(‖∇n‖2+‖∇u‖2). | (3.8) |
Proof. Multiplying (3.2)1 and (3.2)2 by P′(ρ∞)ρ∞n and (n+˜ρ)u, respectively, then integrating over R3 and summing the resultant equalities, we obtain
12ddt∫R3(P′(ρ∞)ρ∞n2+(n+˜ρ)u2)dx+μ∫R3(∇u)2dx+(μ+ν)∫R3(∇⋅u)2dx−κ∫R3(n+˜ρ)u∇△ndx=12∫R3ntu2dx+∫R3(n+˜ρ)ufdx. | (3.9) |
According to (3.2)1, it holds that
−κ∫R3(n+˜ρ)u∇△ndx=κ∫R3△n∇⋅((n+˜ρ)u)dx=−κ∫R3△nntdx=κ2ddt∫R3(∇n)2dx. | (3.10) |
Observe that f has the following equivalent properties:
f∼−(u⋅∇)u−n∇˜ρ−n∇n−(˜ρ−ρ∞)∇n, | (3.11) |
then it follows from Hölder inequality, Lemma 2.1, (3.4), (3.6) and (3.7) that
∫R3(n+˜ρ)ufdx∼−∫R3(n+˜ρ)u((u⋅∇)u+n∇˜ρ+n∇n+(˜ρ−ρ∞)∇n)dx≤‖n+˜ρ‖L∞(‖u‖L6‖∇u‖‖u‖L3+‖n‖L6‖∇(˜ρ−ρ∞)‖L3‖u‖+‖∇n‖‖n‖L3‖u‖L6+‖˜ρ−ρ∞‖L3‖u‖L6‖∇n‖)≤Cρ∞(δ+ε1)(‖∇n‖2+‖∇u‖2). | (3.12) |
Meanwhile, from Hölder inequality, Lemma 2.1, (3.2)1 and (3.7), the following inequalities can be derived as well
12∫R3ntu2dx=−12∫R3u2∇⋅((n+˜ρ)u)dx=∫R3u∇u(n+˜ρ)udxx≤‖n+˜ρ‖L∞‖∇u‖‖u‖L6‖u‖L3≤Cρ∞(‖u‖+‖∇u‖)‖∇u‖2≤Cρ∞δ‖∇u‖2. | (3.13) |
Finally, substituting (3.10), (3.12) and (3.13) into (3.9) gives (3.8). The proof is complete.
Lemma 3.2. Under the conditions of Lemma 3.1, it holds that
12ddt∫R3(P′(ρ∞)ρ∞(∇n)2+(n+˜ρ)(∇u)2+κ(∇2n)2)dx+μ∫R3(∇2u)2dx+(μ+ν)∫R3(div∇u)2dx≤C(δ+ε1)(‖∇n‖21+‖∇△n‖2+‖∇u‖21). | (3.14) |
Proof. First applying ∂αx to (3.2) with |α|=1, we obtain
∂αxnt+div((n+˜ρ)∂αxu)=−div(∂αx(n+˜ρ)u) | (3.15) |
and
∂αxut−μn+˜ρΔ∂αxu−μ+νn+˜ρ∇(div∂αxu)+P′(ρ∞)ρ∞∇∂αxn=κ∇△∂αxn+∂αxf+∂αx(μn+˜ρ)Δu+∂αx(μ+νn+˜ρ)∇(divu). | (3.16) |
Multiplying (3.15) and (3.16) by P′(ρ∞)ρ∞∂αxn and (n+˜ρ)∂αxu, respectively, then integrating over R3 and summing the resultant equalities, we get
12ddt∫R3(P′(ρ∞)ρ∞(∂αxn)2+(n+˜ρ)(∂αxu)2)dx+μ∫R3(∇∂αxu)2dx+(μ+ν)∫R3(div∂αxu)2dx=12∫R3nt(∂αxu)2dx−P′(ρ∞)ρ∞∫R3div[∂αx(n+˜ρ)u]∂αxndx+∫R3∂αx(μn+˜ρ)Δu(n+˜ρ)∂αxudx+∫R3∂αx(μ+νn+˜ρ)∇(divu)(n+˜ρ)∂αxudx+κ∫R3∇△∂αxn(n+˜ρ)∂αxudx+∫R3∂αxf(n+˜ρ)∂αxudx:=J1+J2+J3+J4+J5+J6. | (3.17) |
In the following, we focus on establishing the estimates of Ji(i=1,2,3,4,5,6). Noticing that |α|=1, by Hölder inequality, Young inequality and Lemma 2.1, it follows from (3.2)1, (3.4), (3.6) and (3.7) that
J1=−12∫R3(∂αxu)2∇⋅((n+˜ρ)u)dx=∫R3∂αxu⋅∇∂αxu⋅((n+˜ρ)u)dx≤‖n+˜ρ‖L∞‖u‖L6‖∂αxu‖L3‖∇∂αxu‖≤Cρ∞δ‖∂αxu‖21, | (3.18) |
J2=−P′(ρ∞)ρ∞∫R3(∂αx(n+˜ρ)∇⋅u∂αxn+u∇∂αx(n+˜ρ)∂αxn)dx≤∫R3((∂αxn+∂αx˜ρ)∇⋅u∂αxn+u(∇∂αxn+∇∂αx˜ρ)∂αxn)dx≤‖∂αxn‖L6‖∇⋅u‖‖∂αxn‖L3+‖∂αx˜ρ‖L∞‖∇⋅u‖‖∂αxn‖+‖∇∂αxn‖‖u‖L6‖∂αxn‖L3+‖∇∂αx˜ρ‖‖u‖L6‖∂αxn‖L3≤C(δ+ε1)(‖∇u‖2+‖∇n‖21), | (3.19) |
J5=−κ∫R3△∂αxndiv((n+˜ρ)∂αxu)dx=κ∫R3△∂αxn[∂αxnt+div(∂αx(n+˜ρ)u)]dx=−κ2ddt∫R3(∇∂αxn)2dx+κ∫R3△∂αxn[∇∂αx(n+˜ρ)u+∂αx(n+˜ρ)divu]dx≤−κ2ddt∫R3(∇∂αxn)2dx+κ‖△∂αxn‖(‖∇∂αxn‖L3‖u‖L6+‖∇∂αx˜ρ‖L3‖u‖L6+‖∂αxn‖L6‖∇⋅u‖L3+‖∂αx˜ρ‖L6‖∇⋅u‖L3)≤−κ2ddt∫R3(∇∂αxn)2dx+Cκ(δ+ε1)(‖Δ∇n‖2+‖∇u‖21), | (3.20) |
and
J3=−∫R3μn+˜ρ∂αx(n+˜ρ)△u∂αxudx≤‖μn+˜ρ‖L∞‖∂αx(n+˜ρ)‖L6‖△u‖‖∂αxu‖L3≤Cρ∞(‖∇2n‖+‖∇2˜ρ‖)‖∇u‖21≤Cρ∞(δ+ε1)‖∇u‖21. | (3.21) |
Similarly, we can show
J4≤Cρ∞(δ+ε1)‖∇u‖21. | (3.22) |
In addition, since (3.11), it holds that
J6∼−∫R3(n+˜ρ)∂αxu∂αx(u⋅∇u)dx−∫R3(n+˜ρ)∂αxu∂αx(n∇˜ρ)dx−∫R3(n+˜ρ)∂αxu∂αx(n∇n)dx−∫R3(n+˜ρ)∂αxu∂αx((˜ρ−ρ∞)∇n)dx:=J61+J62+J63+J64. | (3.23) |
Similarly, based on Lemma 2.1 and (3.4)–(3.7), the following estimates can be derived
J61=−∫R3(n+˜ρ)∂αxu(∂αxu⋅∇u+u∂αx∇u)dx≤‖n+˜ρ‖L∞‖∂αxu‖L3(‖∂αxu‖L6‖∇u‖+‖∂αx∇u‖‖u‖L6)Cρ∞δ‖∇u‖21, | (3.24) |
J62=−∫R3(n+˜ρ)∂αxu(∂αxn∇˜ρ+n∂αx∇˜ρ)dx≤‖n+˜ρ‖L∞‖∂αxu‖(‖∂αxn‖‖∇˜ρ‖L∞+‖n‖L6‖∂αx∇˜ρ‖L3)≤Cρ∞ε1(‖∇u‖2+‖∇n‖2), | (3.25) |
J63=−∫R3(n+˜ρ)∂αxu(∂αxn∇n+n∂αx∇n)dx≤‖n+˜ρ‖L∞‖∂αxu‖(‖∂αxn‖L3‖∇n‖L6+‖n‖L∞‖∂αx∇n‖)≤Cρ∞δ(‖∇u‖2+‖∇2n‖2), | (3.26) |
J64=−∫R3(n+˜ρ)∂αxu(∂αx˜ρ∇n+(˜ρ−ρ∞)∂αx∇n)dx≤‖n+˜ρ‖L∞‖∂αxu‖(‖∂αx˜ρ‖L∞‖∇n‖+‖˜ρ−ρ∞‖L∞‖∂αx∇n‖)≤Cρ∞ε1(‖∇u‖2+‖∇n‖21). | (3.27) |
Therefore,
J6∼J61+J62+J63+J64≤Cρ∞(ε1+δ)(‖∇u‖21+‖∇n‖21). | (3.28) |
Then substituting (3.18)–(3.22) and (3.28) into (3.17), we can deduce the estimate (3.14). The proof is complete.
Lemma 3.3. Under the conditions of Lemma 3.1, we have
ddt∫R3u∇ndx+P′(ρ∞)2ρ∞∫R3(∇n)2dx+κ∫R3(△n)2dx≤C(δ+ε1)(‖∇n‖21+‖∇u‖21)+Cρ∞‖∇u‖2+γ1‖∇2u‖2 | (3.29) |
and
ddt∫R3∇u∇∇ndx+P′(ρ∞)ρ∞∫R3(∇∇n)2dx+κ2∫R3(∇△n)2dx≤C(δ+ε1)(‖∇n‖21+‖∇u‖21)+Cρ∞‖∇u‖21+γ2‖∇2u‖2. | (3.30) |
Proof. First from (3.2)2, it is easy to see that
P′(ρ∞)ρ∞∇n−κ∇△n=−ut+μn+˜ρΔu+μ+νn+˜ρ∇(∇⋅u)+f. | (3.31) |
Taking inner product of (3.31) and ∇n over R3, and then integrating by parts, we have
ddt∫R3u∇ndx+∫R3P′(ρ∞)ρ∞(∇n)2dx+κ∫R3(△n)2dx=∫R3u∇ntdx+∫R3(μn+˜ρ△u+μ+νn+˜ρ∇(∇⋅u))⋅∇ndx+∫R3f⋅∇ndx=−∫R3∇⋅u∇(n+˜ρ)udx−∫R3∇⋅u(n+˜ρ)∇⋅udx+∫R3μn+˜ρ△u⋅∇ndx+∫R3μ+νn+˜ρ∇(∇⋅u)⋅∇ndx+∫R3f⋅∇ndx:=G1+G2+G3+G4+G5, | (3.32) |
in which we used (3.2)1. For Gi(i=1,2,3,4,5), by using the Hölder inequality, Lemma 2.1, (3.4) and (3.6), we can deduce
G1+G2≤‖∇⋅u‖(‖∇(n+˜ρ)‖L3‖u‖L6+‖n+˜ρ‖L∞‖∇⋅u‖)≤C‖∇⋅u‖(‖∇(n+˜ρ)‖1‖∇u‖+‖n+˜ρ‖L∞‖∇⋅u‖)≤C(δ+ε1+ρ∞)‖∇u‖2. | (3.33) |
By using the Young inequality, we can conclude there exists a positive constant γ1 such that
G3+G4≤P′(ρ∞)2ρ∞‖∇n‖2+γ1‖∇2u‖2. | (3.34) |
In addition, similar to the estimation of (3.12), it holds that
G5=∫R3f⋅∇ndx∼−∫R3(u⋅∇)u⋅∇ndx−∫R3n∇˜ρ⋅∇ndx−∫R3n∇n⋅∇ndx+∫R3(˜ρ−ρ∞)△nndx+∫R3∇(˜ρ−ρ∞)⋅∇nndx≤‖u‖L6‖∇u‖‖∇n‖L3+‖∇˜ρ‖L3‖n‖L6‖∇n‖+‖n‖L3‖∇n‖‖∇n‖L6+‖˜ρ−ρ∞‖L3‖n‖L6‖△n‖+‖∇(˜ρ−ρ∞)‖L3‖∇n‖‖n‖L6≤C(δ+ε1)(‖∇u‖2+‖∇n‖21). | (3.35) |
Then substituting (3.33)–(3.35) into (3.32) yields (3.29).
Next applying ∂αx(|α|=1) to (3.31), then multiplying it by ∂αx∇n and integrating the resultant equation over R3, we have
ddt∫R3∂αxu⋅∂αx∇ndx+P′(ρ∞)ρ∞∫R3(∂αx∇n)2dx+κ∫R3(∂αx△n)2dx=∫R3∂αxu∂αx∇ntdx+∫R3∂αx(μn+˜ρ△u)∂αx∇ndx+∫R3∂αx(μ+νn+˜ρ∇(∇⋅u))∂αx∇ndx+∫R3∂αxf⋅∂αx∇ndx:=M1+M2+M3+M4. | (3.36) |
Based on Lemma 2.1, noticing that |α|=1, it follows from Hölder inequality, (3.2)1, (3.4) and (3.6) that
M1=−∫R3∂αxu∂αx∇(∇(n+˜ρ)u+(n+˜ρ)∇⋅u)dx=∫R3∂αx∇⋅u∂αx(∇(n+˜ρ)u+(n+˜ρ)∇⋅u)dx≤‖∂αx∇⋅u‖(‖∂αx∇(n+˜ρ)‖‖u‖L∞+‖∇(n+˜ρ)‖L6‖∂αxu‖L3+‖∂αx(n+˜ρ)‖L6‖∇⋅u‖L3+‖n+˜ρ‖L∞‖∂αx∇⋅u‖)≤C(δ+ε1+ρ∞)‖∇u‖21. | (3.37) |
Similarly, there exists a positive constant γ2 such that
M2+M3=−∫R3(μn+˜ρ△u)(∂αx)2∇ndx−∫R3(μ+νn+˜ρ∇(∇⋅u))(∂αx)2∇ndx≤‖μn+˜ρ‖L∞‖△u‖‖(∂αx)2∇n‖+‖μ+νn+˜ρ‖L∞‖∇(∇⋅u)‖‖(∂αx)2∇n‖≤κ2‖(∂αx)2∇n‖2+γ2‖∇2u‖2, | (3.38) |
and
M4=∫R3∂αxf⋅∂αx∇ndx∼−∫R3∂αx((u⋅∇)u+n∇˜ρ+n∇n+(˜ρ−ρ∞)∇n)⋅∂αx∇ndx=∫R3((u⋅∇)u+n∇˜ρ+n∇n)⋅(∂αx)2∇ndx+12∫R3(∂αx)2(˜ρ−ρ∞)(∇n)2dx−∫R3(˜ρ−ρ∞)(∂αx∇n)2dx≤(‖u‖L6‖∇u‖L3+‖n‖L6‖∇˜ρ‖L3+‖n‖L6‖∇n‖L3)‖(∂αx)2∇n‖+12‖(∂αx)2(˜ρ−ρ∞)‖L3‖∇n‖‖∇n‖L6+‖˜ρ−ρ∞‖L∞‖∂αx∇n‖2≤C(δ+ε1)(‖∇u‖21+‖△∇n‖2+‖∇n‖21). | (3.39) |
Finally, (3.30) can be concluded by taking (3.36)–(3.39) and the smallness of δ and ε1 into account. The proof is complete.
With the above Lemmas at hand, we have the following conclusion.
Proposition 3.2. Assume that (3.4) hold and let (n,u)(x,t) be a solution of system (3.2) in [0,T], then under the conditions of Theorem 1.1, the following a-priori estimate holds
‖n(t)‖22+‖u(t)‖21+∫t0(‖∇n‖22+‖∇u‖21)ds≤C0(‖n0‖22+‖u0‖21), | (3.40) |
where C0 is a positive constant independent of t.
Proof. Adding (3.8) and (3.14), we can conclude that there exist positive constants C1 and C2, such that
ddt(‖n(t)‖22+‖u(t)‖21)+C1‖∇u(t)‖21≤C2(δ+ε1)(‖∇n(t)‖21+‖∇u(t)‖21+‖∇△n(t)‖2). | (3.41) |
Similarly, adding (3.29) and (3.30), since δ and ε1 are small, we conclude that there exists a positive constant C3, such that
ddt∫R3(u∇n+∇u∇2n)dx+P′(ρ∞)ρ∞‖∇n‖21+κ‖△n(t)‖21≤C3‖∇u‖21. | (3.42) |
Multiplying (3.42) by C4:=min{1,C12C3}, then adding (3.41), noticing that the smallness of δ and ε1, we conclude there exist positive constants C4 and C5, such that
ddt(‖n(t)‖22+‖u(t)‖21+C4∫R3(u∇n+∇u∇2n)dx)+C5(‖∇u(t)‖21+‖∇n‖21+‖△n(t)‖21)=ddt{‖∇n(t)‖21+(1−C44)‖∇n(t)‖21+‖u(t)‖21+C4∫R3[(u2+∇n2)2+(∇u2+∇2n2)2]dx}+C5(‖∇u(t)‖21+‖∇n‖21+‖△n(t)‖21)≤0. | (3.43) |
Integrating the above inequality from 0 to t, we can conclude there exists a positive constant C0, such that
‖n(t)‖22+‖u(t)‖21+∫t0(‖∇n‖22+‖∇u‖21)ds≤C0(‖n0‖22+‖u0‖21), ∀t∈[0,T], |
i.e., (3.40) holds. The proof is complete.
The proof of Theorem 1.1. Based on the method of continuity, the global existence of solution (n(x,t),ρ(x,t)) to problem (3.2) follows from Propositions 3.1 and 3.2. Since (n,u)=(ρ−˜ρ,u), (ρ(x,t),u(x,t)) is the unique global strong solution of problem (1.2). Moreover, (1.5) follows from (3.40). The proof is complete.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work is supported by the National Nature Science Foundation of China (No. 12301294), the Natural Science Foundation of Hubei Province, China (No. 2022CFB661) and the Young and Middle-aged Talent Fund of Hubei Education Department, China (No. Q20201307).
The authors declare that there is no conflict of interests regarding this paper.
[1] | R. Adams, J. Fournier, Sobolev spaces, New York: Academic Press, 1975. |
[2] |
D. Anderson, G. Mcfadden, A. Wheeler, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30 (1998), 139–165. http://dx.doi.org/10.1146/annurev.fluid.30.1.139 doi: 10.1146/annurev.fluid.30.1.139
![]() |
[3] |
D. Bresch, B. Desjardins, C. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Part. Diff. Eq., 28 (2003), 843–868. http://dx.doi.org/10.1081/PDE-120020499 doi: 10.1081/PDE-120020499
![]() |
[4] |
D. Bresch, B. Desjardins, B. Ducomet, Quasi-neutral limit for a viscous capillary model of plasma, Ann. I. H. Poincare-An., 22 (2005), 1–9. http://dx.doi.org/10.1016/j.anihpc.2004.02.001 doi: 10.1016/j.anihpc.2004.02.001
![]() |
[5] |
J. Cahn, J. Hilliard, Free energy of a nonuniform system, I, interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. http://dx.doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102
![]() |
[6] |
N. Chikami, T. Kobayashi, Global well-posedness and time-decay estimates of the compressible Navier-Stokes-Korteweg system in critical Besov spaces, J. Math. Fluid Mech., 21 (2019), 31. http://dx.doi.org/10.1007/s00021-019-0431-8 doi: 10.1007/s00021-019-0431-8
![]() |
[7] |
J. Dunn, J. Serrin, On the thermomechanics of interstitial working, Arch. Rational Mech. Anal., 88 (1985), 95–133. http://dx.doi.org/10.1007/BF00250907 doi: 10.1007/BF00250907
![]() |
[8] |
R. Danchin, B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Ann. I. H. Poincare-An., 18 (2001), 97–133. http://dx.doi.org/10.1016/S0294-1449(00)00056-1 doi: 10.1016/S0294-1449(00)00056-1
![]() |
[9] |
R. Duan, S. Ukai, T. Yang, H. Zhao, Optimal convergence rates for the compressible Navier-Stokes equations with potential forces, Math. Mod. Meth. Appl. Sci., 17 (2007), 737–758. http://dx.doi.org/10.1142/S021820250700208X doi: 10.1142/S021820250700208X
![]() |
[10] |
M. Gurtin, D. Polignone, J. Vinals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Mod. Meth. Appl. Sci., 6 (1996), 815–831. http://dx.doi.org/10.1142/S0218202596000341 doi: 10.1142/S0218202596000341
![]() |
[11] |
H. Hattori, D. Li, Solutions for two-dimensional system for materials of Korteweg type, SIAM J. Math. Anal., 25 (1994), 85–98. http://dx.doi.org/10.1137/S003614109223413X doi: 10.1137/S003614109223413X
![]() |
[12] |
H. Hattori, D. Li, Global solutions of a high dimensional system for Korteweg materials, J. Math. Anal. Appl., 198 (1996), 84–97. http://dx.doi.org/10.1006/jmaa.1996.0069 doi: 10.1006/jmaa.1996.0069
![]() |
[13] |
B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011), 223–249. http://dx.doi.org/10.1007/s00021-009-0013-2 doi: 10.1007/s00021-009-0013-2
![]() |
[14] | X. Han, Y. Qin, W. Sun, Stability of a one-dimensional full viscous quantum hydrodynamic system, arXiv: 2306.17495. |
[15] |
X. Hou, H. Peng, C. Zhu, Global classical solutions to a 3D Navier-Stokes-Korteweg equations with small initial energy, Anal. Appl., 16 (2018), 55–84. http://dx.doi.org/10.1142/S0219530516500123 doi: 10.1142/S0219530516500123
![]() |
[16] |
M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Ann. I. H. Poincare-An., 25 (2008), 679–696. http://dx.doi.org/10.1016/j.anihpc.2007.03.005 doi: 10.1016/j.anihpc.2007.03.005
![]() |
[17] |
Y. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force, J. Math. Anal. Appl., 388 (2012), 1218–1232. http://dx.doi.org/10.1016/j.jmaa.2011.11.006 doi: 10.1016/j.jmaa.2011.11.006
![]() |
[18] |
Y. Li, W. Yong, Quasi-neutral limit in a 3D compressible Navier-Stokes-Poisson-Korteweg model, J. Appl. Math., 80 (2015), 712–727. http://dx.doi.org/10.1093/imamat/hxu008 doi: 10.1093/imamat/hxu008
![]() |
[19] |
K. Li, X. Shu, X. Xu, Global existence of strong solutions to compressible Navier-Stokes system with degenerate heat conductivity in unbounded domains, Math. Method. Appl. Sci., 43 (2020), 1543–1554. http://dx.doi.org/10.1002/mma.5969 doi: 10.1002/mma.5969
![]() |
[20] |
A. Matsumura, T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad., 55 (1979), 337–342. http://dx.doi.org/10.3792/pjaa.55.337 doi: 10.3792/pjaa.55.337
![]() |
[21] |
W. Sun, T. Caraballo, X. Han, P. Kloeden, A free boundary tumor model with time dependent nutritional supply, Nonlinear Anal.-Real, 53 (2020), 103063. http://dx.doi.org/10.1016/j.nonrwa.2019.103063 doi: 10.1016/j.nonrwa.2019.103063
![]() |
[22] |
W. Sun, J. Cheng, X. Han, Random attractors for 2D stochastic micropolar fluid flows on unbounded domains, Discrete Cont. Dyn.-B, 26 (2021), 693–716. http://dx.doi.org/10.3934/dcdsb.2020189 doi: 10.3934/dcdsb.2020189
![]() |
[23] |
W. Sun, Y. Li, X. Han, The full viscous quantum hydrodynamic system in one dimensional space, J. Math. Phys., 64 (2023), 011501. http://dx.doi.org/10.1063/5.0125284 doi: 10.1063/5.0125284
![]() |
[24] |
Z. Tan, H. Wang, J. Xu, Global existence and optimal L2 decay rate for the strong solutions to the compressible fluid model of Korteweg type, J. Math. Anal. Appl., 390 (2012), 181–187. http://dx.doi.org/10.1016/j.jmaa.2012.01.028 doi: 10.1016/j.jmaa.2012.01.028
![]() |
[25] |
Z. Tan, R. Zhang, Optimal decay rates of the compressible fluid models of Korteweg type, Z. Angew. Math. Phys., 65 (2014), 279–300. http://dx.doi.org/10.1007/s00033-013-0331-3 doi: 10.1007/s00033-013-0331-3
![]() |
[26] |
K. Tsuda, Existence and stability of time periodic solution to the compressible Navier-Stokes-Korteweg system on R3, J. Math. Fluid Mech., 18 (2016), 157–185. http://dx.doi.org/10.1007/s00021-015-0244-3 doi: 10.1007/s00021-015-0244-3
![]() |
[27] |
Y. Wang, Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011), 256–271. http://dx.doi.org/10.1016/j.jmaa.2011.01.006 doi: 10.1016/j.jmaa.2011.01.006
![]() |
[28] |
W. Wang, W. Wang, Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces, Discrete Cont. Dyn., 35 (2015), 513–536. http://dx.doi.org/10.3934/dcds.2015.35.513 doi: 10.3934/dcds.2015.35.513
![]() |
[29] |
C. Zhao, T. Caraballo, Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations, J. Differ. Equations, 266 (2019), 7205–7229. http://dx.doi.org/10.1016/j.jde.2018.11.032 doi: 10.1016/j.jde.2018.11.032
![]() |
[30] |
C. Zhao, Y. Li, T. Caraballo, Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications, J. Differ. Equations, 269 (2020), 467–494. http://dx.doi.org/10.1016/j.jde.2019.12.011 doi: 10.1016/j.jde.2019.12.011
![]() |
1. | Kaile Chen, Yunyun Liang, Nengqiu Zhang, Correction: Global existence of strong solutions to compressible Navier-Stokes-Korteweg equations with external potential force, 2024, 9, 2473-6988, 5480, 10.3934/math.2024265 |