In this paper, we investigate the problem of energy equality of the two and three dimensional compressible Navier-Stokes-Korteweg equations with general pressure law. By using the commutator estimation to deal with the nonlinear terms, we obtain the sufficient conditions for the regularity of weak solutions to conserve the energy.
Citation: Hui Fang, Yihan Fan, Yanping Zhou. Energy equality for the compressible Navier-Stokes-Korteweg equations[J]. AIMS Mathematics, 2022, 7(4): 5808-5820. doi: 10.3934/math.2022321
[1] | Kaile Chen, Yunyun Liang, Nengqiu Zhang . Global existence of strong solutions to compressible Navier-Stokes-Korteweg equations with external potential force. AIMS Mathematics, 2023, 8(11): 27712-27724. doi: 10.3934/math.20231418 |
[2] | Qingkun Xiao, Jianzhu Sun, Tong Tang . Uniform regularity of the isentropic Navier-Stokes-Maxwell system. AIMS Mathematics, 2022, 7(4): 6694-6701. doi: 10.3934/math.2022373 |
[3] | Kunquan Li . Analytical solutions and asymptotic behaviors to the vacuum free boundary problem for 2D Navier-Stokes equations with degenerate viscosity. AIMS Mathematics, 2024, 9(5): 12412-12432. doi: 10.3934/math.2024607 |
[4] | Kaile Chen, Yunyun Liang, Nengqiu Zhang . Correction: Global existence of strong solutions to compressible Navier-Stokes-Korteweg equations with external potential force. AIMS Mathematics, 2024, 9(3): 5480-5481. doi: 10.3934/math.2024265 |
[5] | Yasir Nadeem Anjam . Singularities and regularity of stationary Stokes and Navier-Stokes equations on polygonal domains and their treatments. AIMS Mathematics, 2020, 5(1): 440-466. doi: 10.3934/math.2020030 |
[6] | Xiaoxia Wang, Jinping Jiang . The pullback attractor for the 2D g-Navier-Stokes equation with nonlinear damping and time delay. AIMS Mathematics, 2023, 8(11): 26650-26664. doi: 10.3934/math.20231363 |
[7] | Cuiman Jia, Feng Tian . Regularity of weak solution of the compressible Navier-Stokes equations with self-consistent Poisson equation by Moser iteration. AIMS Mathematics, 2023, 8(10): 22944-22962. doi: 10.3934/math.20231167 |
[8] | Abdelkader Moumen, Ramsha Shafqat, Azmat Ullah Khan Niazi, Nuttapol Pakkaranang, Mdi Begum Jeelani, Kiran Saleem . A study of the time fractional Navier-Stokes equations for vertical flow. AIMS Mathematics, 2023, 8(4): 8702-8730. doi: 10.3934/math.2023437 |
[9] | Junling Sun, Xuefeng Han . Existence of Sobolev regular solutions for the incompressible flow of liquid crystals in three dimensions. AIMS Mathematics, 2022, 7(9): 15759-15794. doi: 10.3934/math.2022863 |
[10] | Jae-Myoung Kim . Time decay rates for the coupled modified Navier-Stokes and Maxwell equations on a half space. AIMS Mathematics, 2021, 6(12): 13423-13431. doi: 10.3934/math.2021777 |
In this paper, we investigate the problem of energy equality of the two and three dimensional compressible Navier-Stokes-Korteweg equations with general pressure law. By using the commutator estimation to deal with the nonlinear terms, we obtain the sufficient conditions for the regularity of weak solutions to conserve the energy.
The compressible Navier-Stokes-Korteweg (N-S-K) equations have been studied extensively in various fields due to its physical importance, complexity, rich phenomena and mathematical challenges. In this paper, we consider the N-S-K equations with general pressure law in the form
∂t(ρu)+div(ρu⊗u)+∇p(ρ)=div(μDu)+∇(λdivu)+divK, | (1.1) |
∂tρ+div(ρu)=0, | (1.2) |
with initial data
ρ|t=0=ρ0(x),ρu|t=0=ρ0(x)u0(x). | (1.3) |
Here ρ denotes the density, u the velocity, p(ρ) the general pressure, which will be specified later. D=12[∇u+∇Tu] stands for the deformation tensor, where ∇u denotes the gradient matrix (∂iuj) of u and ∇Tu is transpose. The positive constants μ,λ stand for the viscosity coefficients. The Korteweg stress tensor K is given by
K=(12(ρκ′(ρ)+κ(ρ))|∇ρ|2+ρκ(ρ)Δρ)I−κ(ρ)∇ρ⊗∇ρ, |
where κ=κ(ρ)>0 is the coefficient of capillarity. The capillarity coefficient is a regular function which describes the phase transition. I denotes the identity matrix and ∇ρ⊗∇ρ stands for the tensor product (∂jρ∂kρ)jk. For the sake of simplicity, we will consider the periodic interval (0,T)×Td for some fixed time T>0 in the dimensions two and three.
This compressible fluid model endowed with internal capillarity (Korteweg type) was first theoretically proposed by Korteweg [1]. However, the rigorous mathematical analysis did not take place until its modern form strictly from thermodynamics derived by Dunn-Serrin [2] in 1990s. Systems of Korteweg type arise in the simulation of several physical phenomena, such as capillarity phenomena in fluids with diffusing interfaces, in which the density undergoes a steep but still smooth changes of value. Owing to its importance in mathematics and physics, there are numerous works dedicated to the study of systems (1.1) and (1.2), involving local and global classical solutions [3,4], local strong solutions [5], global weak solutions [6,7], global strong solutions [8], long-time behavior [9,10,11,12,13,14] and blow-up results [15,16,17]. On the other hand, it is worth mentioning that Dȩbiec et al. [18] obtained an Onsager-type sufficient regularity condition for the conservation of weak solutions of the compressible Euler-Korteweg systems by using the strategies of Constantin et al. [19] and Feireisl et al. [20].
When κ=0, systems (1.1) and (1.2) reduces to the famous compressible Navier-Stokes equations. There is a huge literature on the existence, blow-up and large-time behavior of the solutions (see [21,22,23,24,25,26,27]). Concerning the energy equality of the incompressible or compressible N-S equations, there have been a few results in recent years. More precisely, in the context of the incompressible N-S equations, the pioneering work was done by Serrin [28]. He proved the energy equality for weak solutions under the condition u∈Ls(0,T;Lq(Td)) with 2s+dq≤1,q>d and d is the dimension of space. Later, Shinbrot [29] removed the dimensional dependence and improved the condition to 2s+2q≤1,q≥4. For the compressible N-S equations, Yu [30] proved that the energy is conserved if the velocity u satisfies LptLqx condition and the density ρ is bounded, meanwhile √ρ∈L∞(0,T;H1). The results of Akramov et al. [31] further supplemented Yu's results [30] by assuming that ρ and u have some differential regularity in time. Recently, by using a different approach, Nguyen et al. [32] obtained the energy conservation under a different set of regularity conditions. The advantage of their approach is that the temporal regularity of density can be avoided and milder conditions can be obtained. In addition, it is worth pointing out that Liang [33] and Berselli-Chiodaroli [34] recently derived the energy conservation criteria via the regularity of velocity and its gradient.
Regarding the study of energy equality for systems (1.1) and (1.2), only few results are available in the literature since several mathematical difficulties appear in the analysis. The strong nonlinearity in the higher order derivatives determined by the Korteweg term is the major difficulty. To get round this difficulty, several regularities of density inevitably need to be required. In the current article, we provide modest sufficient conditions on the regularity of weak solutions to ensure the energy conservation. Inspired by the works of Nguyen et al. [32], Liang [33] and Leslie-Shvydkoy [35], a suitable test function (ρu)ερε is used instead of uε, where the convolution is performed only in spatial variable. So time regularity of the density could be ignored. However, to compensate, vacuum must be excluded, or at least assume that the inverse density is inherently bounded. Our main result in this paper can be listed as follows.
Theorem 1.1. Let Ω=Td(d=2,3) and (ρ,u) be a weak solution of N-S-K with initial data (1.3). Assume that
{0<α≤ρ(t,x)≤β<∞,∇ρ,Δρ(t,x)∈L2((0,T)×Td)),p∈C1(0,∞),κ∈C2(0,∞),u∈L∞((0,T);L2(Td))∩L2((0,T);H1(Td)),u∈L4((0,T)×(T3)). | (1.4) |
where α, β are positive constants.Then the energy equality holds, i.e.,
∫Td(12ρ|u|2+h(ρ)+12κ(ρ)|∇ρ|2)(x,t)dx+∫t0∫Tdμ|Du|2dxds+∫t0∫Tdλ|divu|2dxds=∫Td(12ρ0|u0|2+h(ρ0)+12κ(ρ0)|∇ρ0|2)dx,∀t∈(0,T), | (1.5) |
where h(ρ) is defined by
h(ρ)=ρ∫ρ1p(r)r2dr. | (1.6) |
Remark 1.1. If we have
u∈Lp((0,T);Lq(T3))with{2p+2q=1,q≥4,1p+3q=1,3<q<4, |
then by interpolation, it follows that
‖u‖L4((0,T)×T3)≤C‖u‖1−aLp((0,T);Lq(T3))‖u‖aL∞((0,T);L2(T3)) |
for some a∈(0,1). The result of Theorem 1.1 is also valid with the above assumption on the velocity.
Throughout the paper, C denotes generic constants, which may depend on d, T, ‖ρ‖L∞((0,T)×Ω), ‖1ρ‖L∞((0,T)×Ω) and other scalar parameters.
The rest of the paper is organized as follows. In Section 2, we fix some symbols and give the definition of weak solutions of systems (1.1) and (1.2). Some useful estimates are collected for the proofs of our result. Section 3 is devoted to proving Theorem 1.1.
Let η: Rd→R denote the standard mollifying kernel in Rd. For any ε>0, we set ηε(x)=1εdη(xε). For any function f∈L1loc(Ω), its mollified version is defined as
fε(x)=(f∗ηε)(x)=∫Rdf(x−y)ηε(y)dy,x∈Ωε, |
where Ωε={x∈Ω:d(x,∂Ω)>ε}.
The definition of weak solution for systems (1.1) and (1.2) is as follows.
Definition 1. (weak solution) We say that (ρ,u) is a weak solution to systems (1.1) and (1.2) with initial data given in (1.3), if it satisfies
(1)
∫T0∫Ω(∂tφ⋅ρ+ρu⋅∇φ)dxdt=0 |
for any test function φ∈C∞0(Ω×(0,T)).
(2)
∫T0∫Ω(ρu⋅∂tφ+ρu⊗u:∇φ+p(ρ)∇⋅φ−μDu:∇φ−λ(∇⋅u)(∇⋅φ)−K⋅∇φ)dxdt=0 |
for any test vector field φ∈C∞0(Ω×(0,T))d.
(3) ρ(⋅,t)⇀ρ0 in D′(Ω) as t→0, i.e. ,
limt→0∫Ωρ(x,t)φ(x)dx=∫Ωρ0(x)φ(x)dx |
for any test function φ∈C∞0(Ω).
(4) (ρu)(⋅,t)⇀ρ0u0 in D′(Ω) as t→0, i.e. ,
limt→0∫Ω(ρu)(x,t)φ(x)dx=∫Ω(ρ0u0)(x)φ(x)dx |
for any test vector field φ∈C∞0(Ω)d.
Next, we introduce three lemmas about the properties of mollifiers.
Lemma 2.1. [32] Let 2≤d∈N, 1≤p,q≤∞ and f:(0,T)×Td→R.
(1) Assume f∈Lp(0,T;Lq(Td)). Then for any ε>0, there holds
‖fε‖Lp(0,T;L∞(Td)≤Cε−dq‖f‖Lp(0,T;Lq(Td)),‖∇fε‖Lp(0,T;L∞(Td)≤Cε−1−dq‖f‖Lp(0,T;Lq(Td)). |
(2) Assume f∈Lp(0,T;Lq(Td)). Then for any ε>0, there holds
‖∇fε‖Lp(0,T;Lq(Td)≤Cε−1‖f‖Lp(0,T;Lq(Td)). |
Moreover, if p,q<∞ then
lim supε→0ε‖∇fε‖Lp(0,T;Lq(Td)=0. |
(3) Assume f∈Lp(0,T;Lq(Td)) and g:(0,T)×Td→R with 0<c1≤g≤c2<∞. Then for any ε>0, there holds
‖∇fεgε‖Lp(0,T;Lq(Td))≤C(c1,c2)ε−1‖f‖Lp((0,T);Lq(Td)). |
Moreover, if p,q<∞, then
lim supε→0ε‖∇fεgε‖Lp(0,T;Lq(Td)=0. |
(4) Assume f∈L2(0,T;H1(T2)), then for any ε>0, there holds
‖∇fε‖L2(0,T;L∞(T2)≤Cε−1‖f‖L2(0,T;H1(T2)). |
Moreover, for any r∈[1,2], it follows that
lim supε→0ε‖∇fε‖Lr(0,T;L∞(T2)=0. |
Lemma 2.2. [32] Let p,p1∈[1,∞) and p2∈(1,∞] with 1p=1p1+1p2. Assume f∈Lp1((0,T);W1,p1(Td)) and g∈Lp2((0,T)×(Td)). Then for any ε>0, there holds
‖(fg)ε−fεgε‖Lp((0,T)×Td)≤Cε‖f‖Lp1((0,T);W1,p1(Td))‖g‖Lp2((0,T)×(Td)). |
Moreover, if p<∞ then
lim supε→0ε−1‖(fg)ε−fεgε‖Lp((0,T)×Td)=0. |
Lemma 2.3. [33] Assume that 0<α≤ρ(t,x)≤β<∞ and u∈W1,p(Td) with p∈[1,∞]. Then
‖∇((ρu)ερε)‖Lp(Td)≤C‖∇u‖Lp(Td). |
By the same proof as the Lemma 2.3 in [18], we have
Lemma 2.4. Let 1≤q≤∞ and suppose υ∈Lq((0,T)×Td) and f∈C1(0,∞), if sup‖∂f∂υ‖L∞((0,T)×Td)<∞. Then there exists a constant C>0 such that
‖f(υε)−fε(υ)‖Lq((0,T)×Td)≤Csupf′‖υε(t,x)−υ(t,x))‖Lq((0,T)×Td). |
Moreover, if q<∞, then
lim supε→0‖f(υε)−fε(υ)‖Lq((0,T)×Td)=0. | (2.1) |
Proof. We observe by Taylor's theorem that
|f(υε(t,x))−f(υ(t,x))|≤|f′(υ(t,x))(υε(t,x)−υ(t,x))|, | (2.2) |
where the constant C can be chosen independently of x.Similarly,
|f(υ(t,y))−f(υ(t,x))|≤|f′(υ(t,x))(υ(t,y)−υ(t,x))|. | (2.3) |
Applying the convolution with respect to y to (2.3), and then invoking Jensen's inequality, we have
|fε(υ(t,x))−f(υ(t,x))|≤|f′(υ(t,x))(υε(t,x)−υ(t,x))|. | (2.4) |
Summing up (2.2) and (2.4), using Minkowski and Hölder inequalities, we conclude that
‖f(υε(t,x))−fε(υ(t,x))‖Lq((0,T)×Td)≤2(∫suppηεηε(y)∫((0,T)×Td)|f′(υ(t,x))(υ(t,x−y)−υ(t,x))|qdxdtdy)1q≤Csupf′‖υε(t,x)−υ(t,x))‖Lq((0,T)×Td), |
which implies (2.1) by density.This completes the proof of Lemma 2.4.
By smoothing the momentum Eq (1.1) in space, we obtain
∂t(ρu)ε+div(ρu⊗u)ε+∇pε(ρ)=div(μDu)ε+∇(λdivu)ε+divKε(ρ,∇ρ,Δρ) | (3.1) |
for any 0<ε<1. Here
K(ρ,∇ρ,Δρ)=(12(ρκ′(ρ)+κ(ρ))|∇ρ|2+ρκ(ρ)Δρ)I−κ(ρ)∇ρ⊗∇ρ, | (3.2) |
and
Kε(ρ,∇ρ,Δρ)=K(ρ,∇ρ,Δρ)∗ηε. |
Multiplying (ρu)ερε on both sides of (3.1) and then integrating on (τ,t)×Td, for 0<τ<t<T, we have
0=∫tτ∫Td(ρu)ερε∂t(ρu)εdxds+∫tτ∫Td(ρu)ερεdiv(ρu⊗u)εdxds+∫tτ∫Td(ρu)ερε∇pε(ρ)dxds−∫tτ∫Td(ρu)ερεdiv(μDu)εdxds−∫tτ∫Td(ρu)ερε∇(λdivu)εdxds−∫tτ∫Td(ρu)ερεdivKε(ρ,∇ρ,Δρ)dxds:=A+B+D+E+F+G. | (3.3) |
In what follows, we are going to estimate them one by one.
Estimate of term A
We mollify the continuity Eq (1.2) as
∂tρε+div(ρu)ε=0. | (3.4) |
Using (3.4) and integration by parts, we compute that
A=12∫tτ∫Td∂t(|(ρu)ε|2ρε)dxds−12∫tτ∫Tddiv(ρu)ε|(ρu)ε|2(ρε)2dxds:=A1+A2. |
We see that A1 is the desired term while A2 could be canceled with the term B3 later.
Estimate of term B
B=∫tτ∫Td(ρu)ερεdiv[(ρu⊗u)ε−(ρu)ε⊗uε]dxds+∫tτ∫Td(ρu)ερεdiv[(ρu)ε⊗uε]dxds=−∫tτ∫Td∇((ρu)ερε)[(ρu⊗u)ε−(ρu)ε⊗uε]dxds+∫tτ∫Td(ρu)ερεdiv[(ρu)ε⊗uε]dxds:=B1+∫tτ∫Tddivuε|(ρu)ε|2ρεdxds+12∫tτ∫Tduερε∇|(ρu)ε|2dxds=B1+∫tτ∫Tddivuε|(ρu)ε|2ρεdxds−12∫tτ∫Tddiv(uερε)|(ρu)ε|2dxds=B1+12∫tτ∫Tddivuε|(ρu)ε|2ρεdxds−12∫tτ∫Tduε∇(1ρε)|(ρu)ε|2dxds=B1+12∫tτ∫Tddiv(ρεuε)|(ρu)ε|2(ρε)2dxds=B1+12∫tτ∫Tddiv[(ρεuε)−(ρu)ε]|(ρu)ε|2(ρε)2dxds+12∫tτ∫Tddiv(ρu)ε|(ρu)ε|2(ρε)2dxds=B1−12∫tτ∫Td[(ρεuε)−(ρu)ε]∇(|(ρu)ε|2(ρε)2)dxds+12∫tτ∫Tddiv(ρu)ε|(ρu)ε|2(ρε)2dxds:=B1+B2+B3. |
It is obvious that A2+B3=0. Next, we show that
lim supε→0lim supτ→0|B1|=0,andlim supε→0lim supτ→0|B2|=0. |
For the term B1, by Hölder inequality, we arrive at
|B1|=|∫tτ∫Td∇((ρu)ερε)[(ρu⊗u)ε−(ρu)ε⊗uε]dxds|≤‖∇(ρu)ερε‖L4((0,T)×Td)‖(ρu⊗u)ε−(ρu)ε⊗uε‖L43((0,T)×Td). |
Let's consider the case d=2 firstly. Owing to the Gagliardo-Nirenberg inequality, we infer that
‖u‖L4((0,T)×T2)≤C‖u‖12L2((0,T);W1,2(T2))‖u‖12L∞((0,T);L2(T2)), | (3.5) |
which gives u∈L4((0,T)×T2). Meanwhile, thanks to Lemma 2.1 (3) and Lemma 2.2, we deduce that
lim supε→0lim supτ→0|B1|=0. | (3.6) |
For the case d=3, we have the assumption u∈L4((0,T)×T3). In the same manner, we could also deduce (3.6).
For the term B2, using Hölder inequality and Lemma 2.1 (3), we have
|B2|≤C‖∇|(ρu)ε|2(ρε)2‖L2((0,T)×Td)‖ρεuε−(ρu)ε‖L2((0,T)×Td)≤Cε−1‖u‖L4((0,T)×Td)‖(ρu)ε−ρεuε‖L2((0,T)×Td), |
which, together with Lemma 2.2, gives
lim supε→0lim supτ→0|B2|=0. |
Estimate of term D
First of all, by definition of h(ρ), we get
p(ρ)=ρh′(ρ)−h(ρ). |
We compute D as
D=∫tτ∫Td(ρu)ερε∇[pε(ρ)−p(ρε)]dxds+∫tτ∫Td(ρu)ερε∇p(ρε)dxds=∫tτ∫Td(ρu)ερε∇[pε(ρ)−p(ρε)]dxds+∫tτ∫Td(ρu)ερε∇(ρεh′(ρε)−h(ρε))dxds=−∫tτ∫T2div((ρu)ερε)[pε(ρ)−p(ρε)]dxds+∫tτ∫Td(ρu)ε∇(h′(ρε))dxds:=D1+D2. |
We show that D1 converges to 0, as ε,τ→0 firstly. The term D2 could be estimated together with G2 later. For the term D1, by means of Hölder inequality and Lemma 2.3, we have
|D1|=|∫tτ∫T2div((ρu)ερε)[pε(ρ)−p(ρε)]dxds|≤C‖∇u‖L2((0,T)×Td)‖pε(ρ)−p(ρε)‖L2((0,T)×Td) |
due to ρ∈L∞((0,T)×Td). Since p∈C1(0,∞), it yields from Lemma 2.4 with f=p that
lim supε→0lim supτ→0|D1|=0. |
Estimate of term E
E=−∫tτ∫Td(ρu)ερεdiv(μDu)εdxds=−∫tτ∫Td(ρu)ε−ρεuερεdiv(μDu)εdxds−∫tτ∫Tddiv(μDu)εuεdxds=−∫tτ∫Td(ρu)ε−ρεuερεdiv(μDu)εdxds+∫tτ∫Tdμ|Duε|2dxds:=E1+E2. |
E2 is our expected term. By Hölder inequality and Lemma 2.1 (2), E1 could be estimated as
|E1|≤C‖div(μDu)ε‖L2((0,T)×Td)‖(ρu)ε−ρεuερε‖L2((0,T)×Td)≤Cε−1‖∇u‖L2((0,T)×Td)‖(ρu)ε−ρεuε‖L2((0,T)×Td). |
Noting that ∇u∈L2((0,T)×Td) and ρ∈L∞((0,T)×Td) and using Lemma 2.2, we have
lim supε→0lim supτ→0|E1|=0. |
Estimate of term F
F=−∫tτ∫Td(ρu)ερε∇(λdivu)εdxds=−∫tτ∫Td(ρu)ε−ρεuερε∇(λdivu)εdxds−∫tτ∫Td∇(λdivu)εuεdxds=−∫tτ∫Td(ρu)ε−ρεuερε∇(λdivu)εdxds+∫tτ∫Tdλ|divuε|2dxds:=F1+F2. |
F2 is the desired term. Similar to the estimate of E1, we check that
lim supε→0lim supτ→0|F1|=0. |
Estimate of term G
Applying div to (3.2), one obtains
divK(ρ,∇ρ,Δρ)=−ρ∇(12κ′(ρ)|∇ρ|2−div(κ(ρ)∇ρ)), | (3.7) |
where we have used the fact divI=∇. According to (3.7), the term G can be written as
G=−∫tτ∫Td(ρu)ερεdivKε(ρ,∇ρ,Δρ)dxds=−∫tτ∫Td(ρu)ερεdiv[Kε(ρ,∇ρ,Δρ)−K(ρε,∇ρε,Δρε)]dxds−∫tτ∫Td(ρu)ερεdivK(ρε,∇ρε,Δρε)dxds=∫tτ∫T2∇((ρu)ερε)[Kε(ρ,∇ρ,Δρ)−K(ρε,∇ρε,Δρε)]dxds+∫tτ∫Td(ρu)ε∇(12κ′(ρε)|∇ρε|2−div(κ(ρε)∇ρε))dxds:=G1+G2. |
Applying Lemma 2.3, the term G1 can be estimated similarly to D1, and thus we get
|G1|=|∫tτ∫T2∇((ρu)ερε)[Kε(ρ,∇ρ,Δρ)−K(ρε,∇ρε,Δρε)]dxds|≤C‖∇u‖L2((0,T)×Td)‖Kε(ρ,∇ρ,Δρ)−K(ρε,∇ρε,Δρε)‖L2((0,T)×Td) |
thanks to ρ∈L∞((0,T)×Td),∇ρ,Δρ∈L2((0,T)×Td)). Since κ∈C2(0,∞), it yields from Lemma 2.4 with f=K that
lim supε→0lim supτ→0|G1|=0. |
It remains to estimate the term G2. To this end, combining with D2, we obtain
D2+G2=∫tτ∫Td(ρu)ε∇(h′(ρε)+12κ′(ρε)|∇ρε|2−div(κ(ρε)∇ρε))dxds=−∫tτ∫Tddiv(ρu)ε(h′(ρε)+12κ′(ρε)|∇ρε|2−div(κ(ρε)∇ρε))dxds=∫tτ∫Td∂tρε(h′(ρε)+12κ′(ρε)|∇ρε|2−div(κ(ρε)∇ρε))dxds=∫tτ∫Td∂t(h(ρε)+12κ(ρε)|∇ρε|2))dxds−∫tτ∫Tddiv(κ(ρε)∇ρε∂tρε)dxds=∫tτ∫Td∂t(h(ρε)+12κ(ρε)|∇ρε|2))dxds. |
Collecting the above estimates A1,E2,F2,D2,G2 and putting them into (3.3), we eventually deduce that
lim supε→0lim supτ→0|∫tτ∫Td∂t(12|(ρu)ε|2ρε+h(ρε)+12κ(ρε)|∇ρε|2)dxds+∫tτ∫Tdμ|Duε|2dxds+∫tτ∫Tdλ|divuε|2dxds|=0. |
This completes the proof of Theorem 1.1.
In this paper, we study the energy conservation of the compressible Navier-Stokes-Korteweg equations with general pressure law in a periodic domain Td with d=2,3. By using the commutator estimation to deal with the nonlinear terms, we obtain the sufficient conditions for the regularity of weak solutions to conserve the energy. We extend the results of Nguyen et al. [32] and Liang [33] from the compressible N-S equations to the N-S-Korteweg equations.
This work was supported by the NNSF of China (Nos. 11901346, 11871305). The authors would like to thank the referees for the valuable comments and suggestions.
The authors declare that they have no conflict of interest.
[1] | D. Korteweg, Sur la forme que prennent les équations du mouvements des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais connues et sur la théorie de la capillarité dans l'hypothse d'une variation continue de la densité, Archives Néerlandaises des Sciences exactes et naturelles, 6 (1901), 1–24. |
[2] |
J. Dunn, J. Serrin, On the thermomechanics of interstitial working, Arch. Ration. Mech. An., 88 (1985), 95–133. https://doi.org/10.1007/BF00250907 doi: 10.1007/BF00250907
![]() |
[3] |
H. Hattori, D. Li, Solutions for two-dimensional system for materials of Korteweg type, SIAM J. Math. Anal., 25 (1994), 85–98. https://doi.org/10.1137/S003614109223413X doi: 10.1137/S003614109223413X
![]() |
[4] |
H. Hattori, D. Li, Global solutions of a high-dimensional system for Korteweg materials, J. Math. Anal. Appl., 198 (1996), 84–97. https://doi.org/10.1006/jmaa.1996.0069 doi: 10.1006/jmaa.1996.0069
![]() |
[5] |
M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2008), 679–696. https://doi.org/10.1016/j.anihpc.2007.03.005 doi: 10.1016/j.anihpc.2007.03.005
![]() |
[6] |
B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011), 223–249. https://doi.org/10.1007/s00021-009-0013-2 doi: 10.1007/s00021-009-0013-2
![]() |
[7] |
D. Bresch, B. Desjardins, C. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Part. Diff. Eq., 28 (2003), 843–868. https://doi.org/10.1081/PDE-120020499 doi: 10.1081/PDE-120020499
![]() |
[8] | B. Haspot, Existence of global strong solution for the compressible Navier-Stokes system and the Korteweg system in two-dimension, Math. Meth. Appl. Sci., 20 (2012), 141–164. |
[9] |
Y. Wang, Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011), 256–271. https://doi.org/10.1016/j.jmaa.2011.01.006 doi: 10.1016/j.jmaa.2011.01.006
![]() |
[10] |
Y. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force, J. Math. Anal. Appl., 388 (2011), 1218–1232. https://doi.org/10.1016/j.jmaa.2011.11.006 doi: 10.1016/j.jmaa.2011.11.006
![]() |
[11] |
Z. Tan, R. Zhang, Optimal decay rates for the compressible fluid models of Korteweg type, Z. Angew. Math. Phys., 65 (2014), 279–300. https://doi.org/10.1007/s00033-013-0331-3 doi: 10.1007/s00033-013-0331-3
![]() |
[12] |
W. Wang, W. Wang, Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces, Discrete Cont. Dyn.-A, 35 (2015), 513–536. http://dx.doi.org/10.3934/dcds.2015.35.513 doi: http://dx.doi.org/10.3934/dcds.2015.35.513
![]() |
[13] |
Y. Z. Wang, Y. Wang, Optimal decay estimate of mild solutions to the compressible Navier-Stokes-Korteweg system in the critical Besov space, Math. Meth. Appl. Sci., 41 (2018), 9592–9606. https://doi.org/10.1002/mma.5316 doi: 10.1002/mma.5316
![]() |
[14] |
T. Kobayashi, K. Tsuda, Global existence and time decay estimate of solutions to the compressible Navier-Stokes-Korteweg system under critical condition, Asymptotic Anal., 121 (2020), 1–13. https://doi.org/10.3233/ASY-201600 doi: 10.3233/ASY-201600
![]() |
[15] |
Y. Zhang, Z. Tan, Blow-up of smooth solutions to the compressible fluid models of Korteweg type, Acta Math. Sin., 28 (2012), 645–652. https://doi.org/10.1007/s10114-012-9042-5 doi: 10.1007/s10114-012-9042-5
![]() |
[16] |
T. Tang, J. Kuang, Blow-up of compressible Naiver-Stokes-Korteweg equations, Acta Appl. Math., 130 (2014), 1–7. https://doi.org/10.1007/s10440-013-9836-1 doi: 10.1007/s10440-013-9836-1
![]() |
[17] |
T. Tang, Blow-up of smooth solutions to the compressible barotropic Navier-Stokes-Korteweg equations on bounded domains, Acta Appl. Math., 136 (2015), 55–61. https://doi.org/10.1007/s10440-014-9884-1 doi: 10.1007/s10440-014-9884-1
![]() |
[18] |
T. Dȩbiec, P. Gwiazda, A. Świerczewska-Gwiazda, A. Tzavaras, Conservation of energy for the Euler-Korteweg equations, Calc. Var., 57 (2018), 160. https://doi.org/10.1007/s00526-018-1441-8 doi: 10.1007/s00526-018-1441-8
![]() |
[19] |
P. Constantin, E. Weinan, E. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Commun. Math. Phys., 165 (1994), 207–209. https://doi.org/10.1007/BF02099744 doi: 10.1007/BF02099744
![]() |
[20] |
E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda, Regularity and energy conservation for the compressible Euler equations, Arch. Ration. Mech. Anal., 261 (2017), 1375–1395. https://doi.org/10.1007/s00205-016-1060-5 doi: 10.1007/s00205-016-1060-5
![]() |
[21] |
J. Serrin, On the uniqueness of compressible fluid motion, Arch. Ration. Mech. Anal., 3 (1959), 271–288. https://doi.org/10.1007/BF00284180 doi: 10.1007/BF00284180
![]() |
[22] | J. Nash, Le problme de Cauchy pour leséquations différentielles d'un fluide général, B. Soc. Math. Fr., 90 (1962), 487–497. |
[23] |
X. Huang, J. Li, Z. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equaitons, Commun. Pur. Appl. Math., 65 (2012), 549–585. https://doi.org/10.1002/cpa.21382 doi: 10.1002/cpa.21382
![]() |
[24] | Z. Xin, Blow up of smooth solutions to the compressible Navier-Stokes equation with compact density, Commun. Pur. Appl. Math., 51 (1998), 229–240. |
[25] |
Z. Xin, W. Yan, On blow up of classical solutions to the compressible Navier-Stokes equations, Commun. Math. Phys., 321 (2013), 529–541. https://doi.org/10.1007/s00220-012-1610-0 doi: 10.1007/s00220-012-1610-0
![]() |
[26] |
M. Okita, Optimal decay rate for strong solutions in critial spaces to the compressible Navier-Stokes equations, J. Differ. Equ., 257 (2014), 3850–3867. https://doi.org/10.1016/j.jde.2014.07.011 doi: 10.1016/j.jde.2014.07.011
![]() |
[27] |
R. Danchin, J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical Lp framework, Arch. Ration. Mech. Anal., 224 (2017), 53–90. https://doi.org/10.1007/s00205-016-1067-y doi: 10.1007/s00205-016-1067-y
![]() |
[28] | J. Serrin, The initial value problem for the Navier-Stokes equations, University of Wisconsin Press, Madison, 1963. |
[29] |
M. Shinbrot, The energy equation for the Navier-Stokes system, SIAM J. Math. Anal., 5 (1974), 948–954. https://doi.org/10.1137/0505092 doi: 10.1137/0505092
![]() |
[30] |
C. Yu, Energy conservation for the weak solutions of the compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 225 (2017), 1073–1087. https://doi.org/10.1007/s00205-017-1121-4 doi: 10.1007/s00205-017-1121-4
![]() |
[31] |
I. Akramov, T. Dbiec, J. Skipper, E. Wiedemann, Energy conservation for the compressible Euler and Navier-Stokes equations with vacuum, Anal. PDE, 13 (2020), 789–811. https://doi.org/10.2140/apde.2020.13.789 doi: 10.2140/apde.2020.13.789
![]() |
[32] |
Q. Nguyen, P. Nguyen, Q. Bao, Energy equalities for compressible Navier-Stokes equations, Nonlinearity, 32 (2019), 4206–4231. https://doi.org/10.1088/1361-6544/ab28ae doi: 10.1088/1361-6544/ab28ae
![]() |
[33] |
Z. Liang, Regularity criterion on the energy conservation for the compressible Navier-Stokes equations, P. Roy. Soc. Edinb. A, 225 (2020), 1–18. https://doi.org/10.1017/prm.2020.87 doi: 10.1017/prm.2020.87
![]() |
[34] |
L. Berselli, E. Chiodaroli, On the energy equality for the 3D Navier-Stokes equations, Nonlinear Anal., 192 (2020), 111704. https://doi.org/10.1016/j.na.2019.111704 doi: 10.1016/j.na.2019.111704
![]() |
[35] |
T. Leslie, R. Shvydkoy, The energy balance relation for weak solutions of the density-dependent Navier-Stokes equations, J. Differ. Equ., 261 (2016), 3719–3733. https://doi.org/10.1016/j.jde.2016.06.001 doi: 10.1016/j.jde.2016.06.001
![]() |