Processing math: 100%
Research article

Energy equality for the compressible Navier-Stokes-Korteweg equations

  • Received: 28 October 2021 Revised: 22 December 2021 Accepted: 05 January 2022 Published: 11 January 2022
  • MSC : 35Q35, 76N10

  • In this paper, we investigate the problem of energy equality of the two and three dimensional compressible Navier-Stokes-Korteweg equations with general pressure law. By using the commutator estimation to deal with the nonlinear terms, we obtain the sufficient conditions for the regularity of weak solutions to conserve the energy.

    Citation: Hui Fang, Yihan Fan, Yanping Zhou. Energy equality for the compressible Navier-Stokes-Korteweg equations[J]. AIMS Mathematics, 2022, 7(4): 5808-5820. doi: 10.3934/math.2022321

    Related Papers:

    [1] Kaile Chen, Yunyun Liang, Nengqiu Zhang . Global existence of strong solutions to compressible Navier-Stokes-Korteweg equations with external potential force. AIMS Mathematics, 2023, 8(11): 27712-27724. doi: 10.3934/math.20231418
    [2] Qingkun Xiao, Jianzhu Sun, Tong Tang . Uniform regularity of the isentropic Navier-Stokes-Maxwell system. AIMS Mathematics, 2022, 7(4): 6694-6701. doi: 10.3934/math.2022373
    [3] Kunquan Li . Analytical solutions and asymptotic behaviors to the vacuum free boundary problem for 2D Navier-Stokes equations with degenerate viscosity. AIMS Mathematics, 2024, 9(5): 12412-12432. doi: 10.3934/math.2024607
    [4] Kaile Chen, Yunyun Liang, Nengqiu Zhang . Correction: Global existence of strong solutions to compressible Navier-Stokes-Korteweg equations with external potential force. AIMS Mathematics, 2024, 9(3): 5480-5481. doi: 10.3934/math.2024265
    [5] Yasir Nadeem Anjam . Singularities and regularity of stationary Stokes and Navier-Stokes equations on polygonal domains and their treatments. AIMS Mathematics, 2020, 5(1): 440-466. doi: 10.3934/math.2020030
    [6] Xiaoxia Wang, Jinping Jiang . The pullback attractor for the 2D g-Navier-Stokes equation with nonlinear damping and time delay. AIMS Mathematics, 2023, 8(11): 26650-26664. doi: 10.3934/math.20231363
    [7] Cuiman Jia, Feng Tian . Regularity of weak solution of the compressible Navier-Stokes equations with self-consistent Poisson equation by Moser iteration. AIMS Mathematics, 2023, 8(10): 22944-22962. doi: 10.3934/math.20231167
    [8] Abdelkader Moumen, Ramsha Shafqat, Azmat Ullah Khan Niazi, Nuttapol Pakkaranang, Mdi Begum Jeelani, Kiran Saleem . A study of the time fractional Navier-Stokes equations for vertical flow. AIMS Mathematics, 2023, 8(4): 8702-8730. doi: 10.3934/math.2023437
    [9] Junling Sun, Xuefeng Han . Existence of Sobolev regular solutions for the incompressible flow of liquid crystals in three dimensions. AIMS Mathematics, 2022, 7(9): 15759-15794. doi: 10.3934/math.2022863
    [10] Jae-Myoung Kim . Time decay rates for the coupled modified Navier-Stokes and Maxwell equations on a half space. AIMS Mathematics, 2021, 6(12): 13423-13431. doi: 10.3934/math.2021777
  • In this paper, we investigate the problem of energy equality of the two and three dimensional compressible Navier-Stokes-Korteweg equations with general pressure law. By using the commutator estimation to deal with the nonlinear terms, we obtain the sufficient conditions for the regularity of weak solutions to conserve the energy.



    The compressible Navier-Stokes-Korteweg (N-S-K) equations have been studied extensively in various fields due to its physical importance, complexity, rich phenomena and mathematical challenges. In this paper, we consider the N-S-K equations with general pressure law in the form

    t(ρu)+div(ρuu)+p(ρ)=div(μDu)+(λdivu)+divK, (1.1)
    tρ+div(ρu)=0, (1.2)

    with initial data

    ρ|t=0=ρ0(x),ρu|t=0=ρ0(x)u0(x). (1.3)

    Here ρ denotes the density, u the velocity, p(ρ) the general pressure, which will be specified later. D=12[u+Tu] stands for the deformation tensor, where u denotes the gradient matrix (iuj) of u and Tu is transpose. The positive constants μ,λ stand for the viscosity coefficients. The Korteweg stress tensor K is given by

    K=(12(ρκ(ρ)+κ(ρ))|ρ|2+ρκ(ρ)Δρ)Iκ(ρ)ρρ,

    where κ=κ(ρ)>0 is the coefficient of capillarity. The capillarity coefficient is a regular function which describes the phase transition. I denotes the identity matrix and ρρ stands for the tensor product (jρkρ)jk. For the sake of simplicity, we will consider the periodic interval (0,T)×Td for some fixed time T>0 in the dimensions two and three.

    This compressible fluid model endowed with internal capillarity (Korteweg type) was first theoretically proposed by Korteweg [1]. However, the rigorous mathematical analysis did not take place until its modern form strictly from thermodynamics derived by Dunn-Serrin [2] in 1990s. Systems of Korteweg type arise in the simulation of several physical phenomena, such as capillarity phenomena in fluids with diffusing interfaces, in which the density undergoes a steep but still smooth changes of value. Owing to its importance in mathematics and physics, there are numerous works dedicated to the study of systems (1.1) and (1.2), involving local and global classical solutions [3,4], local strong solutions [5], global weak solutions [6,7], global strong solutions [8], long-time behavior [9,10,11,12,13,14] and blow-up results [15,16,17]. On the other hand, it is worth mentioning that Dȩbiec et al. [18] obtained an Onsager-type sufficient regularity condition for the conservation of weak solutions of the compressible Euler-Korteweg systems by using the strategies of Constantin et al. [19] and Feireisl et al. [20].

    When κ=0, systems (1.1) and (1.2) reduces to the famous compressible Navier-Stokes equations. There is a huge literature on the existence, blow-up and large-time behavior of the solutions (see [21,22,23,24,25,26,27]). Concerning the energy equality of the incompressible or compressible N-S equations, there have been a few results in recent years. More precisely, in the context of the incompressible N-S equations, the pioneering work was done by Serrin [28]. He proved the energy equality for weak solutions under the condition uLs(0,T;Lq(Td)) with 2s+dq1,q>d and d is the dimension of space. Later, Shinbrot [29] removed the dimensional dependence and improved the condition to 2s+2q1,q4. For the compressible N-S equations, Yu [30] proved that the energy is conserved if the velocity u satisfies LptLqx condition and the density ρ is bounded, meanwhile ρL(0,T;H1). The results of Akramov et al. [31] further supplemented Yu's results [30] by assuming that ρ and u have some differential regularity in time. Recently, by using a different approach, Nguyen et al. [32] obtained the energy conservation under a different set of regularity conditions. The advantage of their approach is that the temporal regularity of density can be avoided and milder conditions can be obtained. In addition, it is worth pointing out that Liang [33] and Berselli-Chiodaroli [34] recently derived the energy conservation criteria via the regularity of velocity and its gradient.

    Regarding the study of energy equality for systems (1.1) and (1.2), only few results are available in the literature since several mathematical difficulties appear in the analysis. The strong nonlinearity in the higher order derivatives determined by the Korteweg term is the major difficulty. To get round this difficulty, several regularities of density inevitably need to be required. In the current article, we provide modest sufficient conditions on the regularity of weak solutions to ensure the energy conservation. Inspired by the works of Nguyen et al. [32], Liang [33] and Leslie-Shvydkoy [35], a suitable test function (ρu)ερε is used instead of uε, where the convolution is performed only in spatial variable. So time regularity of the density could be ignored. However, to compensate, vacuum must be excluded, or at least assume that the inverse density is inherently bounded. Our main result in this paper can be listed as follows.

    Theorem 1.1. Let Ω=Td(d=2,3) and (ρ,u) be a weak solution of N-S-K with initial data (1.3). Assume that

    {0<αρ(t,x)β<,ρ,Δρ(t,x)L2((0,T)×Td)),pC1(0,),κC2(0,),uL((0,T);L2(Td))L2((0,T);H1(Td)),uL4((0,T)×(T3)). (1.4)

    where α, β are positive constants.Then the energy equality holds, i.e.,

    Td(12ρ|u|2+h(ρ)+12κ(ρ)|ρ|2)(x,t)dx+t0Tdμ|Du|2dxds+t0Tdλ|divu|2dxds=Td(12ρ0|u0|2+h(ρ0)+12κ(ρ0)|ρ0|2)dx,t(0,T), (1.5)

    where h(ρ) is defined by

    h(ρ)=ρρ1p(r)r2dr. (1.6)

    Remark 1.1. If we have

    uLp((0,T);Lq(T3))with{2p+2q=1,q4,1p+3q=1,3<q<4,

    then by interpolation, it follows that

    uL4((0,T)×T3)Cu1aLp((0,T);Lq(T3))uaL((0,T);L2(T3))

    for some a(0,1). The result of Theorem 1.1 is also valid with the above assumption on the velocity.

    Throughout the paper, C denotes generic constants, which may depend on d, T, ρL((0,T)×Ω), 1ρL((0,T)×Ω) and other scalar parameters.

    The rest of the paper is organized as follows. In Section 2, we fix some symbols and give the definition of weak solutions of systems (1.1) and (1.2). Some useful estimates are collected for the proofs of our result. Section 3 is devoted to proving Theorem 1.1.

    Let η: RdR denote the standard mollifying kernel in Rd. For any ε>0, we set ηε(x)=1εdη(xε). For any function fL1loc(Ω), its mollified version is defined as

    fε(x)=(fηε)(x)=Rdf(xy)ηε(y)dy,xΩε,

    where Ωε={xΩ:d(x,Ω)>ε}.

    The definition of weak solution for systems (1.1) and (1.2) is as follows.

    Definition 1. (weak solution) We say that (ρ,u) is a weak solution to systems (1.1) and (1.2) with initial data given in (1.3), if it satisfies

    (1)

    T0Ω(tφρ+ρuφ)dxdt=0

    for any test function φC0(Ω×(0,T)).

    (2)

    T0Ω(ρutφ+ρuu:φ+p(ρ)φμDu:φλ(u)(φ)Kφ)dxdt=0

    for any test vector field φC0(Ω×(0,T))d.

    (3) ρ(,t)ρ0 in D(Ω) as t0, i.e. ,

    limt0Ωρ(x,t)φ(x)dx=Ωρ0(x)φ(x)dx

    for any test function φC0(Ω).

    (4) (ρu)(,t)ρ0u0 in D(Ω) as t0, i.e. ,

    limt0Ω(ρu)(x,t)φ(x)dx=Ω(ρ0u0)(x)φ(x)dx

    for any test vector field φC0(Ω)d.

    Next, we introduce three lemmas about the properties of mollifiers.

    Lemma 2.1. [32] Let 2dN, 1p,q and f:(0,T)×TdR.

    (1) Assume fLp(0,T;Lq(Td)). Then for any ε>0, there holds

    fεLp(0,T;L(Td)CεdqfLp(0,T;Lq(Td)),fεLp(0,T;L(Td)Cε1dqfLp(0,T;Lq(Td)).

    (2) Assume fLp(0,T;Lq(Td)). Then for any ε>0, there holds

    fεLp(0,T;Lq(Td)Cε1fLp(0,T;Lq(Td)).

    Moreover, if p,q< then

    lim supε0εfεLp(0,T;Lq(Td)=0.

    (3) Assume fLp(0,T;Lq(Td)) and g:(0,T)×TdR with 0<c1gc2<. Then for any ε>0, there holds

    fεgεLp(0,T;Lq(Td))C(c1,c2)ε1fLp((0,T);Lq(Td)).

    Moreover, if p,q<, then

    lim supε0εfεgεLp(0,T;Lq(Td)=0.

    (4) Assume fL2(0,T;H1(T2)), then for any ε>0, there holds

    fεL2(0,T;L(T2)Cε1fL2(0,T;H1(T2)).

    Moreover, for any r[1,2], it follows that

    lim supε0εfεLr(0,T;L(T2)=0.

    Lemma 2.2. [32] Let p,p1[1,) and p2(1,] with 1p=1p1+1p2. Assume fLp1((0,T);W1,p1(Td)) and gLp2((0,T)×(Td)). Then for any ε>0, there holds

    (fg)εfεgεLp((0,T)×Td)CεfLp1((0,T);W1,p1(Td))gLp2((0,T)×(Td)).

    Moreover, if p< then

    lim supε0ε1(fg)εfεgεLp((0,T)×Td)=0.

    Lemma 2.3. [33] Assume that 0<αρ(t,x)β< and uW1,p(Td) with p[1,]. Then

    ((ρu)ερε)Lp(Td)CuLp(Td).

    By the same proof as the Lemma 2.3 in [18], we have

    Lemma 2.4. Let 1q and suppose υLq((0,T)×Td) and fC1(0,), if supfυL((0,T)×Td)<. Then there exists a constant C>0 such that

    f(υε)fε(υ)Lq((0,T)×Td)Csupfυε(t,x)υ(t,x))Lq((0,T)×Td).

    Moreover, if q<, then

    lim supε0f(υε)fε(υ)Lq((0,T)×Td)=0. (2.1)

    Proof. We observe by Taylor's theorem that

    |f(υε(t,x))f(υ(t,x))||f(υ(t,x))(υε(t,x)υ(t,x))|, (2.2)

    where the constant C can be chosen independently of x.Similarly,

    |f(υ(t,y))f(υ(t,x))||f(υ(t,x))(υ(t,y)υ(t,x))|. (2.3)

    Applying the convolution with respect to y to (2.3), and then invoking Jensen's inequality, we have

    |fε(υ(t,x))f(υ(t,x))||f(υ(t,x))(υε(t,x)υ(t,x))|. (2.4)

    Summing up (2.2) and (2.4), using Minkowski and Hölder inequalities, we conclude that

    f(υε(t,x))fε(υ(t,x))Lq((0,T)×Td)2(suppηεηε(y)((0,T)×Td)|f(υ(t,x))(υ(t,xy)υ(t,x))|qdxdtdy)1qCsupfυε(t,x)υ(t,x))Lq((0,T)×Td),

    which implies (2.1) by density.This completes the proof of Lemma 2.4.

    By smoothing the momentum Eq (1.1) in space, we obtain

    t(ρu)ε+div(ρuu)ε+pε(ρ)=div(μDu)ε+(λdivu)ε+divKε(ρ,ρ,Δρ) (3.1)

    for any 0<ε<1. Here

    K(ρ,ρ,Δρ)=(12(ρκ(ρ)+κ(ρ))|ρ|2+ρκ(ρ)Δρ)Iκ(ρ)ρρ, (3.2)

    and

    Kε(ρ,ρ,Δρ)=K(ρ,ρ,Δρ)ηε.

    Multiplying (ρu)ερε on both sides of (3.1) and then integrating on (τ,t)×Td, for 0<τ<t<T, we have

    0=tτTd(ρu)ερεt(ρu)εdxds+tτTd(ρu)ερεdiv(ρuu)εdxds+tτTd(ρu)ερεpε(ρ)dxdstτTd(ρu)ερεdiv(μDu)εdxdstτTd(ρu)ερε(λdivu)εdxdstτTd(ρu)ερεdivKε(ρ,ρ,Δρ)dxds:=A+B+D+E+F+G. (3.3)

    In what follows, we are going to estimate them one by one.

    Estimate of term A

    We mollify the continuity Eq (1.2) as

    tρε+div(ρu)ε=0. (3.4)

    Using (3.4) and integration by parts, we compute that

    A=12tτTdt(|(ρu)ε|2ρε)dxds12tτTddiv(ρu)ε|(ρu)ε|2(ρε)2dxds:=A1+A2.

    We see that A1 is the desired term while A2 could be canceled with the term B3 later.

    Estimate of term B

    B=tτTd(ρu)ερεdiv[(ρuu)ε(ρu)εuε]dxds+tτTd(ρu)ερεdiv[(ρu)εuε]dxds=tτTd((ρu)ερε)[(ρuu)ε(ρu)εuε]dxds+tτTd(ρu)ερεdiv[(ρu)εuε]dxds:=B1+tτTddivuε|(ρu)ε|2ρεdxds+12tτTduερε|(ρu)ε|2dxds=B1+tτTddivuε|(ρu)ε|2ρεdxds12tτTddiv(uερε)|(ρu)ε|2dxds=B1+12tτTddivuε|(ρu)ε|2ρεdxds12tτTduε(1ρε)|(ρu)ε|2dxds=B1+12tτTddiv(ρεuε)|(ρu)ε|2(ρε)2dxds=B1+12tτTddiv[(ρεuε)(ρu)ε]|(ρu)ε|2(ρε)2dxds+12tτTddiv(ρu)ε|(ρu)ε|2(ρε)2dxds=B112tτTd[(ρεuε)(ρu)ε](|(ρu)ε|2(ρε)2)dxds+12tτTddiv(ρu)ε|(ρu)ε|2(ρε)2dxds:=B1+B2+B3.

    It is obvious that A2+B3=0. Next, we show that

    lim supε0lim supτ0|B1|=0,andlim supε0lim supτ0|B2|=0.

    For the term B1, by Hölder inequality, we arrive at

    |B1|=|tτTd((ρu)ερε)[(ρuu)ε(ρu)εuε]dxds|(ρu)ερεL4((0,T)×Td)(ρuu)ε(ρu)εuεL43((0,T)×Td).

    Let's consider the case d=2 firstly. Owing to the Gagliardo-Nirenberg inequality, we infer that

    uL4((0,T)×T2)Cu12L2((0,T);W1,2(T2))u12L((0,T);L2(T2)), (3.5)

    which gives uL4((0,T)×T2). Meanwhile, thanks to Lemma 2.1 (3) and Lemma 2.2, we deduce that

    lim supε0lim supτ0|B1|=0. (3.6)

    For the case d=3, we have the assumption uL4((0,T)×T3). In the same manner, we could also deduce (3.6).

    For the term B2, using Hölder inequality and Lemma 2.1 (3), we have

    |B2|C|(ρu)ε|2(ρε)2L2((0,T)×Td)ρεuε(ρu)εL2((0,T)×Td)Cε1uL4((0,T)×Td)(ρu)ερεuεL2((0,T)×Td),

    which, together with Lemma 2.2, gives

    lim supε0lim supτ0|B2|=0.

    Estimate of term D

    First of all, by definition of h(ρ), we get

    p(ρ)=ρh(ρ)h(ρ).

    We compute D as

    D=tτTd(ρu)ερε[pε(ρ)p(ρε)]dxds+tτTd(ρu)ερεp(ρε)dxds=tτTd(ρu)ερε[pε(ρ)p(ρε)]dxds+tτTd(ρu)ερε(ρεh(ρε)h(ρε))dxds=tτT2div((ρu)ερε)[pε(ρ)p(ρε)]dxds+tτTd(ρu)ε(h(ρε))dxds:=D1+D2.

    We show that D1 converges to 0, as ε,τ0 firstly. The term D2 could be estimated together with G2 later. For the term D1, by means of Hölder inequality and Lemma 2.3, we have

    |D1|=|tτT2div((ρu)ερε)[pε(ρ)p(ρε)]dxds|CuL2((0,T)×Td)pε(ρ)p(ρε)L2((0,T)×Td)

    due to ρL((0,T)×Td). Since pC1(0,), it yields from Lemma 2.4 with f=p that

    lim supε0lim supτ0|D1|=0.

    Estimate of term E

    E=tτTd(ρu)ερεdiv(μDu)εdxds=tτTd(ρu)ερεuερεdiv(μDu)εdxdstτTddiv(μDu)εuεdxds=tτTd(ρu)ερεuερεdiv(μDu)εdxds+tτTdμ|Duε|2dxds:=E1+E2.

    E2 is our expected term. By Hölder inequality and Lemma 2.1 (2), E1 could be estimated as

    |E1|Cdiv(μDu)εL2((0,T)×Td)(ρu)ερεuερεL2((0,T)×Td)Cε1uL2((0,T)×Td)(ρu)ερεuεL2((0,T)×Td).

    Noting that uL2((0,T)×Td) and ρL((0,T)×Td) and using Lemma 2.2, we have

    lim supε0lim supτ0|E1|=0.

    Estimate of term F

    F=tτTd(ρu)ερε(λdivu)εdxds=tτTd(ρu)ερεuερε(λdivu)εdxdstτTd(λdivu)εuεdxds=tτTd(ρu)ερεuερε(λdivu)εdxds+tτTdλ|divuε|2dxds:=F1+F2.

    F2 is the desired term. Similar to the estimate of E1, we check that

    lim supε0lim supτ0|F1|=0.

    Estimate of term G

    Applying div to (3.2), one obtains

    divK(ρ,ρ,Δρ)=ρ(12κ(ρ)|ρ|2div(κ(ρ)ρ)), (3.7)

    where we have used the fact divI=. According to (3.7), the term G can be written as

    G=tτTd(ρu)ερεdivKε(ρ,ρ,Δρ)dxds=tτTd(ρu)ερεdiv[Kε(ρ,ρ,Δρ)K(ρε,ρε,Δρε)]dxdstτTd(ρu)ερεdivK(ρε,ρε,Δρε)dxds=tτT2((ρu)ερε)[Kε(ρ,ρ,Δρ)K(ρε,ρε,Δρε)]dxds+tτTd(ρu)ε(12κ(ρε)|ρε|2div(κ(ρε)ρε))dxds:=G1+G2.

    Applying Lemma 2.3, the term G1 can be estimated similarly to D1, and thus we get

    |G1|=|tτT2((ρu)ερε)[Kε(ρ,ρ,Δρ)K(ρε,ρε,Δρε)]dxds|CuL2((0,T)×Td)Kε(ρ,ρ,Δρ)K(ρε,ρε,Δρε)L2((0,T)×Td)

    thanks to ρL((0,T)×Td),ρ,ΔρL2((0,T)×Td)). Since κC2(0,), it yields from Lemma 2.4 with f=K that

    lim supε0lim supτ0|G1|=0.

    It remains to estimate the term G2. To this end, combining with D2, we obtain

    D2+G2=tτTd(ρu)ε(h(ρε)+12κ(ρε)|ρε|2div(κ(ρε)ρε))dxds=tτTddiv(ρu)ε(h(ρε)+12κ(ρε)|ρε|2div(κ(ρε)ρε))dxds=tτTdtρε(h(ρε)+12κ(ρε)|ρε|2div(κ(ρε)ρε))dxds=tτTdt(h(ρε)+12κ(ρε)|ρε|2))dxdstτTddiv(κ(ρε)ρεtρε)dxds=tτTdt(h(ρε)+12κ(ρε)|ρε|2))dxds.

    Collecting the above estimates A1,E2,F2,D2,G2 and putting them into (3.3), we eventually deduce that

    lim supε0lim supτ0|tτTdt(12|(ρu)ε|2ρε+h(ρε)+12κ(ρε)|ρε|2)dxds+tτTdμ|Duε|2dxds+tτTdλ|divuε|2dxds|=0.

    This completes the proof of Theorem 1.1.

    In this paper, we study the energy conservation of the compressible Navier-Stokes-Korteweg equations with general pressure law in a periodic domain Td with d=2,3. By using the commutator estimation to deal with the nonlinear terms, we obtain the sufficient conditions for the regularity of weak solutions to conserve the energy. We extend the results of Nguyen et al. [32] and Liang [33] from the compressible N-S equations to the N-S-Korteweg equations.

    This work was supported by the NNSF of China (Nos. 11901346, 11871305). The authors would like to thank the referees for the valuable comments and suggestions.

    The authors declare that they have no conflict of interest.



    [1] D. Korteweg, Sur la forme que prennent les équations du mouvements des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais connues et sur la théorie de la capillarité dans l'hypothse d'une variation continue de la densité, Archives Néerlandaises des Sciences exactes et naturelles, 6 (1901), 1–24.
    [2] J. Dunn, J. Serrin, On the thermomechanics of interstitial working, Arch. Ration. Mech. An., 88 (1985), 95–133. https://doi.org/10.1007/BF00250907 doi: 10.1007/BF00250907
    [3] H. Hattori, D. Li, Solutions for two-dimensional system for materials of Korteweg type, SIAM J. Math. Anal., 25 (1994), 85–98. https://doi.org/10.1137/S003614109223413X doi: 10.1137/S003614109223413X
    [4] H. Hattori, D. Li, Global solutions of a high-dimensional system for Korteweg materials, J. Math. Anal. Appl., 198 (1996), 84–97. https://doi.org/10.1006/jmaa.1996.0069 doi: 10.1006/jmaa.1996.0069
    [5] M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2008), 679–696. https://doi.org/10.1016/j.anihpc.2007.03.005 doi: 10.1016/j.anihpc.2007.03.005
    [6] B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011), 223–249. https://doi.org/10.1007/s00021-009-0013-2 doi: 10.1007/s00021-009-0013-2
    [7] D. Bresch, B. Desjardins, C. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Part. Diff. Eq., 28 (2003), 843–868. https://doi.org/10.1081/PDE-120020499 doi: 10.1081/PDE-120020499
    [8] B. Haspot, Existence of global strong solution for the compressible Navier-Stokes system and the Korteweg system in two-dimension, Math. Meth. Appl. Sci., 20 (2012), 141–164.
    [9] Y. Wang, Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011), 256–271. https://doi.org/10.1016/j.jmaa.2011.01.006 doi: 10.1016/j.jmaa.2011.01.006
    [10] Y. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force, J. Math. Anal. Appl., 388 (2011), 1218–1232. https://doi.org/10.1016/j.jmaa.2011.11.006 doi: 10.1016/j.jmaa.2011.11.006
    [11] Z. Tan, R. Zhang, Optimal decay rates for the compressible fluid models of Korteweg type, Z. Angew. Math. Phys., 65 (2014), 279–300. https://doi.org/10.1007/s00033-013-0331-3 doi: 10.1007/s00033-013-0331-3
    [12] W. Wang, W. Wang, Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces, Discrete Cont. Dyn.-A, 35 (2015), 513–536. http://dx.doi.org/10.3934/dcds.2015.35.513 doi: http://dx.doi.org/10.3934/dcds.2015.35.513
    [13] Y. Z. Wang, Y. Wang, Optimal decay estimate of mild solutions to the compressible Navier-Stokes-Korteweg system in the critical Besov space, Math. Meth. Appl. Sci., 41 (2018), 9592–9606. https://doi.org/10.1002/mma.5316 doi: 10.1002/mma.5316
    [14] T. Kobayashi, K. Tsuda, Global existence and time decay estimate of solutions to the compressible Navier-Stokes-Korteweg system under critical condition, Asymptotic Anal., 121 (2020), 1–13. https://doi.org/10.3233/ASY-201600 doi: 10.3233/ASY-201600
    [15] Y. Zhang, Z. Tan, Blow-up of smooth solutions to the compressible fluid models of Korteweg type, Acta Math. Sin., 28 (2012), 645–652. https://doi.org/10.1007/s10114-012-9042-5 doi: 10.1007/s10114-012-9042-5
    [16] T. Tang, J. Kuang, Blow-up of compressible Naiver-Stokes-Korteweg equations, Acta Appl. Math., 130 (2014), 1–7. https://doi.org/10.1007/s10440-013-9836-1 doi: 10.1007/s10440-013-9836-1
    [17] T. Tang, Blow-up of smooth solutions to the compressible barotropic Navier-Stokes-Korteweg equations on bounded domains, Acta Appl. Math., 136 (2015), 55–61. https://doi.org/10.1007/s10440-014-9884-1 doi: 10.1007/s10440-014-9884-1
    [18] T. Dȩbiec, P. Gwiazda, A. Świerczewska-Gwiazda, A. Tzavaras, Conservation of energy for the Euler-Korteweg equations, Calc. Var., 57 (2018), 160. https://doi.org/10.1007/s00526-018-1441-8 doi: 10.1007/s00526-018-1441-8
    [19] P. Constantin, E. Weinan, E. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Commun. Math. Phys., 165 (1994), 207–209. https://doi.org/10.1007/BF02099744 doi: 10.1007/BF02099744
    [20] E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda, Regularity and energy conservation for the compressible Euler equations, Arch. Ration. Mech. Anal., 261 (2017), 1375–1395. https://doi.org/10.1007/s00205-016-1060-5 doi: 10.1007/s00205-016-1060-5
    [21] J. Serrin, On the uniqueness of compressible fluid motion, Arch. Ration. Mech. Anal., 3 (1959), 271–288. https://doi.org/10.1007/BF00284180 doi: 10.1007/BF00284180
    [22] J. Nash, Le problme de Cauchy pour leséquations différentielles d'un fluide général, B. Soc. Math. Fr., 90 (1962), 487–497.
    [23] X. Huang, J. Li, Z. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equaitons, Commun. Pur. Appl. Math., 65 (2012), 549–585. https://doi.org/10.1002/cpa.21382 doi: 10.1002/cpa.21382
    [24] Z. Xin, Blow up of smooth solutions to the compressible Navier-Stokes equation with compact density, Commun. Pur. Appl. Math., 51 (1998), 229–240.
    [25] Z. Xin, W. Yan, On blow up of classical solutions to the compressible Navier-Stokes equations, Commun. Math. Phys., 321 (2013), 529–541. https://doi.org/10.1007/s00220-012-1610-0 doi: 10.1007/s00220-012-1610-0
    [26] M. Okita, Optimal decay rate for strong solutions in critial spaces to the compressible Navier-Stokes equations, J. Differ. Equ., 257 (2014), 3850–3867. https://doi.org/10.1016/j.jde.2014.07.011 doi: 10.1016/j.jde.2014.07.011
    [27] R. Danchin, J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical Lp framework, Arch. Ration. Mech. Anal., 224 (2017), 53–90. https://doi.org/10.1007/s00205-016-1067-y doi: 10.1007/s00205-016-1067-y
    [28] J. Serrin, The initial value problem for the Navier-Stokes equations, University of Wisconsin Press, Madison, 1963.
    [29] M. Shinbrot, The energy equation for the Navier-Stokes system, SIAM J. Math. Anal., 5 (1974), 948–954. https://doi.org/10.1137/0505092 doi: 10.1137/0505092
    [30] C. Yu, Energy conservation for the weak solutions of the compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 225 (2017), 1073–1087. https://doi.org/10.1007/s00205-017-1121-4 doi: 10.1007/s00205-017-1121-4
    [31] I. Akramov, T. Dbiec, J. Skipper, E. Wiedemann, Energy conservation for the compressible Euler and Navier-Stokes equations with vacuum, Anal. PDE, 13 (2020), 789–811. https://doi.org/10.2140/apde.2020.13.789 doi: 10.2140/apde.2020.13.789
    [32] Q. Nguyen, P. Nguyen, Q. Bao, Energy equalities for compressible Navier-Stokes equations, Nonlinearity, 32 (2019), 4206–4231. https://doi.org/10.1088/1361-6544/ab28ae doi: 10.1088/1361-6544/ab28ae
    [33] Z. Liang, Regularity criterion on the energy conservation for the compressible Navier-Stokes equations, P. Roy. Soc. Edinb. A, 225 (2020), 1–18. https://doi.org/10.1017/prm.2020.87 doi: 10.1017/prm.2020.87
    [34] L. Berselli, E. Chiodaroli, On the energy equality for the 3D Navier-Stokes equations, Nonlinear Anal., 192 (2020), 111704. https://doi.org/10.1016/j.na.2019.111704 doi: 10.1016/j.na.2019.111704
    [35] T. Leslie, R. Shvydkoy, The energy balance relation for weak solutions of the density-dependent Navier-Stokes equations, J. Differ. Equ., 261 (2016), 3719–3733. https://doi.org/10.1016/j.jde.2016.06.001 doi: 10.1016/j.jde.2016.06.001
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1879) PDF downloads(65) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog