In this paper, we consider the regularity of the weak solution to the compressible Navier-Stokes-Poisson equations in period domain Ω⊆R3 provided that the density ρ(t,x) with integrability on the space L∞(0,T;Lq0(Ω)) where q0 satisfies a certain condition and T>0, by which we could present that supt,xρ(t,x)<∞ and inft,xρ(t,x)>0. Furthermore, we develop the estimate for the velocity ‖u‖L∞ by the Moser iteration method and Gronwall inequality.
Citation: Cuiman Jia, Feng Tian. Regularity of weak solution of the compressible Navier-Stokes equations with self-consistent Poisson equation by Moser iteration[J]. AIMS Mathematics, 2023, 8(10): 22944-22962. doi: 10.3934/math.20231167
[1] | Qitong Ou, Huashui Zhan . The viscosity solutions of a nonlinear equation related to the p-Laplacian. AIMS Mathematics, 2017, 2(3): 400-421. doi: 10.3934/Math.2017.3.400 |
[2] | Armel Andami Ovono, Alain Miranville . On the Caginalp phase-field system based on the Cattaneo law with nonlinear coupling. AIMS Mathematics, 2016, 1(1): 24-42. doi: 10.3934/Math.2016.1.24 |
[3] | Hui Fang, Yihan Fan, Yanping Zhou . Energy equality for the compressible Navier-Stokes-Korteweg equations. AIMS Mathematics, 2022, 7(4): 5808-5820. doi: 10.3934/math.2022321 |
[4] | Kaile Chen, Yunyun Liang, Nengqiu Zhang . Global existence of strong solutions to compressible Navier-Stokes-Korteweg equations with external potential force. AIMS Mathematics, 2023, 8(11): 27712-27724. doi: 10.3934/math.20231418 |
[5] | Qingkun Xiao, Jianzhu Sun, Tong Tang . Uniform regularity of the isentropic Navier-Stokes-Maxwell system. AIMS Mathematics, 2022, 7(4): 6694-6701. doi: 10.3934/math.2022373 |
[6] | Yasir Nadeem Anjam . The qualitative analysis of solution of the Stokes and Navier-Stokes system in non-smooth domains with weighted Sobolev spaces. AIMS Mathematics, 2021, 6(6): 5647-5674. doi: 10.3934/math.2021334 |
[7] | Krunal B. Kachhia, Jyotindra C. Prajapati . Generalized iterative method for the solution of linear and nonlinear fractional differential equations with composite fractional derivative operator. AIMS Mathematics, 2020, 5(4): 2888-2898. doi: 10.3934/math.2020186 |
[8] | Jianlong Wu . Regularity criteria for the 3D generalized Navier-Stokes equations with nonlinear damping term. AIMS Mathematics, 2024, 9(6): 16250-16259. doi: 10.3934/math.2024786 |
[9] | Tao Zhang, Jie Liu . Anisotropic Moser-Trudinger type inequality in Lorentz space. AIMS Mathematics, 2024, 9(4): 9808-9821. doi: 10.3934/math.2024480 |
[10] | Yasir Nadeem Anjam . Singularities and regularity of stationary Stokes and Navier-Stokes equations on polygonal domains and their treatments. AIMS Mathematics, 2020, 5(1): 440-466. doi: 10.3934/math.2020030 |
In this paper, we consider the regularity of the weak solution to the compressible Navier-Stokes-Poisson equations in period domain Ω⊆R3 provided that the density ρ(t,x) with integrability on the space L∞(0,T;Lq0(Ω)) where q0 satisfies a certain condition and T>0, by which we could present that supt,xρ(t,x)<∞ and inft,xρ(t,x)>0. Furthermore, we develop the estimate for the velocity ‖u‖L∞ by the Moser iteration method and Gronwall inequality.
In this article, we will investigate the regularity of weak solutions of the compressible Navier-Stokes-Poisson (NSP) equations. The compressible (NSP) system is used to simulate the motion of charged particles. It consists of the compressible Navier-Stokes (NS) equations with the electrostatic potential controlled by the self-consistent Poisson equation. A carrier type of NSP system is represented as the following form in R3:
{∂tρ+div(ρu)=0,∂t(ρu)+div(ρu⊗u)+∇p(ρ)−μΔu−(μ+ν)∇divu−ρ∇Φ=ρf,ΔΦ=ρ−ˉρ, lim|x|→∞Φ(t,x)=0. | (1.1) |
Here, ρ=ρ(t,x)>0 is the density, u(t,x)=(u1,u2,u3)(t,x) is the velocity, p(ρ) denotes the pressure and Φ denotes the electrostatic potential. ¯ρ>0 is a constant. μ>0 and ν are constant viscous coefficients that satisfy 2μ+3ν≥0. The term f denotes a given external force.
There are many conclusions about NS equations on the condition that ∇Φ=0 in (1.1). In the past, people have studied the existence of weak solution to the compressible NS equations. P. L. Lions [12] proved the global existence of finite energy weak solution to NS equations when p(ρ)=Rργ,γ>95 in 1998; Feireisl [6] claimed the existence of the weak solution when p(ρ)=Rργ,γ>32 in 2001. Afterwards, Choe, Kim and Cho [2,3] showed the local existence of the strong solution to NS equations. In 2011, Sun, Wang and Zhang [19] proved a blow-up criterion for a strong solution to the compressible viscous heat-conductive flows in R3 on condition that μ>17ν in accordance with the upper bound of (ρ,ρ−1,θ). Valli [24] proved the uniqueness of the solution if the data ρ0,u0 and f satisfy some condition in bounded smooth domain Ω⊆R3. In 2013, Wen and Zhu [25] established a blow-up criterion for strong solutions to the Cauchy problem of compressible isentropic NS equations with vacuum provided μ>329ν in the light of the integrability of the density. Though Choe [4] proved the regularity to the weak solution, which is defined by D. Hoff [9], it is indeterminate whether the weak solutions is the same to the finite energy weak solution.
However, there are not many conclusions related to the solution to NSP equation. In a series of articles [14,15,18], M. Okada et al. [17,18] studied the vacuum problem of NSP equations which are spherically symmetrical with solid core. They [17] considered a free boundary problem for the equation of the one-dimensional isentropic motion with density-dependent viscosity and proved that there exists a unique weak solution globally in time; Then, Kobayashi and Suzuki [11] proved the existence of weak solution to NSP equations of which the method is similar to the method of [6]. In 2007, Zhang and Tan [27] proved the existence of the global weak solution to the compressible NSP equations where p(ρ)=aρlogdρ for sufficiently large densities by using suitable Orlicz spaces in R2. We may refer to [1,7,20,21,22,26] for more about NS or NSP equations. As far as we are concerned, to the author's best knowledge, there are not many studies on the regularity for the corresponding weak solution to the compressible NSP equations.
For simplicity, let f≡0 of (1.1) in the paper. Thus, the problem we are concerned with in our study is the regularity of weak solutions to the isentropic compressible NSP equations in the periodic domain Ω=R3−Z3 as
{∂tρ+div(ρu)=0, for (t,x)∈(0,T)×Ω,∂t(ρu)+div(ρu⊗u)−μΔu−(μ+ν)∇divu+∇p(ρ)−ρ∇Φ=0,ΔΦ=ρ−ˉρ, | (1.2) |
with the following initial conditions:
{ρ(t,x)|t=0=ρ0>0,u(t,x)|t=0=u0, x∈Ω,ρ0∈W1,6(Ω),u0∈H10(Ω)∩L∞(Ω),0<m≤ρ0≤M<+∞, | (1.3) |
where ¯ρ>0 is a constant, p(ρ)=Rργ,R>0, γ>1 and m and M both are constants.
Definition 1.1. (ρ,u) is called the finite energy weak solution of the Eq (1.2) for (t,x)∈ΩT=(0,T)×Ω, if (ρ,u) satisfies
ρ∈L∞(0,T;L1(Ω))∩L∞(0,T;Lγ(Ω)),u∈L2(0,T;H1(Ω)) |
and the energy inequality
dE(t)dt+μ∫Ω|∇u|2dx+(μ+ν)∫Ω|divu|2dx≤0, |
holds in D′((0,∞)) with the finite total energy, where
E(t)=∫Ω(12ρ|u|2+p(ρ)γ−1+12|∇Φ|2)dx<∞,fort∈(0,∞). |
All the priori estimates of this paper depend on the assumption that ρ and u are C∞ for the time interval as mentioned in [4,5].
Theorem 1.1. Suppose (ρ,u) is the weak solutions denoted by the Definition 1.1 to the Eqs (1.2) and (1.3). If ρ∈L∞(0,T;Lq0(Ω)) for time T>0 and for q0 depending only on γ, then
0<infΩTρ≤ρ≤supΩTρ<+∞,supΩT|u|<+∞. |
Furthermore, we show that ρ∈C(0,T;Lq(Ω))∩L∞(ΩT) for all q∈[1,∞), and √ρut∈L2(ΩT),Pu∈L2(0,T;H2(Ω)),G∈L2(0,T;H2(Ω)),∇u∈L∞(0,T;L2(Ω)), where Pu refers to the divergence-free part of u, G=(2μ+ν)div u−p(ρ).
The paper is structured as follows. In Section 2, we give some preliminaries to study the regularity of the weak solution to the NSP equations. In Section 3, one develops the priori estimate of ρ under some condition by many techniques; In Section 4, we shall perfect the proof of Section 3; Finally, in Section 5, we present a prior L∞ estimate of u by Moser iteration.
In this section, we collect some auxiliary results which will be used to investigate subsequent studies.
First, we define the divergence-free part of any vector field u as Pu, and the gradient part of u as Qu which means Qu=∇Δ−1divu. Naturally, the following propositions hold.
Proposition 2.1.
curl(Qu)=0,div(Pu)=0,Δu=∇(divu)−curlcurlu,Pu=u−Qu. |
Proposition 2.2. (Page 67 of [13]). Suppose that f∈L2(Ω), and
{Δv=∇p+f, x∈Ω,divv=0,v|∂Ω=0, |
then v∈W2,2(Ω), and ∇p∈L2(Ω). Furthermore,
‖v‖W2,2(Ω)+‖∇p‖L2(Ω)≤C‖f‖L2(Ω). |
Proposition 2.3. Suppose that ρ∈L∞(0,T;Lp0(Ω)) for p0=max{(2γ−1)α+4γ2,4}, where α is a nonnegative real number. Then, we obtain
∫Ωρ|u|α+2dx≲∫Ωρ0|u0|α+2dx+supt∈[0,T]‖ρ‖(2γ−1)α+4γ2L(2γ−1)α+4γ2(Ω)tα+22+‖ρ−¯ρ‖α+2L4(Ω)supt∈[0,T]‖ρ‖L1(Ω)tα+2. |
Proof. Let |u|αu as a test function to (1.2), then one obtain
1α+2ddt∫Ωρ|u|α+2dx+μ(α+1)∫Ω|u|α|∇u|2dx+α(μ+ν)∫Ω|u|αdivu⋅∇udx+(μ+ν)∫Ω|divu|2|u|αdx=∫ΩRργ|u|αdivudx+α∫ΩRργ|u|α∇udx+∫Ωρ∇Φ|u|αudx. | (2.1) |
Applying Hölder's inequality and Young's inequality to (2.1), implies that
∫ΩRργ|u|αdivudx≲12∫Ω|u|α|∇u|2dx+2R2supt∈[0,T]‖ρ‖(2γ−1)α+4γα+2L(2γ−1)α+4γ2(∫Ωρ|u|α+2dx)αα+2. | (2.2) |
Similarly, we obtain
α∫ΩRργ|u|α∇udx≲12∫Ω|u|α|∇u|2dx+2α2R2supt∈[0,T]‖ρ‖(2γ−1)α+4γα+2L(2γ−1)α+4γ2(∫Ωρ|u|α+2dx)αα+2. | (2.3) |
Noting that ΔΦ=ρ−¯ρ, and using Hölder's inequality and Sobolev inequality, we could have
∫Ωρ∇Φ|u|αudx≲‖ρ−¯ρ‖L4(Ω)supt∈[0,T]‖ρ‖1α+2L1(Ω)(∫Ωρ|u|α+2dx)α+1α+2. | (2.4) |
Combining (2.2)–(2.4) with (2.1), and letting U(t)=∫Ωρ|u|α+2dx, one could have
ddtU(t)≲supt∈[0,T]‖ρ‖(2γ−1)α+4γα+2L(2γ−1)α+4γ2(Ω)[U(t)]αα+2+‖ρ−¯ρ‖L4(Ω)supt∈[0,T]‖ρ‖1α+2L1(Ω)[U(t)]α+1α+2. |
This reduces to
U(t)≲U(0)+supt∈[0,T]‖ρ‖(2γ−1)α+4γ2L(2γ−1)α+4γ2(Ω)tα+22+‖ρ−¯ρ‖α+2L4(Ω)supt∈[0,T]‖ρ‖L1(Ω)tα+2. |
Now, applying the operator "divergence-free fields" P to (1.2), we consequently obtain that
P(ρut+ρu⋅∇u−ρ∇Φ)−μΔPu=0. | (3.1) |
Denote H=ρut+ρu⋅∇u−ρ∇Φ, then (3.1) will be reformulated equivalently as
P(H)−μΔPu=0. | (3.2) |
Then, by taking divergence operator to the Eq (1.2), one deduces that
div(ρut+ρu⋅∇u−ρ∇Φ)−Δ((2μ+ν)divu−p(ρ))=0. | (3.3) |
Denote G=(2μ+ν)divu−p(ρ), and we have again by formula (3.3) that
G=Δ−1div(ρut+ρu⋅∇u−ρ∇Φ). | (3.4) |
Note that the definition of Qu=∇Δ−1divu, then (3.4) will be reformulated equivalently as
Q(H)−∇G=0. | (3.5) |
By virtue of (3.2) and (3.5), we get
{μΔPu+∇G=P(H)+Q(H),div(Pu)=0. |
Note that H=P(H)+Q(H), and from Proposition 2.2 and the Stokes problem (see 2.2 The stokes problem and the operator A of Chapter 2 in Temam [23]), it follows that
‖∇2Pu‖Lr(Ω)+‖∇G‖Lr(Ω)≤‖H‖Lr(Ω),for1<r<∞. | (3.6) |
Observe that H=ρut+ρu⋅∇u−ρ∇Φ, then clearly we have
‖H‖Lr(Ω)≤c(‖ρut‖Lr(Ω)+‖ρu⋅∇u‖Lr(Ω)+‖ρ∇Φ‖Lr(Ω)),for1<r<∞, | (3.7) |
where c=c(N), and N denotes the dimension.
By virtue of Proposition 2.1, we can get
‖∇u‖Lr≤‖∇Pu‖Lr+‖divu‖Lr, for1<r<∞. | (3.8) |
From the Gagliardo-Nirenberg-Sobolev (G-N-S) inequality, we have
‖u‖L3r3−r≤‖∇u‖Lr,for1<r<3. | (3.9) |
From G=(2μ+ν)divu−p(ρ), we obtain
‖divu‖Lr≤12μ+ν(‖G‖Lr+R‖ρ‖γLγr). | (3.10) |
Combining (3.8)–(3.10), immediately we have
‖∇u‖L3r3−r(Ω)≤‖∇2Pu‖Lr(Ω)+12μ+ν(‖∇G‖Lr(Ω)+R‖ρ‖γL3rγ3−r). | (3.11) |
Lemma 3.1. Suppose that ρ0∈L∞(Ω) and u0∈H1(Ω), and assume that ∇2Pu and ∇G is bounded, and ρ∈L∞(0,T;Lp1(Ω)), where p1=max{p0,39,5γ,40γ−19}. Then we could obtain that
supΩTρ(x,t)<∞,infΩTρ(x,t)>0. |
Proof. From ρt+div(ρu)=0, we get the following relations
dρ(x,t)dt=−ρ(x,t)divu(x,t). |
We can rewrite it in differential notation and integrate the equality above from 0 to t, then we have
lnρ(x,t)=lnρ0−∫t0divu(x,s)ds. |
Using the equation G=(2μ+ν)divu−p(ρ), one deduces that
lnρ(x,t)=lnρ0−12μ+ν∫t0(G+Rργ)ds. | (3.12) |
Note that G=Δ−1div((ρu)t+div(ρu⊗u)−ρ∇Φ). Now, considering the term with respect to G of (3.12), we can infer that
∫t0Gds=∫t0Δ−1div((ρu)s+div(ρu⊗u)−ρ∇Φ)ds=∫t0(Δ−1div((ρu)s)ds+∫t0Δ−1div(div(ρu⊗u))ds−∫t0Δ−1div(ρ∇Φ)ds. |
Note that
∫t0(Δ−1div(ρu)s)ds=Δ−1div(ρu)−Δ−1div(ρ0u0)−∫t0u⋅∇Δ−1div(ρu)ds. |
Then, one obtains
lnρ(t,x)=lnρ0−12μ+ν(Δ−1div(ρu)(x,t)−Δ−1div(ρ0u0))−12μ+ν∫t0Rργds+12μ+ν∫t0Δ−1div(ρ∇Φ)ds−12μ+ν∫t0(Δ−1div2(ρu⊗u)−u⋅∇Δ−1div(ρu))ds≜lnρ0−12μ+ν(∫t0Rργds+(A0−a0)+∫t0(−A1+A2)ds), | (3.13) |
where A0=Δ−1div(ρu),a0=Δ−1div(ρ0u0),A1=Δ−1div(ρ∇Φ),A2=Δ−1div2(ρu⊗u)−u⋅∇Δ−1div(ρu), and div2 is an operator defined by div2M=∂ijMij for a 3×3 matrix M=(Mij).
Therefore, we have
lnρ(x,t)≲ln‖ρ0‖L∞(Ω)+‖A0−a0‖L∞(Ω)+∫t0(‖A1(⋅,s)‖L∞(Ω)+‖A2(⋅,s)‖L∞(Ω))ds, | (3.14) |
lnρ(x,t)≳ln(infΩρ0)−∫t0R‖ρ‖γL∞(Ω)ds−‖A0−a0‖L∞(Ω)−∫t0(‖A1(⋅,s)‖L∞(Ω)+‖A2(⋅,s)‖L∞(Ω))ds. | (3.15) |
Using (3.14), one could obtain that
lnρ(x,t)−ln‖ρ0‖L∞(Ω)≲‖A0−a0‖L∞(Ω)+∫t0(‖A1(⋅,s)‖L∞(Ω)+‖A2(⋅,s)‖L∞(Ω))ds≜A(t). |
Hence, one yields that
ρ(t,x)≤‖ρ0‖L∞(Ω)exp{A}. |
From above inequality, (3.15) implies that
lnρ(t,x)≥ln(infΩρ0)−A−∫t0R‖ρ0‖γL∞(Ω)exp{γA}ds. |
Therefore
ρ≥(infΩρ0)exp{−A−∫t0R‖ρ0‖γL∞(Ω)exp(γA)ds}. |
Obviously, once one proves supt∈[0,T]A(t)<∞, we may obtain
supΩTρ(x,t)<∞,andinfΩTρ(x,t)>0. |
Therefore, it's necessary to study the estimates of A(t).
First, observe A0=Δ−1div(ρu),A1=Δ−1div(ρ∇Φ),A2=Δ−1div2(ρu⊗u)−u⋅∇Δ−1div(ρu), then we obtain
ΔA0=div(ρu),ΔA1=div(ρ∇Φ). |
Meanwhile, we have
ΔA2=div(ΔA0⋅u+ρ(u⋅∇)u+∇(u⋅∇A0)). |
Using the Calderon-Zygmund theorem (Theorem 9.9 of [8]), we get
‖∇A0‖Lp(Ω)≤c‖ρu‖Lp(Ω),‖∇A1‖Lp(Ω)≤c‖ρ∇Φ‖Lp(Ω),‖∇A2‖Lp(Ω)≤c‖(ρ|u|+|∇A0|)|∇u|‖Lp(Ω), |
where 1<p<∞, c depends on p. For all v∈W1,4(Ω), one yields
‖v‖L∞(Ω)≤c‖∇v‖L4(Ω). |
Hence, we have
‖A0‖L∞(Ω)≲‖∇A0‖L4(Ω)≲‖ρu‖L4(Ω)≲‖ρ‖78L7(Ω)⋅‖ρ18u‖L8(Ω). | (3.16) |
Applying the same method of estimating ‖A0‖L∞(Ω) to estimate ‖A1‖L∞(Ω), we obtain that
‖A1‖L∞(Ω)≲‖∇A1‖L4(Ω)≲‖ρ∇Φ‖L4(Ω)≲‖ρ‖L8(Ω)⋅‖∇Φ‖L8(Ω). |
According to ΔΦ=ρ−¯ρ and the Calderon-Zygmung inequality [16], we have
‖∇Φ‖L3β3−β(Ω)≲‖ρ−¯ρ‖Lβ, (β>1). |
Moreover, we estimate that
‖A1‖L∞(Ω)≲‖ρ‖L8(Ω)⋅‖ρ−¯ρ‖L2411(Ω)≲‖ρ‖2L8(Ω)+‖ρ‖L8(Ω). | (3.17) |
Similarly for A2, we could obtain
‖A2‖L∞(Ω)≲‖∇A2‖L4(Ω)≲‖(ρ|u|+|∇A0|)|∇u|‖L4(Ω)≲‖(ρ|u|+|∇A0|)‖L20(Ω)⋅‖∇u‖L5(Ω)≲‖ρu‖2L20(Ω)+‖∇u‖2L5(Ω)≜B21+B22. | (3.18) |
Applying Hölder's inequality to B1, we obtain
B1≲‖ρu‖L20(Ω)≲‖ρ‖3940L39(Ω)⋅‖ρ140u‖L40(Ω). |
Similarly, by using the Calderon-Zygmung inequality and Hölder's inequality, one has
B2≲‖∇Pu‖L5(Ω)+‖divu‖L5(Ω)≲‖∇Pu‖L5(Ω)+(‖G‖L5(Ω)+R‖ρ‖γL5γ(Ω))≲‖∇2Pu‖L158(Ω)+‖∇G‖L158(Ω)+R‖ρ‖γL5γ(Ω). |
Hence, we get the estimate of A2 by Young inequality,
‖A2‖L∞(Ω)≲‖ρ‖3910L39(Ω)+‖ρ140u‖4L40(Ω)+‖∇2Pu‖2L158(Ω)+‖∇G‖2L158(Ω)+R‖ρ‖2γL5γ(Ω). | (3.19) |
Therefore, combining (3.16), (3.17) and (3.19), one could have
A≲∫t0‖ρ‖L8(Ω)⋅‖ρ−¯ρ‖L2411(Ω)ds+∫t0{‖ρ140u‖4L40(Ω)+‖ρ‖3910L39(Ω)+‖∇2Pu‖2L158(Ω)+‖∇G‖2L158(Ω)+R‖ρ‖2γL5γ(Ω)}ds+‖ρ‖78L7(Ω)⋅‖ρ18u‖L8(Ω). | (3.20) |
Observe Proposition 2.3 and that if ∇2Pu and ∇G is bounded which we will prove in the Lemma 4.3 of the next section, then we could obtain that supt∈[0,T]A(t)<∞.
Lemma 4.1. Let 1<r<2, ρ∈L∞(0,T;Lp2(Ω)), and p2(r)=max{p0,p1,5r−22−r,r2−r,4}, then
∫T0(‖∇2Pu‖2Lr(Ω)+‖∇G‖2Lr(Ω))dt≲supt∈[0,T]‖ρ‖Lr2−r(Ω)∬ΩTρ|ut|2dxdt+supt∈[0,T]{‖ρ‖5r−22rL5r−22−r(Ω)(∫Ωρ|u|4r2−r)2−r2r‖∇u‖2L2(Ω)}+supt∈[0,T]‖ρ‖Lr(Ω)‖ρ−¯ρ‖L4(Ω). |
Proof. Using (3.6) and (3.7), we obtain
‖∇2Pu‖Lr(Ω)+‖∇G‖Lr(Ω)≤c(‖ρut‖Lr(Ω)+‖ρu⋅∇u‖Lr(Ω)+‖ρ∇Φ‖Lr(Ω)), |
where 1<r<∞, c=c(N) and N is the dimension. For 1<r<2, it follows that
‖ρut‖Lr(Ω)≲‖ρ‖12Lr2−r(Ω)‖√ρut‖L2(Ω),‖ρu⋅∇u‖Lr(Ω)≲‖ρ‖5r−24rL5r−22−r(Ω)‖ρ2−r4ru‖L4r2−r(Ω)‖∇u‖L2(Ω). |
According to ΔΦ=ρ−¯ρ, we obtain
‖ρ∇Φ‖Lr(Ω)≲‖ρ‖Lr(Ω)‖∇Φ‖L∞(Ω)≲‖ρ‖Lr(Ω)‖ΔΦ‖L4(Ω)≲‖ρ‖Lr(Ω)‖ρ−¯ρ‖L4(Ω). |
Hence, if 1<r<2, we obtain
‖∇2Pu‖2Lr(Ω)+‖∇G‖2Lr(Ω)≲‖ρ‖Lr2−r(Ω)‖√ρut‖2L2(Ω)+‖ρ‖5r−22rL5r−22−r(Ω)‖ρ2−r4ru‖L4r2−r(Ω)‖∇u‖2L2(Ω)+‖ρ‖2Lr(Ω)‖ρ−¯ρ‖2L4(Ω). | (4.1) |
Hence, integrating (4.1) over [0,T], we could get
∫T0(‖∇2Pu‖2Lr(Ω)+‖∇G‖2Lr(Ω))dt≲∫T0{‖ρ‖Lr2−r(Ω)‖√ρut‖2L2(Ω)+‖ρ‖5r−22rL5r−22−r(Ω)‖ρ2−r4ru‖2L4r2−r(Ω)‖∇u‖2L2(Ω)+‖ρ‖2Lr(Ω)‖ρ−¯ρ‖2L4(Ω)}dt. |
Lemma 4.2. Let 65<r<2, and p3(r)=max{4γ,(2γ−1)r+1r−1,6γr6−5r,3γr3−r,32r−3,2γ−1r−1+2γ,3(2γ−1)2r−3+2γ}. Here we assume ρ0∈L∞(0,T;Lp3(Ω)). Then, one chould obtain that
∫T0∫Ωρ|ut|2(t,x)dxdt+μsupt∈[0,T]∫Ω|∇u(t,x)|2dx+1μ2∫T0∫Ω(R3(γ−1)ρ3γ)dxdt≤3ε∫T0(‖∇2Pu‖2Lr(Ω)+‖∇G‖2Lr(Ω))dt+C,for any ε>0, |
where C=C(μ,ν,R,‖u0‖H1(Ω),‖ρ0‖L2γ(Ω),supt∈[0,T]‖ρ‖Lp3(Ω)).
Proof. Multiply ut to (1.2)2 and integrate over ΩT, then we could obtain that
∫T0∫Ω|ρu2t|dxdt+μ2supt∈[0,T]∫Ω|∇u|2dx+μ+ν2supt∈[0,T]∫Ω|divu|2dx+∫T0∫Ω∇p(ρ)⋅utdxdt≤∫T0∫Ω|ρ∇Φ⋅ut|dxdt+μ2∫Ω|∇u0|2dx+μ+ν2∫Ω|divu0|2dx+∫T0∫Ω|ρ(u⋅∇u)⋅ut|dxdt≤∫T0∫Ω|ρ∇Φ⋅ut|dxdt+μ2∫Ω|∇u0|2dx+μ+ν2∫Ω|divu0|2dx+12∫T0∫Ω|ρu2t|dxdt+12∫T0∫Ω|ρu2(∇u)2|dxdt. | (4.2) |
Therefore, we have
∫T0∫Ω|ρu2t|dxdt+μsupt∈[0,T]∫Ω|∇u|2dx+(μ+ν)supt∈[0,T]∫Ω|divu|2dx+2∫T0∫Ω∇p(ρ)⋅utdxdt≤2∫T0∫Ω|ρ∇Φ⋅ut|dxdt+μ∫Ω|∇u0|2dx+(μ+ν)∫Ω|divu0|2dx+∫T0∫Ω|ρu2|∇u|2|dxdt. | (4.3) |
Set
I=∫Ω∇p(ρ)⋅utdx,J=∫Ωρ∇Φ⋅utdx. |
Noting that ρt+div(ρu)=0, one obtains that
(Rργ)t=Rγργ−1ρt=−Rγργ−1div(ρu)=−u⋅∇(Rργ)−Rγργdivu. |
Note that G=(2μ+ν)divu−p(ρ), we deduce that
I=∫Ω∇(Rργ)⋅utdx=−ddt∫ΩRργdivudx+∫Ω(Rργ)tdivudx. | (4.4) |
Further, one obtains
∫Ω(Rργ)tdivudx=−∫Ωu⋅∇(Rργ)divu−∫ΩRγργ(divu)2dx=−∫Ω(u⋅∇(Rργ)divu+Rργ(divu)2)dx−R(γ−1)∫Ωργ(divu)2dx=−∫Ωdiv(Rργu)divudx−R(γ−1)∫Ωργ(divu)2dx=R2μ+ν∫Ωργu⋅∇(G+Rργ)dx−R(γ−1)(2μ+ν)2∫Ωργ(G2−R2ρ2γ+2(2μ+ν)Rργdivu)dx=R2μ+ν∫Ωργu⋅∇Gdx+R2μ+ν∫Ωργu⋅∇(Rργ)dx−R(γ−1)(2μ+ν)2∫ΩργG2dx+R3(γ−1)(2μ+ν)2∫Ωργρ2γdx−2R2(γ−1)2μ+ν∫Ωρ2γdivudx=R2μ+ν∫Ωργu⋅∇Gdx−R22(2μ+ν)∫Ωρ2γdivudx−R(γ−1)(2μ+ν)2∫ΩργG2dx+R3(γ−1)(2μ+ν)2∫Ωρ3γdx−2R2(γ−1)2μ+ν∫Ωρ2γdivudx=R2μ+ν∫Ωργu⋅∇Gdx−R2(4γ−3)2(2μ+ν)∫Ωρ2γdivudx−R(γ−1)(2μ+ν)2∫ΩργG2dx+R3(γ−1)(2μ+ν)2∫Ωρ3γdx. |
Hence, we have
I=−ddt∫ΩRργdivudx+12μ+ν∫ΩRργu⋅∇Gdx−4γ−32(2μ+ν)∫ΩR2ρ2γdivudx−1(2μ+ν)2∫ΩR(γ−1)ργG2dx+1(2μ+ν)2∫ΩR3(γ−1)ρ3γdx. |
Integrate I over [0,T], then one could obtain
∫T0I(t)dt=−∫ΩRργdivu(T,x)dx+∫ΩRργ0divu0dx+12μ+ν∫T0∫Ω(Rργu⋅∇G)dxdt−4γ−32(2μ+ν)∫T0∫Ω(R2ρ2γdivu)dxdt−1(2μ+ν)2∫T0∫Ω(R(γ−1)ργG2)dxdt+1(2μ+ν)2∫T0∫Ω(R3(γ−1)ρ3γ)dxdt. | (4.5) |
Observing that ΔΦ=ρ−ˉρ, estimate the term J, then one obtains
J≲‖∇Φ‖L∞(Ω)‖√ρut‖L2(Ω)‖√ρ‖L2(Ω)≲‖ρ−¯ρ‖L4(Ω)‖√ρut‖L2(Ω)‖√ρ‖L2(Ω)≤14ε‖ρ−¯ρ‖4L4(Ω)+√ε2‖√ρut‖2L2(Ω)+14ε‖√ρ‖4L2(Ω). |
Hence, we obtain
∫T0J(t)dt≲14ε∫T0{‖ρ−¯ρ‖4L4(Ω)+‖ρ‖2L1(Ω)}dt+√ε2∫T0∫Ωρu2tdxdt. | (4.6) |
Combining (4.5) and (4.6), (4.3) can be written as
∫T0∫Ωρ|ut|2dxdt+supt∈[0,T]∫Ω|∇u|2dx+supt∈[0,T]∫Ω|divu|2dx+∫T0∫Ω(R3(γ−1)ρ3γ)dxdt≤∫Ω|∇u0|2dx+∫Ω|divu0|2dx+∫Ω|Rργ0divu0|dx+supt∈[0,T]∫ΩR|ργdivu|dx+∫T0∫Ω|Rργu⋅∇G|dxdt+∫T0∫Ω|R(γ−1)ργG2|dxdt+∫T0∫Ω|ρu2(∇u)2|dxdt+∫T0∫Ω|R2ρ2γdivu|dxdt+∫T0{‖ρ−¯ρ‖4L4(Ω)+‖ρ‖2L1(Ω)}dt≜9∑k=1ik. | (4.7) |
In what follows, estimate i1−i9. First, based on Cauchy's inequality, we have
i4≲supt∈[0,T]∫Ω|Rργdivu|dx≤c(ε)R2supt∈[0,T]‖ρ‖2γL2γ+εsupt∈[0,T]∫Ω|divu|2dx. |
Similarly, we obtain
i5≲∫T0∫Ω|Rργu⋅∇G|dxdt≤∫T0(‖∇G‖Lr(Ω)⋅‖Rργu‖Lrr−1(Ω))dt≤ε∫T0‖∇G‖2Lr(Ω)dt+14εR2supt∈[0,T]((∫Ωρ|u|2rr−1dx)r−1r⋅‖ρ‖(2γ−1)r+1rL(2γ−1)r+1r−1)T. |
Observe that ‖ρ‖2γL2γ(Ω)≲‖ρ‖2γL6γr6−5r(Ω), and make use of the same method as i4, then one obtains that
i6≤∫T0∫Ω|(R(γ−1)ργG2)|dxdt≤∫T0∫Ω(εG2+14εR2(γ−1)2ρ2γG2)dxdt≤ε∫T0‖∇G‖2L2(Ω)dt+14εR2(γ−1)2supt∈[0,T]‖ρ‖2γL6γr6−5r∫T0‖G‖2L2(Ω)dt. |
Note that ‖divu‖Lq≤12μ+ν(‖G‖Lq+R||ρ||γLγq) on account of G=(2μ+ν)divu−p(ρ). Make use of (3.11), Cauchy inequality and the interpolation inequality, then one yields
i7≤∫T0‖∇u‖2L2r3−r(Ω)‖√ρu‖2L2r2r−3(Ω)dt≤∫T0‖∇u‖32L3r3−r(Ω)‖∇u‖12Lr3−r(Ω)‖√ρu‖2L2r2r−3(Ω)dt≤3ε4∫T0‖∇u‖2L3r3−r(Ω)dt+14ε3∫T0‖√ρu‖8L2r2r−3(Ω)‖∇u‖2Lr3−r(Ω)dt≤3ε4∫T0(‖∇2Pu‖2Lr(Ω)+12μ+ν(‖∇G‖2Lr(Ω)+R‖ρ‖2γL3rγ3−r(Ω)))dt+18ε3∫T0(‖√ρu‖16L2r2r−3(Ω)+‖∇u‖4Lr3−r(Ω))dt≤3ε4∫T0(‖∇2Pu‖2L2(Ω)+12μ+ν(‖∇G‖2L2(Ω)+R‖ρ‖2γL3rγ3−r(Ω)))dt+18ε3∫T0((∫Ωρu4r2r−3dx)4(2r−3)r‖ρ‖12rL32r−3(Ω)+‖∇u‖4L2(Ω))dt, |
where 32<r<2. Similarly, we have
i8≤4γ−3μ∫T0∫Ω|(R2ρ2γdivu)|dxdt≤4γ−3μR2(∫T0∫Ω|divu|2dxdt)12(∫T0∫Ωρ4γdxdt)12≤4γ−3μR2(ε∫T0∫Ω|∇u|2dxdt+1ε∫T0∫Ωρ4γdxdt). |
Combining i1−i9 with (4.7), we arrive at the conclusion of the lemma easily.
Combining Lemma 4.1 with Lemma 4.2, let ε be small sufficiently, then the following lemma is obtained naturally.
Lemma 4.3. Suppose that ρ0 and u0 satisfy the assumptions of Lemma 4.2. Assume ρ∈L∞(0,T;Lp4(Ω)), then we obtain that
∬ΩTρu2tdxdt+sup0<≤t≤T∫Ω|∇u|2dx≤C,∫T0‖∇2Pu‖2Lr(Ω)+‖∇G‖2Lr(Ω)dt≤C, |
where C=C(μ,R,T,‖u0‖H1(Ω),‖ρ0‖L2γ(Ω),supt∈[0,T]‖ρ‖Lp4(Ω)), and p4(r)=max{p0(r),p1(r),p2(r),p3(r)}.
Moreover, combining the results of the Lemma 4.3 with (3.20), we could obtain sup0<t<TA(t)<∞ easily, which is obvious that we prove that Lemma 3.1 completely.
In the following, we shall present the L∞ bound of u by the Moser iteration [4,10] provided that the result of the Lemma 3.1 holds on. Furthermore, we could get the local L∞ estimate of u by Gronwall inequality.
Lemma 5.1. Let all conditions satisfy the assumptions of Proposition 2.3 and Lemma 3.1, then we have
sup(t,x)∈ΩT|u(x,t)|≤C, |
where the constant C=C(T,supΩTρ(x,t),infΩTρ(x,t),‖u0‖L∞(Ω))>0.
Proof. Integrating the equality (2.1) on (0,T), one could arrive at
1α+2sup0≤t≤T∫Ωρ|u|α+2dx+μ(α+1)∫T0∫Ω|∇u|2|u|αdxdt+α(μ+ν)∫T0∫Ω|u|αdivu⋅∇udxdt+(μ+ν)∫T0∫Ω|divu|2|u|αdxdt≤1α+2∫Ωρ0|u0|α+2dx+∫T0∫ΩRργ|u|αdivudxdt+α∫T0∫ΩRργ|u|α∇udxdt+∫T0∫Ωρ∇Φ|u|αudxdt≜1α+2∫Ωρ0|u0|α+2dx+∫T0(j1+j2+j3)(t)dt. | (5.1) |
Now, we consider the estimates of the right terms of (5.1).
∫T0j1(t)dt≤c1∫T0∫Ω|u|α|divu|dxdt≤c1∫T0‖|u|α2divu‖L2(Ω)‖|u|α2‖L2(Ω)dt≤c1∫T0‖|u|α2divu‖L2(Ω)‖u‖α2Lα+2(Ω)dt≤12∬ΩT|u|α|∇u|2dxdt+c212∫T0‖u‖αLα+2(Ω)dt≤12∬ΩT|u|α|∇u|2dxdt+c212(∫T0‖u‖α+2Lα+2(Ω)dt)αα+2T2α+2=12∬ΩT|u|α|∇u|2dxdt+c212(∬ΩT|u|α+2dxdt)αα+2T2α+2, |
where c1=p(ˆρ) and ˆρ=supΩTρ(t,x). Similarly, we have
∫T0j2(t)dt≤12∬ΩT|u|α|∇u|2dxdt+c212(∬ΩT|u|α+2dxdt)αα+2T2α+2. |
Note that ΔΦ=ρ−¯ρ and (2.4), then we have
∫T0j3(t)dt≤ˆρ∬ΩT|Φdiv(|u|αu)|dxdt≲(ˆρ2+ˆρ)∫T0∫Ω(|u|α|divu|+|u|α|∇u|)dxdt≲12∬ΩT|u|α|∇u|2dxdt+ˆρ4+ˆρ22(∬ΩT|u|α+2dxdt)αα+2T2α+2. |
Hence, one could get
˜ρα+2supt∈[0,T]∫Ω|u|α+2dx+c(μ,ν,α)∬ΩT(|∇u|2|u|α)dxdt≤Mα+2‖u0‖α+2L∞(Ω)+(p2(ˆρ)+ˆρ2+ˆρ4)(∬ΩT|u|α+2dxdt)αα+2T2α+2, | (5.2) |
where ˜ρ=infΩTρ(x,t). Observe
(|a|+|b|)p≤{|a|p+|b|p,0≤p≤1,2p−1(|a|p+|b|p),p>1. |
Hence, we could obtain that
∬ΩT|u(t,x)|53(α+2)dxdt≤∫T0‖u2(α+2)3‖L32(Ω)‖uα+2‖L3(Ω)dt=∫T0(∫Ω|u|α+2dx)23⋅‖uα+22‖2L6(Ω)dt≲(supt∈[0,T]∫Ω|u|α+2dx)23⋅∫T0‖uα+22‖2H1(Ω)dt≲(supt∈[0,T]∫Ω|u|α+2dx)23⋅(∬ΩT(∇|u|α+22)2dxdt+∬ΩT|u|α+2dxdt)≲(supt∈[0,T]∫Ω|u|α+2dx)23⋅((α+2)24∬ΩT|u|α|∇u|2dxdt+∬ΩT|u|α+2dxdt). | (5.3) |
Combining (5.2) and (5.3), we could get
∬ΩT|u(t,x)|53(α+2)dxdt≤C(α+2)83(∬ΩT|u|α+2dxdt)53+C(α+2)83, | (5.4) |
where C=C(T,M,supΩTρ,infΩTρ,‖u0‖L∞(Ω)).
Let r=53, rk=2+αk, where k≥2, then the inequality (5.3) is rearranged to be
∬ΩT|u|rk+1dxdt≤C1rkC2(∬ΩT|u|rkdxdt)r+C1rkC2, | (5.5) |
where C1=C1(T,M,supΩTρ,infΩTρ,‖u0‖L∞(Ω))>1, and C2=C2(T,M,supΩTρ,infΩTρ,‖u0‖L∞(Ω))>1.
Make use of the inequality (5.5), then we obtain
∬ΩT|u(t,x)|53(αk+2)dxdt=∬ΩT|u|rk+1dxdt≤C1rkC2(∬ΩT|u|rkdxdt)r+C1rkC2≤2r−1C1rkC2[C1rr(k−1)C2(∬ΩT|u|rk−1dxdt)r2+C1rr(k−1)C2]+C1rkC2=223C1+r1rC2(k+r(k−1))(∬ΩT|u|rk−1dxdt)r2+223C1+r1rC2(k+r(k−1))+C1rkC2≤223C1+r1rC2(k+r(k−1))[C1r(k−2)C2(∬ΩT|u|rk−2dxdt)r+C1r(k−2)C2]r3+223C1+r1rC2(k+r(k−1))+C1rkC2≤⋯≤2(r−1)+(r2−1)+⋯+(rk−1−1)C1+r+⋯+rk−21rC2(k+r(k−1)+⋯+rk−2⋅2)(∬ΩT|u|r2dxdt)rk−1+2(r−1)+(r2−1)+⋯+(rk−1−1)C1+r+r2+⋯+rk−21rC2(k+r(k−1)+⋯+rk−2⋅2)+2(r−1)+(r2−1)+⋯+(rk−2−1)C1+r+r2+⋯+rk−31rC2(k+r(k−1)+⋯+rk−3⋅3)+⋯+C1rC2k. |
Next, we will consider the following inequality
∬ΩT|u|rk+1≤2(r−1)+(r2−1)+⋯+(rk−1−1)Ck−2∑l=0rl1⋅rC2k−2∑l=0(k−l)rl(∬ΩT|u|r2dxdt)rk−1+(k−1)2(r−1)+(r2−1)+⋯+(rk−1−1)Ck−2∑l=0rl1⋅rC2k−2∑l=0(k−l)rl. |
Denote a=2(r−1)+(r2−1)+⋯+(rk−1−1), then we have the inequality
‖u‖Lrk+1(ΩT)≤a1rk+1⋅Ck−2∑l=0rl−k−11⋅rC2k−2∑l=0(k−l)rl−k−1(∫ΩT|u|r2dxdt)r−2+(k−1)r−(k+1)a1rk+1⋅Ck−2∑l=0rl−k−11⋅rC2k−2∑l=0(k−l)rl−k−1. | (5.6) |
Observe that b=k−1∑l=1rl−k−2<+∞, c=k−1∑l=1(k−l)rl−k−2<+∞, d=(k−1)r−(k+1)<+∞. Moreover, we have 2((r−1)+⋯+(rk−2−1))⋅r−(k+1)<∞.
Obviously when k goes to ∞, we could obtain that
‖u(x,t)‖L∞(ΩT)≤2Cb1rcC2‖u‖Lr2(ΩT)+2dCb1rcC2. |
Hence, we obtain the inequality
supΩT|u|≤2Cb1rcC2‖u‖Lr2(ΩT)+2dCb1rcC2. |
Combining the above result and Proposition 2.3, we could obtain that
supΩT|u(x,t)|≤C, |
where C=C(T,supΩTρ,infΩTρ,‖u0‖L∞(Ω)).
Finally, let us give the proof of Theorem 1.1.
Proof. Under the assumptions of Lemmas 4.1–4.3, we employ the result in Lemma 3.1, Proposition 2.3 and the a prior estimates in Lemma 5.1. Therefore, we could achieve the results of Theorem 1.1 easily.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported by the National Natural Science Foundation of China (42274166), the Fundamental Research Funds for the Central Universities (3132021195, 3132022202), Basic Scientific Research Project of The Educational Department of Liaoning Province (LJKMZ20220368).
The authors declare that they have no conflict of interest.
[1] |
H. Cai, Z. Tan, Existence and stability of stationary solutions to the compressible Navier-Stokes-Poisson equations, Nonlinear Anal.-Real, 32 (2016), 260–293. https://doi.org/10.1016/j.nonrwa.2016.04.010 doi: 10.1016/j.nonrwa.2016.04.010
![]() |
[2] |
Y. Cho, H. Choe, H. Kim, Unique solvability of the boundary value problems for compressible viscous fluids, J. Math. Pure. Appl., 83 (2004), 243–275. https://doi.org/10.1016/j.matpur.2003.11.004 doi: 10.1016/j.matpur.2003.11.004
![]() |
[3] |
H. Choe, H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, J. Differ. Equations, 190 (2003), 504–523. https://doi.org/10.1016/S0022-0396(03)00015-9 doi: 10.1016/S0022-0396(03)00015-9
![]() |
[4] |
H. Choe, B. Jin, Regularity of weak solutions of the compressible Navier-Stokes equations, J. Korean Math. Soc., 40 (2003), 1031–1050. https://doi.org/10.4134/JKMS.2003.40.6.1031 doi: 10.4134/JKMS.2003.40.6.1031
![]() |
[5] |
B. Desjardins, Regularity of weak solutions of the compressible isentropic navier-stokes equations, Commun. Part. Diff. Eq., 22 (1997), 977–1008. https://doi.org/10.1080/03605309708821291 doi: 10.1080/03605309708821291
![]() |
[6] |
E. Feireisl, A. Novotný, H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358–392. https://doi.org/10.1007/PL00000976 doi: 10.1007/PL00000976
![]() |
[7] | G. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, New York: Springer, 2011. https://doi.org/10.1007/978-0-387-09620-9 |
[8] | D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, Berlin: Springer, 2001. https://doi.org/10.1007/978-3-642-61798-0 |
[9] |
D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differ. Equations, 120 (1995), 215–254. https://doi.org/10.1006/jdeq.1995.1111 doi: 10.1006/jdeq.1995.1111
![]() |
[10] |
C. Jia, Z. Tan, Regularity for the weak solutions to certain parabolic systems under certain growth condition, J. Math. Anal. Appl., 468 (2018), 324–343. https://doi.org/10.1016/j.jmaa.2018.08.014 doi: 10.1016/j.jmaa.2018.08.014
![]() |
[11] | T. Kobayashi, T. Suzuki, Weak solutions to the Navier-Stokes-Poisson equation, Adv. Math. Sci. Appl., 18 (2008), 141–168. |
[12] | P. Lions, Mathematical topics in fluid mechanics: volume 2: compressible models, Oxford: Oxford University Press, 1998. |
[13] | O. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, 2 Eds., New York: Gordon and Breach Science Publishers, 1964. |
[14] |
Š. Matušů-Nečasová, M. Okada, T. Makino, Free boundary problem for the equation of spherically symmetric motion of viscous gas (II), Japan J. Indust. Appl. Math., 12 (1995), 195–203. https://doi.org/10.1007/BF03167288 doi: 10.1007/BF03167288
![]() |
[15] |
Š. Matušů-Nečasová, M. Okada, T. Makino, Free boundary problem for the equation of spherically symmetric motion of viscous gas (III), Japan J. Indust. Appl. Math., 14 (1997), 199–213. https://doi.org/10.1007/BF03167264 doi: 10.1007/BF03167264
![]() |
[16] |
G. Mingione, Nonlinear aspects of Calderón-Zygmund theory, Jahresber. Dtsch. Math. Ver., 112 (2010), 159–191. https://doi.org/10.1365/s13291-010-0004-5 doi: 10.1365/s13291-010-0004-5
![]() |
[17] |
M. Okada, Š. Matušů-Nečasová, T. Makino, Free boundary problem for the equation of one dimensional motion of compressible gas with density-dependent viscosity, Ann. Univ. Ferrara, 48 (2002), 1–20. https://doi.org/10.1007/BF02824736 doi: 10.1007/BF02824736
![]() |
[18] |
M. Okada, T. Makino, Free boundary problem for the equation of spherically symmetric motion of viscous gas, Japan J. Industr. Appl. Math., 10 (1993), 219. https://doi.org/10.1007/BF03167573 doi: 10.1007/BF03167573
![]() |
[19] |
Y. Sun, C. Wang, Z. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch. Rational Mech. Anal., 201 (2011), 727–742. https://doi.org/10.1007/s00205-011-0407-1 doi: 10.1007/s00205-011-0407-1
![]() |
[20] |
Z. Tan, Y. Wang, Propagation of density-oscillations in solutions to the compressible Navier-Stokes-Poisson system, Chin. Ann. Math. Ser. B, 29 (2008), 501–520. https://doi.org/10.1007/s11401-007-0380-z doi: 10.1007/s11401-007-0380-z
![]() |
[21] |
Z. Tan, T. Yang, H. Zhao, Q. Zou, Global solutions to the one-dimensional compressible Navier-Stokes-Poisson equations with large data, SIAM J. Math. Anal., 45 (2013), 547–571. https://doi.org/10.1137/120876174 doi: 10.1137/120876174
![]() |
[22] |
Z. Tan, Y. Zhang, Strong solutions of the coupled Navier-Stokes-Poisson equations for isentropic compressible fluids, Acta Math. Sci., 30 (2010), 1280–1290. https://doi.org/10.1016/S0252-9602(10)60124-5 doi: 10.1016/S0252-9602(10)60124-5
![]() |
[23] | R. Temam, Navier-Stokes equations and nonlinear functional analysis, Philadelphia: Society of Industrial and Applied Mathematics, 1995. https://doi.org/10.1007/978-0-387-09620-9 |
[24] | A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Scuola Norm.-Sci., 10 (1983), 607–647. |
[25] | H. Wen, C. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum, Adv. Math., 248 (2013), 534–572. https://doi.org/10.1016/j.aim.2013.07.018 |
[26] |
J. Yin, Z. Tan, Global existence of the radially symmetric strong solution to Navier-Stokes-Poisson equations for isentropic compressible fluids, Acta Math. Sin.-English Ser., 25 (2009), 1703–1720. https://doi.org/10.1007/s10114-009-6595-z doi: 10.1007/s10114-009-6595-z
![]() |
[27] |
Y. Zhang, Z. Tan, On the existence of solutions to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow, Math. Method. Appl. Sci., 30 (2007), 305–329. https://doi.org/10.1002/mma.786 doi: 10.1002/mma.786
![]() |