Research article

Uniform regularity of the isentropic Navier-Stokes-Maxwell system

  • Received: 28 October 2021 Revised: 02 January 2022 Accepted: 04 January 2022 Published: 24 January 2022
  • MSC : 35B25, 35Q30, 35Q35

  • It is well known that Navier-Stokes-Maxwell system can be derived from the Vlasov-Maxwell-Boltzmann system. In this paper, the uniform regularity of strong solutions to the isentropic compressible Navier-Stokes-Maxwell system are proved. Here our result is obtained by using the bilinear commutator and product estimates.

    Citation: Qingkun Xiao, Jianzhu Sun, Tong Tang. Uniform regularity of the isentropic Navier-Stokes-Maxwell system[J]. AIMS Mathematics, 2022, 7(4): 6694-6701. doi: 10.3934/math.2022373

    Related Papers:

    [1] Jae-Myoung Kim . Time decay rates for the coupled modified Navier-Stokes and Maxwell equations on a half space. AIMS Mathematics, 2021, 6(12): 13423-13431. doi: 10.3934/math.2021777
    [2] Yasir Nadeem Anjam . The qualitative analysis of solution of the Stokes and Navier-Stokes system in non-smooth domains with weighted Sobolev spaces. AIMS Mathematics, 2021, 6(6): 5647-5674. doi: 10.3934/math.2021334
    [3] Kaile Chen, Yunyun Liang, Nengqiu Zhang . Global existence of strong solutions to compressible Navier-Stokes-Korteweg equations with external potential force. AIMS Mathematics, 2023, 8(11): 27712-27724. doi: 10.3934/math.20231418
    [4] Jianlong Wu . Regularity criteria for the 3D generalized Navier-Stokes equations with nonlinear damping term. AIMS Mathematics, 2024, 9(6): 16250-16259. doi: 10.3934/math.2024786
    [5] Kunquan Li . Analytical solutions and asymptotic behaviors to the vacuum free boundary problem for 2D Navier-Stokes equations with degenerate viscosity. AIMS Mathematics, 2024, 9(5): 12412-12432. doi: 10.3934/math.2024607
    [6] Hui Fang, Yihan Fan, Yanping Zhou . Energy equality for the compressible Navier-Stokes-Korteweg equations. AIMS Mathematics, 2022, 7(4): 5808-5820. doi: 10.3934/math.2022321
    [7] Jae-Myoung Kim . Blow-up criteria for the full compressible Navier-Stokes equations involving temperature in Vishik Spaces. AIMS Mathematics, 2022, 7(8): 15693-15703. doi: 10.3934/math.2022859
    [8] Yasir Nadeem Anjam . Singularities and regularity of stationary Stokes and Navier-Stokes equations on polygonal domains and their treatments. AIMS Mathematics, 2020, 5(1): 440-466. doi: 10.3934/math.2020030
    [9] Abdelkader Moumen, Ramsha Shafqat, Azmat Ullah Khan Niazi, Nuttapol Pakkaranang, Mdi Begum Jeelani, Kiran Saleem . A study of the time fractional Navier-Stokes equations for vertical flow. AIMS Mathematics, 2023, 8(4): 8702-8730. doi: 10.3934/math.2023437
    [10] Junling Sun, Xuefeng Han . Existence of Sobolev regular solutions for the incompressible flow of liquid crystals in three dimensions. AIMS Mathematics, 2022, 7(9): 15759-15794. doi: 10.3934/math.2022863
  • It is well known that Navier-Stokes-Maxwell system can be derived from the Vlasov-Maxwell-Boltzmann system. In this paper, the uniform regularity of strong solutions to the isentropic compressible Navier-Stokes-Maxwell system are proved. Here our result is obtained by using the bilinear commutator and product estimates.



    In this paper, we consider the following isentropic compressible Navier-Stokes-Maxwell system [1,2]:

    tρ+div(ρu)=0, in  T3×(0,), (1.1)
    t(ρu)+div(ρuu)+pμΔu(λ+μ)÷u=j×b, in  T3×(0,), (1.2)
    ϵtErotb+j=0,j:=E+u×b, in  T3×(0,), (1.3)
    tb+rotE=0, in  T3×(0,), (1.4)
    divb=0,  in  T3×(0,), (1.5)
    (ρ,u,E,b)(,0)=(ρ0,u0,E0,b0)(),  in  T3. (1.6)

    Here, ρ is the electron density, u is the velocity, E and b represent electronic and magnetic fields respectively. The pressure is p:=aργ with constants a>0 and γ>1. j is the electric current expressed by Ohm's law. The force term j×B in the Navier-Stokes equations comes from Lorentz force under a quasi-neutrality assumption of the net charge carried by the fluid. The third equation is the Ampère-Maxwell equation for an electric field E and the fourth equation is Faraday's law. The viscosity coefficients μ and λ of the fluid satisfy μ>0 and λ+2μ30. ϵ is the dielectric constant. The Navier-Stokes-Maxwell system is a plasma physical model that describes the motion of charged particles in electromagnetic field, which can be derived from the Vlasov-Maxwell-Boltzmann system. It includes many classical models. For example, when j=0, (1.1) and (1.2) reduce to the well-known isentropic compressible Navier-Stokes system, Gong-Li-Liu-Zhang [3] and Huang[4] showed the local well-posedness of strong solutions.

    When infρ0>0, the problem of Navier-Stokes-Maxwell system has attracted much attention. Jiang-Li [5,6,7] studied the vanishing limit of dielectric constant ϵ1. Fan-Li-Nakamura [8,9,10] considered the vanishing limits of dielectric constant ϵ1 or the Mach number ϵ2. Chen-Li-Zhang [11] and Mi-Gao [12] established the long-time asymptotic behavior of the smooth solutions.

    Before stating our main results, we recall the local existence of smooth solutions to the problem (1.1)–(1.6). Since the system (1.1)–(1.6) is a parabolic-hyperbolic one, the results in [13] imply that

    Proposition 1.1. ([13]). Let ρ0,u0,E0,b0H3 and 1C0ρ0, for a positive constant C0. Then the problem (1.1)(1.6) has a unique smooth solution (ρ,u,E,b) satisfying

    ρ,E,bC([0,T);H3),uC([0,T);H32),=0,1;1Cρ, (1.7)

    for some 0<T.

    The aim of this paper is to prove uniform regularity estimates in (λ,μ,ϵ). We will prove the following

    Theorem 1.1. Let 0<μ<1,0<λ+μ<1,0<ϵ<1,0<1C0ρ0,ρ0,u0,E0,b0H3(T3). Let (ρ,u,E,b) be the unique local smooth solutions to the problem (1.1)(1.6). Then

    (ρ,u,ϵE,b)(,t)H3C  and  E(,t)L2+EL2(0,t;H3)C  in  [0,T] (1.8)

    hold true for some positive constants C and T0 (T) independent of λ,μ and ϵ>0.

    We define

    M(t):=1+sup0τt{(ρ,u,ϵE,b,p)(,τ)H3+tu(,τ)L2+E(,τ)L2+1ρ(,τ)L}+EtL2(0,t;L2). (1.9)

    We can prove

    Theorem 1.2. For any t[0,1], it holds that

    M(t)C0(M0)exp(t13C(M)) (1.10)

    for some nondecreasing continuous functions C0() and C().

    It follows from (1.10) that

    M(t)C. (1.11)

    In the following proofs, we will use the bilinear commutator and product estimates due to Kato-Ponce [14]:

    Ds(fg)fDsgLpC(fLp1Ds1gLq1+gLp2DsfLq2), (1.12)
    Ds(fg)LpC(fLp1DsgLq1+DsfLp2gLq2), (1.13)

    with s>0 and 1p=1p1+1q1=1p2+1q2.

    We only need to show Theorem 1.2.

    First, multiplying (1.1) by ρq1 and integrating the resulting equation yields

    1qddtρqdx=(11q)ρqdivudxdivuLρqdx,

    from which it follows that

    ddtρLqdivuLρLq,

    thus, one can have

    ρLqρ0Lqexp(t0divuLdτ), (2.1)

    and

    ρLρ0Lexp(tC(M)). (2.2)

    by taking q+.

    It follows from (1.1) that

    t1ρ+u1ρ1ρdivu=0. (2.3)

    Multiplying (2.3) by (1ρ)q1, and integrating the resulting equation yields that

    1qddt(1ρ)qdx=(1+1q)(1ρ)qdivudx(1+1q)1ρqLqdivuL,

    or equivalently,

    ddt1ρqLq(1+q)1ρqLqdivuL,

    from which it follows that

    1ρqLq1ρ0qLqexp((1+q)t0divuLdτ),

    and

    1ρL1ρ0Lexp(tC(M)) (2.4)

    by taking q+. It follows from (2.2) and (2.4) that

    pL+1pLC0(M0)exp(tC(M)). (2.5)

    It is easy to verify that

    ddt|u|2dx=2utudx2uL2tuL2C(M),

    which implies

    uL2C0(M0)exp(tC(M)). (2.6)

    Multiplying (1.3) by and E, (1.4) by b, integrating with respect to x respectively, and summing up the results, then it follows that

    12ddt(ϵ|E|2+|b|2)dx+|E|2dx=(b×u)EdxuLbL2EL2C(M),

    which implies

    ϵE(,t)L2+b(,t)L2C0(M0)exp(tC(M)). (2.7)

    Applying D3 to (1.3) and (1.4), multiplying by D3E and D3b, respectively, and summing up the results, one can observe that

    12ddt(ϵ|D3E|2+|D3b|2)dx+|D3E|2dx=D3(b×u)D3EdxCbH3uH3D3EL2C(M)+12D3E2L2,

    which yields

    ϵD3E(,t)L2+D3b(,t)L2+D3EL2(0,t;L2)C0(M0)exp(tC(M)). (2.8)

    Differentiating (1.3) and (1.4) with respect to t, multiplying by Et and bt, respectively, and summing up the results, one can deduce that

    12ddt(ϵ|Et|2+|bt|2)dx+|Et|2dx=t(b×u)Etdx(btL2uL+bLutL2)EtL212Et2L2+C(M)bt2L2+C(M),

    which implies

    (ϵ|Et|2+|bt|2)dx+t0|Et|2dxdτC0(M0)exp(tC(M)). (2.9)

    It is clear that

    E=E0+t0Etds

    and hence

    E(,t)L2C0(M0)exp(tC(M)). (2.10)

    It is obvious that

    1γptp+1γpup+divu=0. (2.11)

    Similarly, applying D3 to (2.11), multiplying the equation by D3p and integrating with respect to x, then it follows from (2.11), (1.12) and (1.13) that

    12ddt1γp(D3p)2dx+D3pD3divudx=12(D3p)2[div(uγp)1γp2tp]dx(D3(1γptp)1γpD3tp)D3pdx(D3(uγpp)uγpD3p)D3pdxCD3p2L2div(uγp)1γp2tpL+CtpLD3(1γp)L2D3pL2+C1γpLD2tpL2D3pL2+CpLD3(uγp)L2D3pL2+CuγpLD3p2L2C(M)+C(M)tpL+C(M)D2tpL2C(M)+C(M)up+γpdivuL+C(M)D2(up+γpdivu)L2C(M), (2.12)

    where we have used the estimate [15]:

    D31pL2C(M)D3pL2C(M). (2.13)

    It is obvious that

    t0|tu|2dxdτtsup|tu|2dxtC(M). (2.14)

    Applying D2 to (1.2), multiplying the resulting equality by D2tu and integrating with respect to x, by (1.12)–(1.13) and some direct calculations, we obtain

    μ2ddt|D3u|2dx+λ+μ2ddt(D2divu)2dx+ρ|D2tu|2dx=D2pD2tudxD2(ρuu)D2tudx[D2(ρtu)ρD2tu]D2tudx+D2(j×b)D2tudxCD3pL2D2tuL2+CρH2u2H3D2tuL2+C(ρLDtuL2+tuLD2ρL2)D2tuL2+D2(j×b)L2D2tuL2C(M)D2tuL2+C(M)(DtuL2+tuL)D2tuL2+C(M)D2EL2D2tuL2C(M)D2tuL2+C(M)(tu12L2D2tu12L2+tuL2+tu14L2D2tu34L2)D2tuL2+C(M)E13L2D3E23L2D2tuL2C(M)D2tuL2+C(M)(D2tu12L2+D2tu34L2)D2tuL2+C(M)D3E23L2D2tuL212ρ|D2tu|2dx+C(M)+C(M)D3E43L2,

    which gives rises to

    t0|D2tu|2dxdτC0(M0)exp(t13C(M)). (2.15)

    Applying D3 to (1.2), multiplying the resulting equation by D3u and integrating with respect to x, and it follows from (1.1), (1.12) and (1.13) that

    12ddtρ|D3u|2dx+μ|D4u|2dx+(λ+μ)(D3divu)2dx+D3pD3udx=(D3(ρtu)ρD3tu)D3udx(D3(ρuu)ρuD3u)D3udx+D3(j×b)D3udxC(ρLD2tuL2+tuLD3ρL2)D3uL2+C(uLD3(ρu)L2+(ρu)LD3uL2)D3uL2+D3(j×b)L2D3uL2C(M)+C(M)(D2tuL2+tuL)+C(M)D3EL2C(M)+D2tu2L2+C(M)D3EL2. (2.16)

    Summing (2.12) and (2.16) up, one can deduce that

    12ddt(1γp(D3p)2+ρ|D3u|2)dx+μ|D4u|2dx+(λ+μ)(D3divu)2dx+(D3pD3divu+D3pD3u)dxC(M)+D2tu2L2+C(M)D3EL2. (2.17)

    Noting that the last term of LHS of (2.17) is zero, it follows from (2.15) that

    D3pL2+D3uL2C0(M0)exp(t13C(M)). (2.18)

    On the other hand, it follows from (1.2) that

    tuL2=1ρ(j×b+μΔu+(λ+μ)divupρuu)L2C0(M0)exp(t13C(M)). (2.19)

    By the aid of the following estimate [15]:

    D3ρL2C(1+pL)3fW3,(I)D3pL2 (2.20)

    with ρ=f(p):=(pa)1γ, and

    I(1C0(M0)exp(tC(M)),C0(M0)exp(tC(M))),

    we have

    D3ρL2C0(M0)exp(t13C(M)). (2.21)

    Combining (2.4)–(2.10), (2.18), (2.19) with (2.21), we conclude that (1.10) holds true.

    This completes the proof.

    The authors would like to thank the anonymous reviewers and the editor-in-chief for their comments to improve the paper. Qingkun Xiao is partially supported by NSFC (No. 11801270).

    We declare that we have no conflict of interest.



    [1] I. Imai, Chapter I. General principles of magneto-fluid dynamics, Prog. Theor. Phys. Supp., 24 (1962), 1–34. http://dx.doi.org/10.1143/PTPS.24.1 doi: 10.1143/PTPS.24.1
    [2] R. J. Duan, Green's function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl., 10 (2012), 133–197. http://dx.doi.org/10.1142/S0219530512500078 doi: 10.1142/S0219530512500078
    [3] H. Gong, J. Li, X. Liu, X. Zhang, Local well-posedness of isentropic compressible Navier-Stokes equations with vacuum, Commun. Math. Sci., 18 (2020), 1891–1909. http://dx.doi.org/10.4310/CMS.2020.v18.n7.a4 doi: 10.4310/CMS.2020.v18.n7.a4
    [4] X. Huang, On local strong and classical solutions to the three-dimensional barotropic compressible Navier-Stokes equations with vacuum, Sci. China Math., 64 (2021), 1771–1788. http://dx.doi.org/10.1007/s11425-019-9755-3 doi: 10.1007/s11425-019-9755-3
    [5] S. Jiang, F. Li, Rigorous derivation of the compressible magnetohydrodynamic equations from the electromagnetic fluid system, Nonlinearity, 25 (2012), 1735–1752. http://dx.doi.org/10.1088/0951-7715/25/6/1735 doi: 10.1088/0951-7715/25/6/1735
    [6] S. Jiang, F. Li, Convergence of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations, Asymptotic Anal., 95 (2015), 161–185. http://dx.doi.org/10.3233/asy-151321 doi: 10.3233/asy-151321
    [7] S. Jiang, F. Li, Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system, Sci. China Math., 58 (2015), 61–76. http://dx.doi.org/10.1007/s11425-014-4923-y doi: 10.1007/s11425-014-4923-y
    [8] J. Fan, F. Li, G. Nakamura, Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain, Kinet. Relat. Models, 9 (2016), 443–453. http://dx.doi.org/10.3934/krm.2016002 doi: 10.3934/krm.2016002
    [9] J. Fan, F. Li, G. Nakamura, Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain II: Global existence case, J. Math. Fluid Mech., 20 (2018), 359–378. http://dx.doi.org/10.1007/s00021-017-0322-9 doi: 10.1007/s00021-017-0322-9
    [10] J. Fan, F. Li, G. Nakamura, Uniform well-posedness and singular limits of the isentropic Navier-Stokes-Maxwell system in a bounded domain, Z. Angew Math. Phys., 66 (2015), 1581–1593. http://dx.doi.org/10.1007/s00033-014-0484-8 doi: 10.1007/s00033-014-0484-8
    [11] Y. Chen, F. Li, Z. Zhang, Large time behavior of the isentropic compressible Navier-Stokes-Maxwell system, Z. Angew Math. Phys., 67 (2016), 91. http://dx.doi.org/10.1007/s00033-016-0685-4 doi: 10.1007/s00033-016-0685-4
    [12] Y. Mi, J. Gao, Long-time behavior of solution for the compressible Navier-Stokes-Maxwell equations in R3, Math. Method. Appl. Sci., 41 (2018), 1424–1438. http://dx.doi.org/10.1002/mma.4672 doi: 10.1002/mma.4672
    [13] A. I. Vol'pert, S. I. Hudjaev, The Cauchy problem for composite systems of nonlinear differential equations, Math. USSR. SB., 16 (1972), 504–528. http://dx.doi.org/10.1070/SM1972v016n04ABEH001438 doi: 10.1070/SM1972v016n04ABEH001438
    [14] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891–907. http://dx.doi.org/10.1002/cpa.3160410704 doi: 10.1002/cpa.3160410704
    [15] H. Triebel, Theory of function spaces, Basel: Springer, 1983. http://dx.doi.org/10.1007/978-3-0346-0416-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1966) PDF downloads(76) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog