Research article Special Issues

Solution of fractional boundary value problems by $ \psi $-shifted operational matrices

  • Received: 25 October 2021 Revised: 28 December 2021 Accepted: 05 January 2022 Published: 24 January 2022
  • MSC : 34A08, 34K10, 34K28

  • In this paper, a numerical method is presented to solve fractional boundary value problems. In fractional calculus, the modelling of natural phenomenons is best described by fractional differential equations. So, it is important to formulate efficient and accurate numerical techniques to solve fractional differential equations. In this article, first, we introduce $ \psi $-shifted Chebyshev polynomials then project these polynomials to formulate $ \psi $-shifted Chebyshev operational matrices. Finally, these operational matrices are used for the solution of fractional boundary value problems. The convergence is analysed. It is observed that solution of non-integer order differential equation converges to corresponding solution of integer order differential equation. Finally, the efficiency and applicability of method is tested by comparison of the method with some other existing methods.

    Citation: Shazia Sadiq, Mujeeb ur Rehman. Solution of fractional boundary value problems by $ \psi $-shifted operational matrices[J]. AIMS Mathematics, 2022, 7(4): 6669-6693. doi: 10.3934/math.2022372

    Related Papers:

  • In this paper, a numerical method is presented to solve fractional boundary value problems. In fractional calculus, the modelling of natural phenomenons is best described by fractional differential equations. So, it is important to formulate efficient and accurate numerical techniques to solve fractional differential equations. In this article, first, we introduce $ \psi $-shifted Chebyshev polynomials then project these polynomials to formulate $ \psi $-shifted Chebyshev operational matrices. Finally, these operational matrices are used for the solution of fractional boundary value problems. The convergence is analysed. It is observed that solution of non-integer order differential equation converges to corresponding solution of integer order differential equation. Finally, the efficiency and applicability of method is tested by comparison of the method with some other existing methods.



    加载中


    [1] M. Dalir, M. Bashour, Applications of fractional calculus, Applied Mathematical Sciences, 4 (2010), 1021–1032.
    [2] P. Agarwal, R. Agarwal, M. Ruzhansky, Special functions and analysis of differential equations, Boca Raton: Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9780429320026
    [3] M. Ruzhansky, Y. Cho, P. Agarwal, I. Area, Advances in real and complex analysis with applications, Singapore: Birkhäuser, 2017. http://dx.doi.org/10.1007/978-981-10-4337-6
    [4] P. Agarwal, D. Baleanu, Y. Chen, S. Momani, J. Machado, Fractional calculus, Singapore: Springer, 2019. http://dx.doi.org/10.1007/978-981-15-0430-3
    [5] Y. Chen, X. Ke, Y. Wei, Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis, Appl. Math. Comput., 251, (2015), 475–488. http://dx.doi.org/10.1016/j.amc.2014.11.079
    [6] S. Mashayekhi, M. Razzaghi, Numerical solution of distributed order fractional differential equations by hybrid functions, J. Comput. Phys., 315, (2016), 169–181. http://dx.doi.org/10.1016/j.jcp.2016.01.041
    [7] M. Ilie, J. Biazar, Z. Ayati, Optimal homotopy asymptotic method for first-order conformable fractional differential equations, Journal of Fractional Calculus and Applications, 10 (2019), 33–45.
    [8] A. Ahmadian, M. Suleiman, S. Salahshour, D. Baleanu, A Jacobi operational matrix for solving a fuzzy linear fractional differential equation, Adv. Differ. Equ., 2013 (2013), 104. http://dx.doi.org/10.1186/1687-1847-2013-104 doi: 10.1186/1687-1847-2013-104
    [9] J. Xie, Numerical computation of fractional partial differential equations with variable coefficients utilizing the modified fractional Legendre wavelets and error analysis, Math. Method. Appl. Sci., 44 (2021), 7150–7164. http://dx.doi.org/10.1002/mma.7252 doi: 10.1002/mma.7252
    [10] J. Xie, X. Gong, W. Shi, R. Li, W. Zhao, T. Wang, Applying the three-dimensional block-pulse functions to solve system of Volterra-Hammerstein integral equations, Numer. Method. Part. Differ. Equ., 36 (2020), 1648–1661. http://dx.doi.org/10.1002/num.22496 doi: 10.1002/num.22496
    [11] M. Usman, M. Hamid, M. Liu, Higher-order algorithms for stable solutions of fractional time-dependent nonlinear telegraph equations in space, Numer. Method. Part. Differ. Equ., in press. http://dx.doi.org/10.1002/num.22744
    [12] B. Moghaddam, A. Dabiri, A. Lopes, J. Machado, Numerical solution of mixed-type fractional functional differential equations using modified Lucas polynomials, Comput. Appl. Math., 38 (2019), 46. http://dx.doi.org/10.1007/s40314-019-0813-9 doi: 10.1007/s40314-019-0813-9
    [13] A. Dabiri, E. Butcher, Efficient modified Chebyshev differentiation matrices for fractional differential equations, Commun. Nonlinear Sci., 50 (2017), 284–310. http://dx.doi.org/10.1016/j.cnsns.2017.02.009 doi: 10.1016/j.cnsns.2017.02.009
    [14] M. Hamid, M. Usman, R. Haq, Z. Tian, W. Wang, Linearized stable spectral method to analyze two-dimensional nonlinear evolutionary and reaction-diffusion models, Numer. Method. Part. Differ. Equ., in press. http://dx.doi.org/10.1002/num.22659
    [15] M. Usman, M. Hamid, R. Haq, M. Liu, Linearized novel operational matrices-based scheme for classes of nonlinear time-space fractional unsteady problems in 2D, Appl. Numer. Math., 162 (2021), 351–373. http://dx.doi.org/10.1016/j.apnum.2020.12.021 doi: 10.1016/j.apnum.2020.12.021
    [16] A. El-Sayed, P. Agarwal, Numerical solution of multiterm variable-order fractional differential equations via shifted Legendre polynomials, Math. Method. Appl. Sci., 42 (2019), 3978–3991. http://dx.doi.org/10.1002/mma.5627 doi: 10.1002/mma.5627
    [17] A. El-Sayed, D. Baleanu, P. Agarwal, A novel Jacobi operational matrix for numerical solution of multi-term variable-order fractional differential equations, J. Taibah Univ. Sci., 14 (2020), 963–974. http://dx.doi.org/10.1080/16583655.2020.1792681 doi: 10.1080/16583655.2020.1792681
    [18] P. Agarwal, Q. Al-Mdallal, Y. Cho, S. Jain, Fractional differential equations for the generalized Mittag-Leffler function, Adv. Differ. Equ., 2018 (2018), 58. http://dx.doi.org/10.1186/s13662-018-1500-7 doi: 10.1186/s13662-018-1500-7
    [19] P. Agarwal, F. Qi, M. Chand, G. Singh, Some fractional differential equations involving generalized hypergeometric functions, J. Appl. Anal., 25 (2019), 37–44. http://dx.doi.org/10.1515/jaa-2019-0004 doi: 10.1515/jaa-2019-0004
    [20] E. Oliveira, J. Machado, A review of definitions for fractional derivatives and integral, Math. Probl. Eng., 2014 (2014), 238459. http://dx.doi.org/10.1155/2014/238459 doi: 10.1155/2014/238459
    [21] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. http://dx.doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [22] S. Rezapour, S. Etemad, B. Tellab, P. Agarwal, J. Guirao, Numerical solutions caused by DGJIM and ADM methods for multi-term fractional BVP involving the generalized $\psi$-RL-operators, Symmetry, 13 (2021), 532. http://dx.doi.org/10.3390/sym13040532 doi: 10.3390/sym13040532
    [23] Z. Baitiche, C. Derbazi, J. Alzabut, M. Samei, M. Kaabar, Z. Siri, Monotone iterative method for $\psi$-Caputo fractional differential equation with nonlinear boundary conditions, Fractal Fract., 5 (2021), 81. http://dx.doi.org/10.3390/fractalfract5030081 doi: 10.3390/fractalfract5030081
    [24] Z. Baitiche, C. Derbazi, M. Benchohra, $\psi$-Caputo fractional differential equations with multi-point boundary conditions by topological degree theory, Results in Nonlinear Analysis, 3 (2020), 167–178.
    [25] R. Almeida, Fractional differential equations with mixed boundary conditions, Bull. Malays. Math. Sci. Soc., 42 (2019), 1687–1697. http://dx.doi.org/10.1007/s40840-017-0569-6 doi: 10.1007/s40840-017-0569-6
    [26] R. Almeida, M. Jleli, B. Samet, A numerical study of fractional relaxation oscillation equations involving $\psi$-Caputo fractional derivative, RACSAM, 113 (2019), 1873–1891. http://dx.doi.org/10.1007/s13398-018-0590-0 doi: 10.1007/s13398-018-0590-0
    [27] A. Mahdy, N. Mukhtar, Second kind shifted Chebyshev polynomials for solving the model nonlinear ODEs, American Journal of Computational Mathematics, 7 (2017), 391–401. http://dx.doi.org/10.4236/ajcm.2017.74028 doi: 10.4236/ajcm.2017.74028
    [28] J. Xie, Z. Yao, H. Gui, F. Zhao, D. Li, A two-dimensional Chebyshev wavelets approach for solving the Fokker-Planck equations of time and space fractional derivatives type with variable coefficients, Appl. Math. Comput., 332 (2018), 197–208. http://dx.doi.org/10.1016/j.amc.2018.03.040 doi: 10.1016/j.amc.2018.03.040
    [29] A. Ahmadian, S. Salahshour, C. Chan, Fractional differential systems: a fuzzy solution based on operational matrix of shifted Chebyshev polynomials and its applications, IEEE T. Fuzzy Syst., 25 (2017), 218–236. http://dx.doi.org/10.1109/TFUZZ.2016.2554156 doi: 10.1109/TFUZZ.2016.2554156
    [30] A. Mahdy, R. Shwayyea, Shifted Chebyshev polynomials of the third kind solution for system of non-linear fractional diffusion equations, International Journal of Advance Research, 4 (2016), 1–20.
    [31] A. Gil, J. Segura, N. Temme, Numerical methods for special functions, New York: Society for Industrial and Applied Mathematics, 2007. http://dx.doi.org/10.1137/1.9780898717822
    [32] J. Mason, D. Handscomb, Chebyshev polynomials, Boca Raton: Chapman and Hall/CRC, 2002.
    [33] M. El-Kady, A. El-Sayed, Fractional differentiation matrices for solving fractional orders differential equations, International Journal of Pure and Applied Mathematics, 84 (2013), 1–13. http://dx.doi.org/10.12732/ijpam.v84i2.1 doi: 10.12732/ijpam.v84i2.1
    [34] H. Fischer, On the condition of orthogonal polynomials via modified moments, Z. Anal. Anwend., 15 (1996), 223–244. http://dx.doi.org/10.4171/ZAA/696 doi: 10.4171/ZAA/696
    [35] S. Kazem, S. Abbasbandy, S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations, Appl. Math. Model., 37 (2013), 5498–5510. http://dx.doi.org/10.1016/j.apm.2012.10.026 doi: 10.1016/j.apm.2012.10.026
    [36] M. AlQudah, M. AlMheidat, Generalized shifted Chebyshev Koornwinder type polynomials: basis transformations, Symmetry, 10 (2018), 692. http://dx.doi.org/10.3390/sym10120692. doi: 10.3390/sym10120692
    [37] L. Trefethen, Spectral methods in Matlab, New York: Society for Industrial and Applied Mathematics, 2000. http://dx.doi.org/10.1137/1.9780898719598.
    [38] C. Bai, Existence and uniqueness of solutions for fractional boundary value problems with p-Laplacian operator, Adv. Differ. Equ., 2018 (2018), 4. http://dx.doi.org/10.1186/s13662-017-1460-3 doi: 10.1186/s13662-017-1460-3
    [39] M. Rehman, A. Idrees, U. Saeed, A quadrature method for numerical solutions of fractional differential equations, Appl. Math. Comput., 307 (2017), 38–49. http://dx.doi.org/10.1016/j.amc.2017.02.053 doi: 10.1016/j.amc.2017.02.053
    [40] Y. G. Wang, H. F. Song, D. Li, Solving two-point boundary value problems using combined homotopy perturbation method and Green function method, Appl. Math. Comput., 212 (2009), 366–376. http://dx.doi.org/10.1016/j.amc.2009.02.036 doi: 10.1016/j.amc.2009.02.036
    [41] M. Rehman, U. Saeed, Gegenbauer wavelets operational matrix method for fractional differential equations, J. Korean Math. Soc., 52 (2015), 1069–1096. http://dx.doi.org/10.4134/JKMS.2015.52.5.1069. doi: 10.4134/JKMS.2015.52.5.1069
    [42] M. Rehman, R. A. Khan, A numerical method for solving boundary value problems for fractional differential equations, Appl. Math. Model., 36 (2012), 894–907. http://dx.doi.org/10.1016/j.apm.2011.07.045 doi: 10.1016/j.apm.2011.07.045
    [43] M. Ismail, U. Saeed, J. Alzabut, M. Rehman, Approximate solutions for fractional boundary value problems via Green-CAS wavelet method, Mathematics, 7 (2019), 1164. http://dx.doi.org/10.3390/math7121164. doi: 10.3390/math7121164
    [44] K. Diethelm, J. Ford, Numerical solution of the Bagley-Torvik equation, BIT, 42 (2002), 490–507. http://dx.doi.org/10.1023/A:1021973025166 doi: 10.1023/A:1021973025166
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1591) PDF downloads(106) Cited by(1)

Article outline

Figures and Tables

Figures(6)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog