Research article

Solitary wave solutions in time-fractional Korteweg-de Vries equations with power law kernel

  • Received: 17 August 2022 Revised: 12 September 2022 Accepted: 18 September 2022 Published: 12 October 2022
  • MSC : 35Bxx, 35Qxx, 35Axx, 37Mxx, 65R10, 06A33, 42A38, 74-XX

  • The non-linear time-fractional Korteweg-de Vries and modified Korteweg-de Vries equations are studied with Caputo's fractional derivative. The general higher-order solitary wave solutions are derived using a novel technique called the Aboodh transform decomposition method. To validate the obtained results, two examples of Caputo's fractional derivative with appropriate subsidiary conditions are illustrated. The accuracy and efficiency are confirmed by using numerical simulations and error analysis, where good agreements are obtained. The numerical analysis shows that, in comparison to the time-fractional Korteweg-de Vries solution, the solitary wave solution for the time-fractional modified Korteweg-de Vries equation is less stable against the oscillations. The variations in the temporal variable $ t $ enhance the strength of the wave solutions. Moreover, the wave perturbations taper off as $ t $ attains large values. The parameter $ \alpha $ signifies the fractional derivative influence on the wave dispersion and nonlinearity effects. This affects the amplitude as well as the spatial extension of the solitary waves. With a relatively small value of $ t $, the obtained solutions admit pulse-shaped solitons. Moreover, the wave's solutions suffer from oscillations when the temporal variable attains large values. This effect cannot be noticed in the soliton solutions obtained in the integer order systems.

    Citation: Khalid Khan, Amir Ali, Muhammad Irfan, Zareen A. Khan. Solitary wave solutions in time-fractional Korteweg-de Vries equations with power law kernel[J]. AIMS Mathematics, 2023, 8(1): 792-814. doi: 10.3934/math.2023039

    Related Papers:

  • The non-linear time-fractional Korteweg-de Vries and modified Korteweg-de Vries equations are studied with Caputo's fractional derivative. The general higher-order solitary wave solutions are derived using a novel technique called the Aboodh transform decomposition method. To validate the obtained results, two examples of Caputo's fractional derivative with appropriate subsidiary conditions are illustrated. The accuracy and efficiency are confirmed by using numerical simulations and error analysis, where good agreements are obtained. The numerical analysis shows that, in comparison to the time-fractional Korteweg-de Vries solution, the solitary wave solution for the time-fractional modified Korteweg-de Vries equation is less stable against the oscillations. The variations in the temporal variable $ t $ enhance the strength of the wave solutions. Moreover, the wave perturbations taper off as $ t $ attains large values. The parameter $ \alpha $ signifies the fractional derivative influence on the wave dispersion and nonlinearity effects. This affects the amplitude as well as the spatial extension of the solitary waves. With a relatively small value of $ t $, the obtained solutions admit pulse-shaped solitons. Moreover, the wave's solutions suffer from oscillations when the temporal variable attains large values. This effect cannot be noticed in the soliton solutions obtained in the integer order systems.



    加载中


    [1] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus models and numerical methods, World Scientific, 2012.
    [2] K. B. Oldham, J. Spanier, Fractional calculus: Theory and applications of differentiation and integration to arbitrary order, New York: Academic Press, 1974.
    [3] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York, USA: John Wiley and Sons, 1993.
    [4] I. Podlubny, Fractional differential equations, San Diego, CA, USA: Academic Press, 1999.
    [5] J. A. T. Machado, A probabilistic interpretation of the fractional-order differentiation, Fract. Calc. Appl. Anal., 6 (2003), 73–80.
    [6] R. L. Magin, M. Ovadia, Modeling the cardiac tissue electrode interface using fractional calculus, J. Vib. Control, 14 (2008), 1431–1442. https://doi.org/10.1177/10775463070874 doi: 10.1177/10775463070874
    [7] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [8] D. J. Korteweg, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos. Mag., 39 (1895), 73–80.
    [9] M. K. Fung, KdV Equation as an Euler-Poincare' equation, Chin. J. Phys., 35 (1997), 789.
    [10] B. D. Fried, R. W. Gould, Longitudinal ion oscillations in a hot plasma, Phys. Fluids, 4 (1961), 139–147. https://doi.org/10.3390/math8020280 doi: 10.3390/math8020280
    [11] K. Watanabe, T. Taniuti, Electron-acoustic mode in a plasma of two-temperature electrons, J. Phys. Soc. Japan, 43 (1977), 1819–1820. https://doi.org/10.1143/JPSJ.43.1819 doi: 10.1143/JPSJ.43.1819
    [12] M. Y. Yu, P. K. Shukla, Linear and nonlinear modified electron-acoustic waves, J. Plasma Phys., 29 (1983), 409–413. https://doi.org/10.1017/S0022377800000866 doi: 10.1017/S0022377800000866
    [13] N. Iwamoto, Collective modes in nonrelativistic electron-positron plasmas, Phys. Rev., 47 (1993), 604. https://doi.org/10.1103/PhysRevE.47.604 doi: 10.1103/PhysRevE.47.604
    [14] D. Henry, J. P. Trguier, Propagation of electronic longitudinal modes in a non-Maxwellian plasma, J. Plasma Phys., 8 (1972), 311–319. https://doi.org/10.1017/S0022377800007169 doi: 10.1017/S0022377800007169
    [15] R. Pottelette, R. E. Ergun, R. A. Treumann, M. Berthomier, C. W. Carlson, J. P. McFadden, et al., Modulated electron‐acoustic waves in auroral density cavities: FAST observations, Geophys. Res. Lett., 26 (1999), 2629–2632. https://doi.org/10.1029/1999GL900462 doi: 10.1029/1999GL900462
    [16] M. Irfan, I. Alam, A. Ali, K. Shah, T. Abdeljawad, Electron-acoustic solitons in dense electron-positron-ion plasma: Degenerate relativistic enthalpy function, Results Phys., 38 (2022), 105625. https://doi.org/10.1016/j.rinp.2022.105625 doi: 10.1016/j.rinp.2022.105625
    [17] H. Washimi, T. Taniuti, Propagation of ion-acoustic solitary waves of small amplitude, Phys. Rev. Lett., 17 (1966), 996. https://doi.org/10.1103/PhysRevLett.17.996 doi: 10.1103/PhysRevLett.17.996
    [18] E. K. El-Shewy, Effect of higher-order nonlinearity to nonlinear electron-acoustic solitary waves in an unmagnetized collisionless plasma, Chaos Soliton. Fract., 26 (2005), 1073–1079. https://doi.org/10.1016/j.chaos.2005.01.060 doi: 10.1016/j.chaos.2005.01.060
    [19] E. K. El-Shewy, Linear and nonlinear properties of electron-acoustic solitary waves with non-thermal electrons, Chaos Soliton. Fract., 31 (2007), 1020–1023. https://doi.org/10.1016/j.chaos.2006.03.104 doi: 10.1016/j.chaos.2006.03.104
    [20] R. M. Miura, C. S. Gardner, M. D. Kruskal, KdV equation and generalizations. Ⅱ. Existence of conservation laws and constant of motion, J. Math. Phys., 9 (1968), 1204–1209.
    [21] D. S. Wang, B. L. Guo, X. l. Wang, Long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions, J. Differ. Equations, 266 (2019), 5209–5253. https://doi.org/10.1016/j.jde.2018.10.053 doi: 10.1016/j.jde.2018.10.053
    [22] D. S. Wang, L. Xu, Z. X. Xuan, The complete classification of solutions to the Riemann problem of the defocusing complex modified KdV equation, J. Nonlinear Sci., 32 (2022), 1–46. https://doi.org/10.1007/s00332-021-09766-6 doi: 10.1007/s00332-021-09766-6
    [23] R. I. Nuruddeen, A. M. Nass, Aboodh decomposition method and its application in solving linear and vonlinear heat equations, Eur. J. Adv. Eng. Technol., 3 (2016), 34–37.
    [24] K. S. Aboodh, The new integral transform'Aboodh transform, Global J. Pure Appl. Math., 9 (2013), 35–43.
    [25] W. Cao, Y. Xu, Z. Zheng, Finite difference/collocation method for a generalized time-fractional KDV equation, Appl. Sci., 8 (2018), 42. https://doi.org/10.3390/app8010042 doi: 10.3390/app8010042
    [26] D. Kaya, I. E. Inan, A convergence analysis of the ADM and an application, Appl. Math. Comput., 161 (2005), 1015–1025. https://doi.org/10.1016/j.amc.2003.12.063 doi: 10.1016/j.amc.2003.12.063
    [27] S. A. El-Wakil, E. M. Abulwafa, E. K. El-Shewy, A. A. Mahmoud, Time-fractional KdV equation for plasma of two different temperature electrons and stationary ion, Phys. Plasmas, 18 (2011), 092116. https://doi.org/10.1063/1.3640533 doi: 10.1063/1.3640533
    [28] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm Sci., Phys. Plasmas, 20 (2016), 763–769. https://doi.org/10.48550/arXiv.1602.03408 doi: 10.48550/arXiv.1602.03408
    [29] K. Khan, O. Algahtani, M. Irfan, A. Ali, Electron-acoustic solitary potential in nonextensive streaming plasm, Sci. Rep., 12 (2022), 15175. https://doi.org/10.1038/s41598-022-19206-4 doi: 10.1038/s41598-022-19206-4
    [30] K. Khan, Z. Khan, A. Ali, M. Irfan, Investigation of Hirota equation: Modified double Laplace decomposition method, Phys. Scr., 96 (2021), 104006. https://doi.org/10.1088/1402-4896/ac0d33 doi: 10.1088/1402-4896/ac0d33
    [31] A. Atangana, Extension of the modified homotopy perturbation method for attractor one-dimensional Keller-Segel equations, Appl. Math. Model., 39 (2015), 2815–3182. https://doi.org/10.1016/j.apm.2014.09.029 doi: 10.1016/j.apm.2014.09.029
    [32] K. S. Aboodh, The new integral transform "Aboodh transform'', Global J. Pure Appl. Math., 9 (2013), 35–43.
    [33] S. Alfaqeih, T. Ozis, Note on double Aboodh transform of fractional order and its properties, Online Math. OMJ, 1 (2019), 19–25. https://doi.org/10.5281/zenodo.3047015 doi: 10.5281/zenodo.3047015
    [34] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [35] R. Aruldoss, R. A. Devi, Aboodh transform for solving fractional differential equations, Global J. Pure Appl. Math., 16 (2020), 145–153.
    [36] G. Adomian, Modification of the decomposition approach to heat equation, J. Math. Anal. Appl., 124 (1987), 290–291. https://doi.org/10.1016/0022-247X(87)90040-0 doi: 10.1016/0022-247X(87)90040-0
    [37] I. L. El-Kalla, Convergence of the Adomian method applied to a class of nonlinear integral equations, Appl. Math. Lett., 21 (2008), 372–376. https://doi.org/10.1016/j.aml.2007.05.008 doi: 10.1016/j.aml.2007.05.008
    [38] H. Eltayeb, Y. T. Abdalla, I. Bachar, M. H. Khabir, Fractional telegraph equation and its solution by natural transform decomposition method, Symmetry, 11 (2019), 334. https://doi.org/10.3390/sym11030334 doi: 10.3390/sym11030334
    [39] Q. Wang, Homotopy perturbation method for fractional KdV equation, Appl. Math. Comput., 190 (2007), 1795–1802. https://doi.org/10.1016/j.amc.2007.02.065 doi: 10.1016/j.amc.2007.02.065
    [40] D. S. Wang, S. Y. Lou, Prolongation structures and exact solutions of $K (m, n)$ equations, J. Math. Phys., 50 (2009), 123513. https://doi.org/10.1063/1.3267865 doi: 10.1063/1.3267865
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1071) PDF downloads(73) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog