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1. Introduction

Currently, fractional-order calculus (FOC) plays a dynamic role in the development and applications
of modern science and technology [1]. The FOC is a field of mathematics that deals with differentiation
and integration under an arbitrary order of the operation; the order is not limited to the integer one
but can also be any real or even complex number [2–4]. For a long time, it was ignored due to the
integral complexity and freedom of integer order calculus, as well as the reality that FOC does not have
entirely conventional physical or geometrical understandings [5]. Currently, there is a strong interest
in generalising integer-order NPDEs to model complex engineering problems such as bio-engineering,
electronics, viscoelasticity, control theory, thermal sciences, electrical networking, chemical, and fluid
dynamics [6, 7].

Korteweg-de Vries (KdV) equation has been extensively investigated in physics to describe the
interaction and evaluation of non-linear waves. It was originally derived by D. J. Korteweg and G. de
Vries, in an investigation to re-generate the solitary waves that govern a small amplitude in one
dimension with lengthy propagating gravity waves spreading in a shallow channel of water [8]. Apart
from solitary waves, the KdV equation has also been studied for numerous physical phenomena,
including hydro-magnetic waves, lattice dynamics, physics of plasma such as electron-acoustic (EA)
and ion-acoustic (IA) waves [9]. It is also used in aerodynamics, fluid dynamics, transportation of
mass, boundary layer behavior, and modeling the mechanical behavior of materials modeled as a
continuous mass for shock wave formations. The concept of excitation of the electron-acoustic (EA)
mode was initially proposed by Fried and Gould in the reference [10]. They have noted that the
Landau’s dampening effect on the EA potentials weakens with increasing wave number. In further
experiments, weak dampening of the EA in plasma containing both high- and low-temperature
electrons was found to be caused by [11]. Such plasma circumstances had previously been noted in a
number of contexts, including [12]. Iwamoto [13] has studied the development of the high frequency
Langmuir mode and the electron-acoustic wave evolution in nonrelativistic electron-positron plasma.
It has been demonstrated that, in compared to the Langmuir wave, the low frequency EA excitation
Landau damped with a substantially higher growth rate. The propagation of electron acoustic waves
(EAWs) in plasmas and in space environments has drawn a lot of interest due to its value in
comprehending a variety of collective processes in laboratory equipment [14, 15]. Irfan et al. [16]
studied fast (Langmuir) and slow (electron-acoustic) modes in dense electron-positron-ions (EPI)
plasma. They observed that there is a chance that the fast electron-acoustic (FEA) mode could occur.
The slow electron-acoustic (SEA) solitons are not allowed to propagate because they have a negative
phase dispersion impact. The EPI plasma may allow for the evolution of electron-holes at a relatively
low positron concentration, leading to the formation of compressive FEA solitons. Broadband
electrostatic noise (BEN) emissions in the auroral and other regions of the magnetosphere, such as the
plasma sheet boundary layer (PSBL) and the polar cusp, have been detected by satellite data. The
Korteweg-de Vries (KdV) equation is obtained from studies of small-amplitude EAWs in
unmagnetized plasma using first-order reductive perturbation theory [17]. More than 20 percent of the
solitary waves’ amplitude is understated by the first order soliton solution. Consequently, higher-order
fixes may be used to help solve this issue. Shewy et al. [18, 19] investigated the contributions of
higher-order corrections to the properties of electrostatic EAWs as well as the impacts of non-thermal
distribution of hot electrons. The higher-order correction contribution is given by the time-fractional
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modified Korteweg-de Vries (TF-mKdV) which modulates the amplitude of the solitary wave.
The time-fractional modified KdV (TF-mKdV) equation is well-known for its contribution in the

creation of the Lax pair and an unlimited quantity of conservation laws for the KdV equation [20].
The finite-gap integration approach and Whitham modulation theory are used to investigate the
comprehensive classification of solutions to the defocusing complex modified KdV equation with
step-like initial condition [21]. Wang et al. [22] employed the nonlinear steepest descent method of
Deift and Zhou, the long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero
boundary conditions at infinity. The TF-mKdV equation is obtained using perturbation expansions
and the theory that the soliton width is modest in comparison to the plasma inhomogeneity scale
length. In this case, the soliton retains its whole identity, as well as its amplitude, breadth, and speed.
Further, Breathers and the unique soliton behavior of the TF-mKdV equation are well-known. Here,
we study the localized solutions for time-fractional Korteweg-de Vries (TF-KdV) and time-fractional
modified Korteweg-de Vries (TF-mKdV) with help of an analytical method called Aboodh transform
decomposition method (ADM) given in [23].

From the conventional Fourier integral, the Aboodh transform is derived. The Aboodh transform
was first proposed by Khalid Aboodh [24] to show how to solve various ordinary differential equations
in the time domain. This was done because of the Aboodh transform’s mathematical features and
simplicity. Differential equations are typically solved using Fourier, Laplace, Elzaki, and Sumudu
transforms as the primary mathematical methods. Motivated from these study we are interesting to
apply the Aboodh transform together with decomposition method to find an approximate solution of
our proposed model. The proposed models have been extensively used in modeling complex physical
systems such as thermal as well as current flows in electric circuits. It also plays an important role in
modeling particles vibrating in their lattices. It should be noted that the physical phenomena in the KdV
equation will be considered as non-conservative to describe fractional differential equations. Recently,
the time-fractional KdVB equation together with nonlinearities has been extensively investigated using
various methods [25]. We consider the integer order of the time derivative term of the mKdV model
given in [26] be in the arbitrary order of the following form

∂αu
∂tα
+ a um∂u

∂x
+ b
∂3u
∂x3 = 0, 0 < α ≤ 1, (1.1)

with

u(x, 0) = f (x), (1.2)

the numbers a, b ∈ Rwith a is the non-linearity coefficient and b is the dispersive coefficient of Eq (1.1)
and the time fractional-order (0 < α ≤ 1) derivative is supposed to be in Caputo’s form. Equation (1.1)
is known as time-fractional modified Korteweg-de Vries (TF-mKdV) equation and is used vastly in
plasma physics to study solitary and shock waves [27]. When m = 1, the TF-mKdV reduce to simple
time fractional Korteweg-de Vries (TF-KdV) equation.

Recently, various descriptions for fractional-order operators are also broadly studied, for example,
Caputo-Fabrizio (C-F), Liouville-Caputo, and Riemann-Liouville (R-L) [28]. The R-L derivatives
involve the complexity of the assumed function with the power-law kernel, while, the LC derivatives
include the complexity of the confined derivative of a considered problem with power-law. Recently,
the fractional KdV type equations together with several other nonlinear systems involving the
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time-fractional order derivatives along various methods for their analytical solutions have been
investigated. To investigate analytical as well as numerical solutions to FNPDEs/TF-mKdV
equations, various techniques have been studied [29–31]. Here, we apply the Aboodh decomposition
method (ADM) [23] to find an approximate solution of Eq (1.1) in Caputo’s sense. The rest of the
article is prepared as follows. The preliminaries section 2 includes the main definitions, remarks, and
some important results regarding the proposed method. In section 3, the Aboodh transform and
Aboodh decomposition method are discussed. In section 4, uniqueness and convergence analysis of
the method is discussed. In section 5, we consider two examples in Caputo’s form of TF-KdV and
TF-mKdV equations with the application of the proposed method. This section also includes
numerical solutions and discussion. In section 5, the accuracy and effectiveness of the ADM are
confirmed by using the error analysis. We include the summary in section 6, while in section 7 we
have given the future work and extension of our present work.

2. Preliminaries

In this section, we provide some basic definitions, theorems, lemmas, and remarks, which are
essential for our proposed method. We also define some basic rules and definitions related to the
Aboodh transform and decomposition methods with some related properties. The Aboodh transform
(see the reference [32]) is defined for the functions of exponential order in the following set

A =
{
u(t) : ∃ M, k1, k2, |u(t)| ≤ M e−vt, k1 ≤ v ≤ k2

}
, (2.1)

the constant M must be a finite value for a given function u(t) in the set A, while k1, k2 ∈ R. The
Aboodh transformA u(t) is given by

A(u(t))(v) = K(v) =
1
v

∫ ∞

0
u(t)e−vtdt, t ≥ 0, (2.2)

where v ∈ [k1, k2] is the variable utilised to factor the variable t in the function u(.).

Definition 1. [33] The Aboodh transform for two variables function x ≥ 0, t ≥ 0 is defined by

A(u(x, t))(u, v) = K(u, v) =
1
uv

∫ ∞

0

∫ ∞

0
e−ut e−vtu(x, t)dxdt, (2.3)

while the inverse Aboodh transform is give by

u(x, t) = A−1{K(u, v)} =
1

2π i

β+i∞∫
β−i∞

u eut
[ 1
2π i

γ+i∞∫
γ−i∞

vevxK(u, v) dv
]
du,

where, K(u, v), is a function such that u and v defined such that Re (u) ≥ β and Re (v) ≥ γ. It should be
noted that β, γ ∈ R to be considered accordingly.
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Definition 2. [34] The Caputo’s derivative for α > 0 for u(t) is defined by function u : (0,∞)→ IR is
given by

cDαu(t) =
1

Γ(n − α)

∫ t

0
(t − s)n−α−1un(s)ds, (2.4)

where α ∈ (n − 1, n], with n = [α] + 1, [α] represent the integer part of a real number α, providing that
the right-hand side of the above integral is continuously well-defined on (0,∞).

Definition 3. [35] Applying Aboodh transform on function u(x, t) in the Caputo’s sense is given by

A{cDαu(x, t)} = vαK(u, v) −
n−1∑
k=0

u(k)(x, 0)
v2−α+k . (2.5)

Definition 4. [35] The Aboodh transform of some other functions and derivatives are given as

A{tn} =
n!

vn+2 , n ∈ N, A{tα} =
Γ(α + 1)

vα+2 , α ≥ −1.

3. Aboodh transform decomposition method

Here, we introduce ADM applied to attain a series of solutions of NODEs and NPDEs. It is a very
much effective technique to find an approximate solution of dynamical systems. Writing Eq (1.1) in
Caputo’s sense, we obtain

cDαt u + a um∂u
∂x
+ b
∂3u
∂x3 = 0, (3.1)

0 < α ≤ 1 and

u(x, 0) = f (x). (3.2)

Using ADM and the definitions given in the previous section, we obtain

A{cDαt u} + aA{um∂u
∂x
} + bA{

∂3u
∂x3 } = 0. (3.3)

Applying the technique given in section 2 for ADM on fractional order, we obtain

A{u(x, t)} =
1
v2A{u(x, 0)} − a

1
vα
A{um∂u

∂x
} − b

1
vα
A{
∂3u
∂x3 }, (3.4)

where Eq (3.2) becomes

A{u(x, 0)} = K(u). (3.5)

By considering the series solution

u =
∞∑

n=0

un. (3.6)
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The non-linearity can be obtained as

umux(x, t) =
∞∑

i=0

An.

The value of An for the functions ui, i = 1, 2, 3, . . . , is given by [36]

An =
1
n!

dn

dλn

 n∑
k=0

λkum
k (x, t)

n∑
k=0

λkukx(x, t)


λ=0

. (3.7)

Applying an inverse Aboodh transform to above equation, we obtain

u0 = A
−1{

1
v2 K(u, 0)} = u(x, 0).

u1 = −aA−1
{

1
vα
A{A0}

}
− bA−1

{
1
vα
A{u0xxx}

}
,

u2 = −aA−1
{

1
vα
A{A1}

}
− bA−1

{
1
vα
A{u1xxx}

}
,

u3 = −aA−1
{

1
vα
A{A2}

}
− bA−1

{
1
vα
A{u2xxx}

}
,

...

un+1 = −aA−1
{

1
vα
A{An}

}
− bA−1

{
1
vα
A{unxxx}

}
.

(3.8)

The general solution can be written as

u(x, t) = u0(x, t) − aA−1
{

1
vα
A{An}

}
− bA−1

{
1
vα
A{unxxx}

}
. (3.9)

4. Uniqueness and convergence of the method

The necessary condition that ensures the presence of a unique solution is studied in this section, and
the convergence of the solutions is discussed, we follow these theorems applied to the series solutions
in [37, 38].

Theorem 1. (Uniqueness theorem) For 0 < γ < 1, the solution (3.9) of Eq (3.1) is a unique solution.
where

γ =
(ℓ1 + ℓ2 + ℓ3)tα+1

Γ(α)
, (4.1)

where ℓ1 and ℓ2, are Lipschitz constants, 0 < α ≤ 1 and Γ is the well known Gamma function can be
defined as

Γ(α) =
∫ ∞

0
e−ttα−1dt, R > 0.
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Proof. Define a mapping D : B→ B with B=(C[J], ∥.∥) is the Banach space on J = [0,T ]. We can
write Eq (3.9) as

un+1 = u(x, 0) +A−1
{

1
vα
A

(
H un(x, t) +M un(x, t) +N un(x, t)

)}
,

where H u = ∂u
∂x , M u = ∂

3u
∂x3 and N u = u∂u

∂x , and suppose that H u,and M u are also Lipschitzian with

|H u −H ū| < ℓ1 |u − ū| , |M u −M ū| < ℓ2 |u − ū| ,

where u, ū are the function’s distinct values. Now we proceed as follow

∥Du −D ū ∥ = max
t∈J

∣∣∣∣∣∣A−1
{

1
vα
A

(
H un +M un +N un

)}
−A−1

{
1
vα
A

(
H ūn +M ūn +N ūn

)}∣∣∣∣∣∣
≤ max

t∈J

∣∣∣∣∣∣A−1
{

1
vα
A

(
H un −H ū

)}
+A−1

{
1
vα
A

(
M u −M ū

)}
+A−1

{
1
vα
A

(
N u −N ū

)} ∣∣∣∣∣∣
≤ max

t∈J

∣∣∣∣∣∣ℓ1A−1
{

1
vα
A

(
u − ū

)}
+ ℓ2A

−1
{

1
vα
A

(
u − ū

)}
+ ℓ3A

−1
{

1
vα
A

(
N u − ū

)} ∣∣∣∣∣∣
≤ max

t∈J
(ℓ1 + ℓ2 + ℓ3)

∣∣∣∣∣∣A−1
{

1
vα
A

(
u − ū

)} ∣∣∣∣∣∣
=

(ℓ1 + ℓ2 + ℓ3)t(α−1)

Γ(α)
∥u − ū ∥ .

The mapping is contraction under the condition 0 < γ < 1. As a result of the Banach fixed point
theorem for contraction, Eq (3.1) has a unique solution. □

Next, we discuss convergence analysis of the problems.

Theorem 2. (Convergence theorem) The solution of Eq (3.1) in general form will be convergence.

Proof. The Banach space of all continuous functions on the interval J with the norm
∥u(x, t)∥=maxt∈J ∥u(x, t)∥ is denoted as (C[J], ∥.∥). Define the {S n} sequence of partial sums that is
Sn=

∑n
j=0. With n ≥ m, let Sn and Sm be arbitrary partial sums. In this Banach space, we will show

that Sn is a Cauchy sequence. This can obtained by employing a new formulation of Adomian
polynomials.
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P(Sn) = Ān +

n−1∑
r1=0

Ār1 , Q(Sn) = Ān +

n−1∑
r2=0

Ār2 .

Now

∥Sn −Sm∥ =

∣∣∣∣∣∣∣
n∑

j=0

u j −

m∑
k=0

uk

∣∣∣∣∣∣∣ = max
t∈J

∣∣∣∣∣∣∣
n∑

j=m+1

u j

∣∣∣∣∣∣∣
≤ max

t∈J

∣∣∣∣∣∣A−1

 1
vα
A

( n∑
j=m+1

H (u j−1 )
) +A−1

 1
vα
A

( n∑
j=m+1

M (u j−1 )
)

+A−1

 1
vα
A

( n∑
j=m+1

(A j−1 )
)

∣∣∣∣∣∣
= max

t∈J

∣∣∣∣∣∣A−1

 1
vα
A

( n−1∑
j=m

H (u j )
) +A−1

 1
vα
A

( n−1∑
j=m

M (u j )
) +A−1

 1
vα
A

( n−1∑
j=m

(A j )
)

∣∣∣∣∣∣
≤ max

t∈J

∣∣∣∣∣∣A−1

 1
vα
A

( n−1∑
j=m

H (Sn−1) −H (Sm−1)
) +A−1

 1
vα
A

( n−1∑
j=m

M (Sn−1) −M (Sm−1)
)

+A−1

 1
vα
A

( n−1∑
j=m

N (Sn−1) −N (Sm−1)
)

∣∣∣∣∣∣
≤ ℓ1 max

t∈J

∣∣∣∣∣∣A−1
{

1
vα
A

(
(Sn−1) − (Sm−1)

)} ∣∣∣∣∣∣ + ℓ2 max
t∈J

∣∣∣∣∣∣A−1
{

1
vα
A

(
(Sn−1) − (Sm−1)

)} ∣∣∣∣∣∣
+ ℓ3 max

t∈J

∣∣∣∣∣∣A−1
{

1
vα
A

(
(Sn−1) − (Sm−1)

)} ∣∣∣∣∣∣ = (ℓ1 + ℓ2 + ℓ3)tα−1

Γ(α)
∥Sn−1 −Sm−1∥ .

Choosing n = m + 1 then

∥Sm+1 −Sm∥ ≤ γ ∥Sm −Sm−1∥ ≤ γ
2 ∥Sm−1 −Sm−2∥ ≤ · · · · · · ≤ γ

m ∥S1 −S0∥ ,

with γ = (ℓ1+ℓ2+ℓ3)tα−1

Γ(α) , by using the following triangular inequality

∥Sn −Sm∥ ≤ ∥Sm −Sm+1∥ ≤ ∥Sm+1 −Sm+2∥ ≤ · · · · · · ≤ γ
m ∥S1 −S0∥

≤
(
γm + γm+1 + · · · + γn

)
∥S1 −S0∥

≤ γm
(
1 + γ + γ2 + · · · + γn−m−1

)
∥S1 −S0∥

≤ γm

(
1 − γn−m

1 − γ

)
∥u1∥ .
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Now by definition 0 < γ < 1, we have 1 − γn−m < 1, thus we have

∥Sn −Sm∥ ≤
γm

1 − γ
max

t∈J
∥u1∥ , (4.2)

and also as |u| < ∞ (u is bounded), therefore, ∥Sn −Sm∥ → 0, hence Sn is a Cauchy sequence in the
Banach space B, hence

∑n
j=0 u j is convergent. □

5. Applications of ADM

In this section, we consider two specific examples of time-fractional Korteweg-de Vries (TF-KdV)
and time-fractional modified Korteweg-de Vries (TF-mKdV) equations in the form of Eq (1.1) with
some initial conditions and apply ADM to find their approximate solutions.

Next we consider two examples one for time-fractional order KdV and the other for time-fractional
mKdV and use the propose method (ADM) to obtain an approximate solution.

Example 1. For m = 1 in Eq (3.1) we can take the following TF-KdV in Caputo’s form [39]

cDαt u + au
∂u
∂x
+ b
∂3u
∂x3 = 0, 0 < α ≤ 1, (5.1)

with initial condition of the form

u0 = u(x, 0) = A sech2(kx). (5.2)

The exact solution for α = 1 of Eq (5.1) [39]

u = A sech2(kx − 4k3bt), (5.3)

where A = 12k2b
a is amplitude and 4bk3 is the speed of the wave function. Applying ADM to Eq (5.1)

and decomposing the non-linear term uux by using the Adomian formula (3.7), we obtain the following
Adomian polynomials

A0 = u0u0x, A1 = u0u1x + u1u0x, A2 = u0u2x + u1u1x + u2u0x, A3 = u0u3x + u1u2x + u3u0x + u2u1x,

putting the above values in Eq (3.8) with assumption h0(x) = u0(x, 0) with h1(x) = h2(x) = h3(x) = 0,
we obtain the following single soliton solution for the TF-KdV Eq (5.1) in the form

u0 = h0(x), u1 =
tα

Γ(α + 1)
f1(x), u2 = −

t2α

Γ(2α + 1)
f2(x), u3 =

t3α

Γ(3α + 1)
f3(x),

where

f1(x) = ah0h0x + bh0xxx, f2(x) = a(h0 f1x + 2h0 f1h0x) + b f1xxx,

f3(x) = a
[
h0 f2x + 2h0 f2h0x +

Γ(2α + 1)
Γ(α + 1)

(2h0 f1 f1xh0x + f1h0x)
]
+ b f2xxx.
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The final solution in the series form up to O(4) is given by

U(x, t) = h0(x) +
tα

Γ(α + 1)
f1(x) −

t2α

Γ(2α + 1)
f2(x) +

t3α

Γ(3α + 1)
f3(x). (5.4)

For α = 1, we obtain

u(x, t) =
12k2b

a
sech2(kx − 4k3bt).

The ADM solution for different α are reported in Table 1, by considering k = 0.1, a = 2, b = 0.2, t = 1.
Figure 1(a,b) displays the zeroth and higher order solitary wave solutions (5.3) and (5.4) versus the

space variable x respectively for time-fractional KdV Eq (5.1) for small time of t. It infers that at
t > 0 the higher order solitary wave solution is significantly modified. The wave three-dimensional
profiles for solutions (5.3) and (5.4) in Figure 1(c,d) also reveal that variations in temporal variables
affect the amplitude and spatial extensions of the higher order wave solutions. We have plotted the
approximate solution (5.3) against t at x = 0.5 and 1 respectively, with variation in the time-fractional
index α [see Figure 2(a,b)]. A degree of enhancement in α reduces the spatial width of the solitary
waves. Thus, the time-fractional index leads to a reduction in the wave dispersion that in turn localises
the wave profile. The effect of the non-linearity coefficient “a” is shown in Figure 3(a). We see that
the amplitude of the solitary wave decreases regularly when the values of the non-linearity coefficient
are increasing. This definitely occurs for wave equations because the non-linearity coefficient has
an inverse proportionality with the solitary wave amplitude. On the other hand, the wave amplitude
is gradually increasing with the increasing values of the dispersion coefficient “b” in Figure 3(b).
The dispersive coefficient is proportional to the amplitude of a solitary wave. We have depicted the
higher order solution (5.4) for the TF-KdV Eq (5.1), verses x at time t = 3 (solid curve), at 3.5
(dashed curve), and at 4 (dotted curve) [see Figure 4(a)]. Obviously, the enhancement in t gives rise
to the pulse amplitude while increasing the spatial width. Moreover, the pulse shape solutions suffer
from oscillations for t > 0. The wave solution (5.4) presented in Figure 4(b) at different values of
the temporal index (α) reveals strengthening of the wave with wider spatial extension at large α. One
can see that the solitary wave solutions for the TF-KdV equation are observed. By employing an
Aboodh decomposition (ADM) technique and with the addition of t the Caputo operator for the solitary
excitations are derived in Eq (5.4). Importantly, the wave solution significantly changes in time. The
large amplitude electrostatic excitations in the auroral zone [27], associated with the intensified electric
field. These may be described by the solutions (5.3) and (5.4) for the TF-KdV equation of Exp.1. Our
results obtained in this paper are so important because the waves produced by the solutions of the
TF-KdV may have very high amplitudes. The amplitudes of these waves can be reduced by using
the fractional order of the wave equations. In other words, by taking the fractional order of the time
derivative term, a better analysis of the waves can be achieved.
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Table 1. Evaluation between approximate (U(x, t)) versus an exact solution (u(x,t) for
different values a=0.2, b=0.4, k=0.1, −10 ≤ x ≤ 10 and 0 ≤ t ≤ 1 Exp.1.

t U(α = 0.3) U(α = 0.5) U(α = 0.7) U(α = 0.9) U(α = 1) Exact MAE

x=-10

0.00 0.0050869 0.0050869 0.0050869 0.0050869 0.0050869 0.0050869
0.25 0.0050056 0.0050276 0.0050447 0.0050575 0.0050625 0.0050634
0.50 0.0049834 0.0049994 0.0050155 0.0050302 0.0050367 0.0050400 4.0619E-05
0.75 0.0049673 0.0049763 0.0049888 0.0050025 0.0050093 0.0050167
1.00 0.0049542 0.0049559 0.0049633 0.0049742 0.0049803 0.0049935

x=-5

0.00 0.030238 0.030238 0.030238 0.030238 0.030238 0.030238
0.25 0.029905 0.029984 0.030052 0.030105 0.030127 0.030128
0.50 0.029825 0.029877 0.029933 0.029989 0.030015 0.030018 1.2525E-04
0.75 0.02977 0.029793 0.029831 0.0050025 0.029902 0.029908
1.00 0.029726 0.029722 0.029737 0.0049742 0.029787 0.029798

x=0

0.00 0.0720000 0.0720000 0.0720000 0.0720000 0.0720000 0.0720000
0.25 0.071994 0.071997 0.071998 0.071999 0.0720000 0.0720000
0.50 0.07199 0.071993 0.071996 0.071998 0.0719987 0.0719987 6.2213E-06
0.75 0.071988 0.07199 0.071993 0.071995 0.071996 0.071996
1.00 0.071985 0.071987 0.071989 0.071992 0.071993 0.071993

x=5

0.00 0.030238 0.030238 0.030238 0.030238 0.030238 0.030238
0.25 0.030555 0.030483 0.03042 0.030369 0.030348 0.030349
0.50 0.030625 0.030582 00.030532 0.030481 0.030457 0.03046 1.0040E-04
0.75 0.030673 0.030657 0.030626 0.030587 0.030565 0.030571
1.00 0.030711 0.030719 0.03071 0.030687 0.030671 0.030682

x=10

0.00 0.0050869 0.0050869 0.0050869 0.0050869 0.0050869 0.0050869
0.25 0.005144 0.0051338 0.0050447 0.0051233 0.0051096 0.0051105
0.50 0.0051538 0.0051496 0.0050155 0.0051431 0.0051308 0.0051341 1.4575E-05
0.75 0.0051598 0.0051603 0.0049888 0.0051583 0.0051505 0.0051579
1.00 0.0051641 0.0051684 0.0049633 0.0051706 0.0051687 0.0051819
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Figure 1. In the top panel, (a) shows exact solution of Eq (5.3), while (b) shows comparison
of approximate (ADM) and exact solution Eq (5.4) k = 0.1, a = 0.2, b = 0.4, for small time
t = 0.2. The bottom panel (c,d) are corresponding surface 3D plots for both solutions against
the temporal variables (x, t) with parameters (α = 1 for exact, and 0.7, for the approximate
solution, with fixed k = 0.1, a = 2, b = 0.2, t = 1).
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Figure 2. The above plots show the dispersive behaviours of the solitary waves by varying
time and the fractional order α with fixed special variable (a) x = 0.5 and (b) x = 1 of the
exact (α = 1 star black) solution Eq (5.3) and approximate (α < 1 blue) solution Eq (5.4)
respectively.
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Figure 3. Solitary waves profiles for different values of (a) the non-linearity coefficient “a”
with b=0.4 and (b) the dispersive coefficient “b” with a=0.2, when the wave number k=0.1,
the fractional index α = 0.5 and t=0.5 of Eq (5.4).

Figure 4. Plots of the approximate solution for (a) different values of t with α = 0.9
(b) different values of α for larger time and the other parameters are a = 0.9, k = 0.5, b = 0.9
of Eq (5.4).

Example 2. For m = 2, a = 6, b = 1, the modified time-fractional KdV [26] in Caputo’s sense is given
by

CDαt v + 6 v2 ∂ v
∂x +

∂3 v
∂x3 = 0, 0 < α ≤ 1, (5.5)

with

v0 = v(x, 0) =
√

c sech2(k +
√

cx). (5.6)

When α = 1, Eq (5.5) gives [26]

v(x, t) =
√

c sech(k +
√

cx − ct). (5.7)
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Applying the ADM to Eq (5.5) and decompose the non-linear term v2vx in Eq (5.5) by using the
Adomian formula (3.7), we obtain

A0 = v2
0v0x, A1 = v2

0v1x + v2
1v0x, A2 = v2

0v2x + v2
1v1x + v2

2v0x, A3 = v2
0v3x + v2

1v2x + v2
3v0x + v2

2v1x.

Putting a = 6 and b = 1 in Eq (3.8) and assume that g0(x) = v(x, 0) with g1(x) = g2(x) = g3(x), we
obtain

v0 = g0(x), v1 =
tα

Γ(α + 1)
q1(x), v2 = −

t2α

Γ(2α + 1)
q2(x), v3 =

t3α

Γ(3α + 1)
q3(x),

where

q1(x) = 6g2
0g0x + g0xxx, q2(x) = 6(g2

0q1x + 2g0q1g0x) + q1xxx,

q3(x) = 6
[
g2

0q2x + 2g0q2g0x +
Γ(2α + 1)
Γ(α + 1)

(2g0q1q1xg0x + q2
1g0x)

]
+ q2xxx.

The solution up to O(4) can be written as

V(x, t) = g0(x) +
tα

Γ(α + 1)
q1(x) −

t2α

Γ(2α + 1)
q2(x) +

t3α

Γ(3α + 1)
q3(x). (5.8)

For α = 1 we found the following exact solution

v(x, t) =
√

c sech(k +
√

cx − ct).

We have displayed the zeroth (higher) order solitary wave solutions (5.7) and (5.8) in Figure 5(a,b)
respectively, for the modified time-fractional KdV Eq (5.5) verses x for small t. Notice that the wave
solution of the TF-mKdV equation suffers only a relatively modest steeping effect with a reduction in
the wave dispersion. Moreover, at t > 0 the higher-order solution illustrates noticeable modifications
in the wave profiles. The three dimensional profiles Figure 5(c,d) for the time fractional (exact and
approximate) solutions also confirm that both the solutions are quite similar. Figure 6(a,b) display the
solution (5.8) at x = 0.5 and 1 respectively with variation in α. Contrary to the TF-KdV solution, the
wave solution for TF-mKdV admits reduced wave dispersion at t > 0. We observed that, the
dispersive approximate solution (α < 1 the blue curves) approaching to the exact solution (α = 1,
black curve) when then α values are approaching to 1. In Figure 7(a), we depicted the approximate
(ADM) solution against the special variable x by changing the wave speed “c=0.1 (solid curve), 0.2
(dashed curve), and 0.3 (dotted curve)”. We observed that when the speed “c” is increasing, the wave
amplitude is increasing while its width is decreasing, which shows that the amplitude is directly
proportional to the wave speed while the width of the wave is inversely related to the wave speed.
Similarly, in Figure 7(b), we displayed the approximate solution against “x” by changing the wave
number “k=0.5 (solid curve), 1 (dashed curve), and 1.5 (dotted curve)”. We see that, for different
values of the wave number and equal amplitudes, wave profiles are obtained. The wave solution (5.5)
for TF-mKdV in Figure 8(a) shows at different times that the solitary waves suffer from oscillation
due to the external perturbations. It also shows that the solitary solution for the TF-mKdV is relatively
less stable against the perturbations. Moreover, the increase in t and α modify the amplitude and
width of the wave. Variation of the α value for the approximate solution is shown in Figure 8(b)
against x. We observed from the Figure 8(a,b) when the temporal variable (t) and the fractional order
α increasing the amplitudes of the wave profile getting larger values.
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of exact and approximate solution (ADM) of Eq (5.8). The bottom panel (c,d) are the
corresponding surface 3D plots against the temporal variables (x, t) with parameters (α = 1
for exact, and 0.7, for the approximate solution, with fixed k = 0, c = 1, t = 0.2).
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the wave number “k”, with c=0.2 when the fractional index α = 0.7 and t=0.5 of Eq (5.8).
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Figure 8. Plots of the approximate solution for (a) different values of t with α = 0.9
(b) different values of α for larger time values and other parameters are c = 0.6, k = 0 of
Eq (5.8).

The mean absolute error (MAE) is a statistic that calculates the variance in errors amongst
matching interpretations representing identical singularities. The relationships between an exact and
an approximate solution, future time against beginning time, and one measuring method versus
another quantity technique are all examples of y versus x. The MAE can be computed as

MAE =
1
n

n∑
i=1

|yi − xi|, (5.9)

where, xi is the expected value and yi is the real value of the system. The following figures are obtained
from the error analysis in the Tables 1–4.
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Table 2. Comparison between the approximate solution (V(x, t)), versus an exact solution
(v(x, t)) for −10 ≤ x ≤ 10 and 0 ≤ t ≤ 1 with k=0.5 and c=0.82 of Exp.2.

t V(α = 0.3) V(α = 0.5) V(α = 0.7) V(α = 0.9) V(α = 1) Exact MAE

x=-10

0.00 0.010216 0.010216 0.010216 0.010216 0.010216 0.010216
0.25 0.0095819 0.00972 0.0098439 0.0099468 0.0099898 0.0097175
0.50 0.0094455 0.0095258 0.0096209 0.0097203 0.0097689 0.0092437 3.6330E-04
0.75 0.0093537 0.0093809 0.0094359 0.0095107 0.0095529 0.008793
1.00 0.0092825 0.0092616 0.0092729 0.0093128 0.0093417 0.0083642

x=-5

0.00 0.094515 0.094515 0.094515 0.094515 0.094515 0.094515
0.25 0.088823 0.090001 0.091122 0.092066 0.09246 0.090002
0.50 0.087702 0.088282 0.089091 0.08999 0.090436 0.085696 3.5E-03
0.75 0.086993 0.087053 0.087436 0.08807 0.088455 0.081589
1.00 0.086476 0.08609 0.086022 0.086289 0.08653 0.077671

x=0

0.00 0.447210 0.447210 0.447210 0.447210 0.447210 0.447210
0.25 0.445160 0.446220 0.446770 0.447030 0.44710 0.446660
0.50 0.444000 0.445150 0.446010 0.446560 0.446740 0.444990 1.46E-03
0.75 0.443020 0.444030 0.445030 0.445830 0.446130 0.442230
1.00 0.442140 0.442860 0.443860 0.444830 0.445250 0.438420

x=5

0.00 0.094515 0.094515 0.094515 0.094515 0.094515 0.094515
0.25 0.099243 0.099243 0.099243 0.099243 0.099243 0.030349
0.50 0.104190 0.104190 0.10419 0.030481 0.10419 0.104190 4.446E-03
0.75 0.109380 0.109380 0.109380 0.0305870 0.10938 0.109380
1.00 0.114800 0.114800 0.114800 0.0306870 0.1148 0.030682

x=10

0.00 0.010216 0.010216 0.010216 0.010216 0.010216 0.010216
0.25 0.010928 0.010752 0.010606 0.010492 0.010447 0.010739
0.50 0.011106 0.01117 0.011083 0.010978 0.010683 0.01129 4.3146E-04
0.75 0.01133 0.011332 0.011289 0.011215 0.010924 0.011868
1.00 0.114800 0.11480 0.114800 0.030687 0.011171 0.012477
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Table 3. Comparison of exact solution (u(x,t)) with approximate (U(x,t)) solution for α =
0.5, a=0.2, b=0.4, and k=1 of Exp.1.

x t ξ=kx − 4bk3t Exact solution ADM Solution Error

-50 0.00 -49.9434 -0.35995 -0.35995 2.5009×10−08

-40 0.25 -39.6454 -0.35965 -0.35965 1.9820×10−07

-30 0.50 -29.6453 -0.35745 -0.35746 2.1868×10−06

-20 0.75 -19.6423 -0.34165 -0.34170 5.1926×10−05

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

20 0.25 20.3634 0.11987 0.11988 -1.6363×10−05

30 0.50 30.3653 0.12000 0.12000 -3.3767×10−07

40 0.75 40.3634 0.12000 0.12000 -6.2851×10−09

50 1.00 50.3643 0.12000 0.12000 -1.1537×10−10

Table 4. Comparison of exact (v(x,t)) solution with approximate (V(x,t) solution for k=0.5,
and c=0.82 of Exp.2.

x t ξ=k +
√

cx − ct Exact solution ADM Solution Error

-50 0.00 -45.5969 -0.35995 -0.35995 -2.8783×10−07

-40 0.25 -36.5415 -0.35966 -0.35966 -2.1145×10−06

-30 0.50 -27.4862 -0.35751 -0.35750 -1.4960×10−05

-20 0.75 -18.4308 -0.34207 -0.34199 -7.7286×10−05

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

20 0.25 17.7908 0.11986 0.11987 -1.3770×10−05

30 0.50 26.8462 0.12000 0.12000 -2.8188×10−07

40 0.75 35.9015 0.12000 0.12000 -5.2413×10−09

50 1.00 44.9569 0.12000 0.12000 -9.6194×10−11

The accuracy and effectiveness of the ADM are confirmed by using the error analysis given in
Tables 1 and 2 followed by its MAE Figure 9(a,b) respectively. The other two Tables 3 and 4 confirm
the errors that occur between the exact and approximate solution of the model. Their plots
Figure 10(a,b) are shown, which are the graphical conformations for the error analysis between the
two solutions (exact and approximate).
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Figure 9. (a,b) 3D plots represent the mean absolute error (MAE) for different values of x
and t for Tables 1 and 2 respectively.

Figure 10. (a,b) 3D plots represent the mean absolute error (MAE) for different values of x
and t for Tables 3 and 4 respectively.

6. Conclusions

We consider time-fractional Korteweg-de Vries (TF-KdV) and time-fractional modified
Korteweg-de Vries (TF-mKdV) equations for solitary wave solutions with the help of an analytical
method called the “Aboodh decomposition method (ADM).” The proposed method is a combination
of the Aboodh transform and the decomposition method, which is a very authentic and valuable
method for solving fractional-order non-linear problems. The approximate solution obtained with the
help of ADM is compared with the exact solution of the models to verify the efficiency of the method.
We observed from the graphical analysis in the manuscript the time-fractional order α can modify the
wave profiles in such a way that when α values is increasing the amplitudes of the wave is reducing
which is very much important to study the small amplitude’s characteristics of such wave equations.
The effect of the nonlinearity coefficient “a” and the dispersive coefficient “b” in Exp.1 are also
discussed, form the graphical analysis we have shown that both of these coefficients have significant
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affect on the wave amplitudes as well as its widths. We have studied the higher-order series solutions
(up to fourth order) for time-fractional KdV and modified KdV equations with the help of the ADM.
The convergence analysis determined that the obtained results are similar to the exact solutions of the
models. The uniqueness results confirmed that ADM is an effective and systematic scheme for
solving non-linear dynamical problems. The analytical and numerical solutions are plotted by
marginal changes in parameters x, t and α. It is observed that a significant variation in the index
values causes a large variation in the amplitude of the wave profile. For small-time t, the series
solutions coincide with the exact solutions of the models, and the solutions are stable. However, for
large-time t the results show that the amplitudes of the wave profiles no longer remain constant at the
given parameters. The results are tabulated for altered x, t and α. It is observed that mean absolute
error (MAE) is decreasing for small-time and large values of α (fractional order). This means that for
taking α values nearest to 1 (exact), the MAE values decrease, which means that the obtained results
coincide with the solution of the considered models.

7. Future work

We studied the analytical solution of the TF-KdV and TF-mKdV equations with the help of ADM.
The effectiveness of the proposed method is studied with the help of graphical analysis and some
numerical error tables. The method is also essential for K(m, n) equation obtained in [40]. Here, the
author shows that K(m, n) equations are only Lax integrable for specific values of the
parameters (α,m, n). For the integrable instances, nontrivial prolongation structures and Lax pairings
are provided.
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