Research article Special Issues

Compactness and connectedness via the class of soft somewhat open sets

  • Received: 05 September 2022 Revised: 24 September 2022 Accepted: 28 September 2022 Published: 12 October 2022
  • MSC : 54A40, 03E72, 54D05, 54D20, 54D30

  • This paper is devoted to study the concepts of compactness, Lindelöfness and connectedness via the class of soft somewhat open sets which represents one of the generalizations of soft open sets. Beside investigation the main properties of these concepts, it is demonstrated, with the help of examples, that some properties of their counterparts via soft open sets are invalid. Also, the relationships between these concepts and their counterparts defined in classical topology (which is studied herein under the name of parametric topology) are discussed in detail. Moreover, we provide the sufficient conditions that guarantee the equivalence between them. In this regard, it is proved that all introduced types of soft compact and Lindelöf spaces are transmitted to all parametric topologies without imposing any conditions, whereas the converse holds true under the conditions of a full soft topology and a finite (countable) set of parameters. These characterizations represent a unique behavior of these spaces compared to the other types defined by celebrated generalizations of soft open sets. Also, there is no relationship associating soft $ sw $-connectedness with its counterparts via parametric topologies. We successfully describe soft $ sw $-disconnectedness using soft open sets instead of soft $ sw $-open sets and consequently prove that the concepts of soft $ sw $-connected and soft hyperconnected spaces are identical. In conclusion, the obtained results show that the framework given in this manuscript enriches and generalizes the previous works, and has a good application prospect.

    Citation: Tareq M. Al-shami, Abdelwaheb Mhemdi, Radwan Abu-Gdairi, Mohammed E. El-Shafei. Compactness and connectedness via the class of soft somewhat open sets[J]. AIMS Mathematics, 2023, 8(1): 815-840. doi: 10.3934/math.2023040

    Related Papers:

  • This paper is devoted to study the concepts of compactness, Lindelöfness and connectedness via the class of soft somewhat open sets which represents one of the generalizations of soft open sets. Beside investigation the main properties of these concepts, it is demonstrated, with the help of examples, that some properties of their counterparts via soft open sets are invalid. Also, the relationships between these concepts and their counterparts defined in classical topology (which is studied herein under the name of parametric topology) are discussed in detail. Moreover, we provide the sufficient conditions that guarantee the equivalence between them. In this regard, it is proved that all introduced types of soft compact and Lindelöf spaces are transmitted to all parametric topologies without imposing any conditions, whereas the converse holds true under the conditions of a full soft topology and a finite (countable) set of parameters. These characterizations represent a unique behavior of these spaces compared to the other types defined by celebrated generalizations of soft open sets. Also, there is no relationship associating soft $ sw $-connectedness with its counterparts via parametric topologies. We successfully describe soft $ sw $-disconnectedness using soft open sets instead of soft $ sw $-open sets and consequently prove that the concepts of soft $ sw $-connected and soft hyperconnected spaces are identical. In conclusion, the obtained results show that the framework given in this manuscript enriches and generalizes the previous works, and has a good application prospect.



    加载中


    [1] J. C. R. Alcantud, Soft open bases and a novel construction of soft topologies from bases for topologies, Mathematics, 8 (2020), 672. https://doi.org/10.3390/math8050672 doi: 10.3390/math8050672
    [2] J. C. R. Alcantud, Relationship between fuzzy soft and soft topologies, Int. J. Fuzzy Syst., 24 (2022), 1653–1668. https://doi.org/10.1007/s40815-021-01225-4 doi: 10.1007/s40815-021-01225-4
    [3] S. Al-Ghour, Boolean algebra of soft $Q$-sets in soft topological spaces, Appl. Comput. Intell. Soft Comput., 2022 (2022). https://doi.org/10.1155/2022/5200590
    [4] S. Al-Ghour, Soft $\omega$-regular open sets and soft nearly Lindelöfness, Heliyon, 8 (2022), e09954. https://doi.org/10.1016/j.heliyon.2022.e09954 doi: 10.1016/j.heliyon.2022.e09954
    [5] S. Al-Ghour, Z. A. Ameen, Maximal soft compact and maximal soft connected topologies, Appl. Comput. Intell. S., 2022 (2022), 9860015. https://doi.org/10.1155/2022/9860015 doi: 10.1155/2022/9860015
    [6] M. I. Ali, F. Feng, X. Y. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009
    [7] H. Al-jarrah, A. Rawshdeh, T. M. Al-shami, On soft compact and soft Lindelöf spaces via soft regular closed sets, Afr. Mat., 33 (2022). https://doi.org/10.1007/s13370-021-00952-z
    [8] T. M. Al-shami, Compactness on soft topological ordered spaces and its application on the information system, J. Math., 2021 (2021), 6699092. https://doi.org/10.1155/2021/6699092 doi: 10.1155/2021/6699092
    [9] T. M. Al-shami, Homeomorphism and quotient mappings in infra soft topological spaces, J. Math., 2021 (2021), 3388288. https://doi.org/10.1155/2021/3388288 doi: 10.1155/2021/3388288
    [10] T. M. Al-shami, Improvement of the approximations and accuracy measure of a rough set using somewhere dense sets, Soft Comput., 25 (2021), 14449–14460. https://doi.org/10.1007/s00500-021-06358-0 doi: 10.1007/s00500-021-06358-0
    [11] T. M. Al-shami, Topological approach to generate new rough set models, Complex Intell. Syst., 8 (2022), 4101–4113. https://doi.org/10.1007/s40747-022-00704-x doi: 10.1007/s40747-022-00704-x
    [12] T. M. Al-shami, On soft separation axioms and their applications on decision-making problem, Math. Probl. Eng., 2021 (2021), 8876978. https://doi.org/10.1155/2021/8876978 doi: 10.1155/2021/8876978
    [13] T. M. Al-shami, Soft somewhat open sets: Soft separation axioms and medical application to nutrition, Comput. Appl. Math., 41 (2022). https://doi.org/10.1007/s40314-022-01919-x
    [14] T. M. Al-shami, M. E. El-Shafei, M. Abo-Elhamayel, Almost soft compact and approximately soft Lindelöf spaces, J. Taibah Univ. Sci., 12 (2018), 620–630. https://doi.org/10.1080/16583655.2018.1513701 doi: 10.1080/16583655.2018.1513701
    [15] T. M. Al-shami, Z. A. Ameen, A. A. Azzam, M. E. El-Shafei, Soft separation axioms via soft topological operators, AIMS Math., 7 (2022), 15107–15119. https://doi.org/10.3934/math.2022828 doi: 10.3934/math.2022828
    [16] T. M. Al-shami, A. Mhemdi, A. Rawshdeh, H. Al-jarrah, Soft version of compact and Lindelöf spaces using soft somewhere dense set, AIMS Math., 6 (2021), 8064–8077. https://doi.org/10.3934/math.2021468 doi: 10.3934/math.2021468
    [17] T. M. Al-shami, L. D. R. Kočinac, The equivalence between the enriched and extended soft topologies, Appl. Comput. Math., 18 (2019), 149–162.
    [18] T. M. Al-shami, L. D. R. Kočinac, Nearly soft Menger spaces, J. Math., 2020 (2020), 3807418. https://doi.org/10.1155/2020/3807418
    [19] T. M. Al-shami, L. D. R. Kočinac, Almost soft Menger and weakly soft Menger spaces, Appl. Comput. Math., 21 (2022), 35–51.
    [20] S. Alzahrani, A. A. Nasef, N. Youns, A. I. EL-Maghrabi, M. S. Badr, Soft topological approaches via soft $\gamma$-open sets, AIMS Math., 7 (2022), 12144–12153. https://doi.org/10.3934/math.2022675 doi: 10.3934/math.2022675
    [21] Z. A. Ameen, T. M. Al-shami, A. Mhemdi, M. E. El-Shafei, The role of soft $\theta$-Topological operators in characterizing various soft separation axioms, J. Math., 2022 (2022), 9073944.
    [22] Z. A. Ameen, B. A. Asaad, T. M. Al-shami, Soft somewhat continuous and soft somewhat open functions, TWMS J. App. Eng. Math., 2022, In press. https://doi.org/10.48550/arXiv.2112.15201
    [23] B. A. Asaad, Results on soft extremally disconnectedness of soft topological spaces, J. Math. Comput. Sci., 17 (2017), 448–464. https://doi.org/10.22436/jmcs.017.04.02 doi: 10.22436/jmcs.017.04.02
    [24] B. A. Asaad, T. M. Al-shami, A. Mhemdi, Bioperators on soft topological spaces, AIMS Math., 6 (2021), 12471–12490. https://doi.org/10.3934/math.2021720 doi: 10.3934/math.2021720
    [25] A. Aygünoǧlu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Appl., 21 (2012), 113–119. https://doi.org/10.1007/s00521-011-0722-3 doi: 10.1007/s00521-011-0722-3
    [26] A. A. Azzam, Z. A. Ameen, T. M. Al-shami, M. E. El-Shafei, Generating soft topologies via soft set operators, Symmetry, 14 (2022), 914. https://doi.org/10.3390/sym14050914 doi: 10.3390/sym14050914
    [27] N. Çağman, S. Karataş, S. Enginoglu, Soft topology, Comput. Math. Appl., 62 (2011), 351–358. https://doi.org/10.1016/j.camwa.2011.05.016
    [28] M. E. El-Shafei, M. Abo-Elhamayel, T. M. Al-shami, Partial soft separation axioms and soft compact spaces, Filomat, 32 (2018), 4755–4771. https://doi.org/10.2298/FIL1813755E doi: 10.2298/FIL1813755E
    [29] F. Feng, C. X. Li, B. Davvaz, M. I. Ali, Soft sets combined with fuzzy sets and rough sets: A tentative approach, Soft Comput., 14 (2010), 899–911. https://doi.org/10.1007/s00500-009-0465-6 doi: 10.1007/s00500-009-0465-6
    [30] T. Hida, A comprasion of two formulations of soft compactness, Ann. Fuzzy Math. Inform., 8 (2014), 511–524.
    [31] S. J. John, Soft sets: Theory and applications, Springer Cham, 2021, https://doi.org/10.1007/978-3-030-57654-7
    [32] A. Kharal, B. Ahmad, Mappings on soft classes, New Math. Nat. Comput., 7 (2011), 471–481. https://doi.org/10.1142/S1793005711002025
    [33] L. D. R. Kočinac, T. M. Al-shami, V. Çetkin, Selection principles in the context of soft sets: Menger spaces, Soft Comput., 25 (2021), 12693–12702. https://doi.org/10.1007/s00500-021-06069-6 doi: 10.1007/s00500-021-06069-6
    [34] P. K. Maji, R. Biswas, R. Roy, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X doi: 10.1016/S0898-1221(02)00216-X
    [35] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6
    [36] W. K. Min, A note on soft topological spaces, Comput. Math. Appl., 62 (2011), 3524–3528. https://doi.org/10.1016/j.camwa.2011.08.068 doi: 10.1016/j.camwa.2011.08.068
    [37] D. Molodtsov, Soft set theory–-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [38] S. Nazmul, S. K. Samanta, Neighbourhood properties of soft topological spaces, Ann. Fuzzy Math. Inform., 6 (2013), 1–15. https://doi.org/10.1186/2251-7456-6-66 doi: 10.1186/2251-7456-6-66
    [39] K. Qin, Z. Hong, On soft equality, J. Comput. Appl. Math., 234 (2010), 1347–1355. https://doi.org/10.1016/j.cam.2010.02.028
    [40] A. A. Rawshdeh, H. Al-jarrah, T. M. Al-shami, Soft expandable spaces, Filomat, 2022, In press.
    [41] S. Nazmul, S. K. Samanta, Some properties of soft topologies and group soft topologies, Ann. Fuzzy Math. Inform., 8 (2014), 645–661. https://doi.org/10.5120/ijca2017913471 doi: 10.5120/ijca2017913471
    [42] E. Peyghan, B. Samadi, A. Tayebi, About soft topological paces, J. New Results Sci., 2 (2013), 60–75.
    [43] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006
    [44] A. Singh, N. S. Noorie, Remarks on soft axioms, Ann. Fuzzy Math. Inform., 14 (2017), 503–513. https://doi.org/10.30948/afmi.2017.14.5.503
    [45] S. Saleh, R. Abu-Gdairi, T. M. Al-shami, M. S. Abdo, On categorical property of fuzzy soft topological spaces, Appl. Math. Inform. Sci., 16 (2022), 635–641. https://doi.org/10.18576/amis/160417 doi: 10.18576/amis/160417
    [46] H. L. Yang, X. Liao, S. G. Li, On soft continuous mappings and soft connectedness of soft topological spaces, Hacet. J. Math. Stat., 44 (2015), 385–398.
    [47] I. Zorlutuna, M. Akdag, W. K. Min, S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. Inform., 3 (2012), 171–185.
    [48] I. Zorlutuna, H. Çakir, On continuity of soft mappings, Appl. Math. Inform. Sci., 9 (2015), 403–409. https://doi.org/10.12785/amis/090147 doi: 10.12785/amis/090147
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1557) PDF downloads(156) Cited by(18)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog