Citation: Aruna P. Wanninayake, Benjamin C. Church, Nidal Abu-Zahra. Effect of ZnO nanoparticles on the power conversion efficiency of organic photovoltaic devices synthesized with CuO nanoparticles[J]. AIMS Materials Science, 2016, 3(3): 927-937. doi: 10.3934/matersci.2016.3.927
[1] | Dang MT, Hirsch L, Wantz G (2011) Best Seller in Polymer Photovoltaic Research. Adv Mater 23: 3597–3602. |
[2] | Wang PH, Lee HF, Huang YC, et al. (2014) The Proton Dissociation Constant of Additive Effect on Self-Assembly of Poly(3-hexyl-thiophene) for Organic Solar Cells, Electron. Mater Lett 10: 767–773. doi: 10.1007/s13391-013-3274-0 |
[3] | Zhang F, Mammo W, Andersson LM, et al. (2006) Low-Bandgap Alternating Fluorene Copolymer/Methanofullerene Heterojunctions in Efficient Near-Infrared Polymer Solar Cells. Adv Mater 18: 2169–2173. doi: 10.1002/adma.200600124 |
[4] | Huang Y, Guo X, Liu F, et al. (2012) Improving the Ordering and Photovoltaic Properties by Extending–Conjugated Area of Electron-Donating Units in Polymers with D-A Structure. Adv Mater 24: 3383–3389. |
[5] | Wang E, Tao L, Wang Z, et al. (2010) An Easily Synthesized Blue Polymer for High-Performance Polymer Solar Cells. Adv Mater 22: 5240–5244. |
[6] | Reese M.O., Nardes A.M., Rupert B.L., et al. (2010) Photoinduced Degradation of Polymer and Polymer–Fullerene Active Layers: Experiment and Theory. Adv Funct Mater 20: 3476–3483. |
[7] | He Z, Mei Z, Su S, et al. (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photon 6: 591–595. |
[8] | Shao S, Liu J, Zhang B, et al. (2011) Enhanced stability of zinc oxide-based hybrid polymer solar cells by manipulating ultraviolet light distribution in the active layer. Appl Phys Lett 98: 203304–203307. |
[9] | Huang J, Yin Z, Zheng Q (2011) Applications of ZnO in organic and hybrid solar cells. Energy Environ Sci 4: 3861–3877. doi: 10.1039/c1ee01873f |
[10] | Lin Y-Y, Chu T-H, Li S-S, et al. (2009) Interfacial Nanostructuring on the Performance of Polymer/TiO2 Nanorod Bulk Heterojunction Solar Cells. J Am Chem Soc 131: 3644–3649. |
[11] | Sekine N, Chou CH, Kwan WL, et al. (2009) ZnO nano-ridge structure and its application in inverted polymer solar cell. Org Electron 10: 1473–1477. doi: 10.1016/j.orgel.2009.08.011 |
[12] | Oh SA, Heo SJ, Yang JS, et al. (2013) Effects of ZnO Nanoparticles on P3HT:PCBM Organic Solar Cells with DMF-Modulated PEDOT:PSS Buffer Layers. ACS Appl Mater Interfaces 5: 11530–11534. doi: 10.1021/am4046475 |
[13] | Wu Z, Song T, Xia Z, et al. (2013) Enhanced performance of polymer solar cell with ZnO nanoparticle electron transporting layer passivated by in situ cross-linked three-dimensional polymer network. Nanotechnology 24: 484012. |
[14] | Zhu F, Chen X, Lu Z, et al. (2014) Efficiency Enhancement of Inverted Polymer Solar Cells Using Ionic Liquid-functionalized Carbon Nanoparticles-modified ZnO as Electron Selective Layer. Nano-Micro Lett 6: 24–29. |
[15] | Gao HL, Zhang XG, Meng JH, et al. (2015) Enhanced efficiency in polymer solar cells via hydrogen plasma treatment of ZnO electron transport layers. J Mater Chem A 3: 3719–3725. doi: 10.1039/C4TA05541A |
[16] | Iwan A, Palewicz M, Tazbir I, et al. (2016) Influence of ZnO:Al, MoO3 and PEDOT:PSS on efficiency in standard and inverted polymer solar cells based on polyazomethine and poly(3-hexylthiophene). Electrochimica Acta 191: 784–794. doi: 10.1016/j.electacta.2016.01.107 |
[17] | Wanninayake A, Gunashekar S, Li S, et al. (2015) Performance enhancement of polymer solar cells using copper oxide nanoparticles. Semicond Sci Technol 30: 064004. |
[18] | Wanninayake AP, Gunashekar S, Li S, et al. (2015) CuO Nanoparticles Based Bulk Heterojunction Solar Cells: Investigations on Morphology and Performance. J Sol Energy Eng 137: 031016. |
[19] | Kidowaki H, Oku T, Akiyama T (2012) Fabrication and characterization of CuO/ZnO solar cells. J Phys Conf Ser 352: 012022. |
[20] | Ikram M, Murrayc R, Imran M, et al. (2016) Enhanced performance of P3HT/ (PCBM: ZnO: TiO2) blend based hybrid organic solar cells. Mater Res Bull 75: 35–40. doi: 10.1016/j.materresbull.2015.11.031 |
[21] | Ikram M, Murray R, Hussain A, et al. (2014) Hybrid organic solar cells using both ZnO and PCBM as electron acceptor materials. Mater Sci Eng B 189: 64–69. doi: 10.1016/j.mseb.2014.08.005 |
[22] | Qian L, Yang J, Zhou R, et al. (2011) Hybrid polymer-CdSe solar cells with a ZnO nanoparticle buffer layer for improved efficiency and lifetime. J Mater Chem 21: 3814–3817. doi: 10.1039/c0jm03799k |
[23] | Wang M, Wang X (2008) P3HT-ZnO bulk-heterojunction solar cell sensitized by a perylene derivative. Sol Energy Mater Sol Cells 92: 766–771. doi: 10.1016/j.solmat.2008.01.015 |
[24] | Beek WJE, Wienk MM, Janssen RAJ (2006) Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles. Adv Funct Mater 16: 1112–1116. doi: 10.1002/adfm.200500573 |
[25] | Ochiai S, Kumar P, Santhakumar K, et al. (2013) Examining the Effect of Additives and Thicknesses of Hole Transport Layer for Efficient Organic Solar Cell Devices. Electron Mater Lett 9: 399–403. |
[26] | Kim JY, Kim SH, Lee HH, et al. (2006) New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer. Adv Mater 18: 572–576. doi: 10.1002/adma.200501825 |
[27] | Roest L, Kelly JJ, Vanmaekelbergh D, et al. (2002) Staircase in the Electron Mobility of a ZnO Quantum Dot Assembly due to Shell Filling. Phys Rev Lett 89: 036801. |
[28] | Ikram M, Ali S, Murray R, et al. (2015) Influence of fullerene derivative replacement with TiO2nanoparticles in organic bulk heterojunction solar cells. Curr Appl Phys 15: 48–54. doi: 10.1016/j.cap.2014.10.026 |
[29] | Djara V, Bernède J (2005) Effect of the interface morphology on the fill factor of plastic solar cells. Thin Solid Films 493: 273–277. doi: 10.1016/j.tsf.2005.06.098 |
[30] | Oo T, Mathews N, Tam T, et al. (2010) Investigation of photophysical, morphological and photovoltaic behavior of poly (p-phenylene vinylene) based polymer/oligomer blends. Thin Solid Films 518: 5292–5299. doi: 10.1016/j.tsf.2010.04.115 |
[31] | Ji CH, Oh IS, Oh SY (2015) Improving the performance of organic solar cells using an electron transport layer of B4PyMPM self-assembled nanostructures. Electron Mater Lett 11: 795–800. |
[32] | Shahini A, Abbasian K (2012) Charge carriers and excitons transport in an organic solar cell-theory and simulation. Electron Mater Lett 8: 435–443. doi: 10.1007/s13391-012-2021-2 |