In this paper, we introduce weighted Morrey-Herz spaces M˙Kα,λq,p(⋅)(w p(⋅)) with variable exponent p(⋅). Then we prove the boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and weighted Morrey-Herz spaces with variable exponents.
Citation: Yueping Zhu, Yan Tang, Lixin Jiang. Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents[J]. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652
[1] | Yanqi Yang, Qi Wu . Vector valued bilinear Calderón-Zygmund operators with kernels of Dini's type in variable exponents Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 25688-25713. doi: 10.3934/math.20231310 |
[2] | Bo Xu . Bilinear $ \theta $-type Calderón-Zygmund operators and its commutators on generalized variable exponent Morrey spaces. AIMS Mathematics, 2022, 7(7): 12123-12143. doi: 10.3934/math.2022674 |
[3] | Dazhao Chen . Endpoint estimates for multilinear fractional singular integral operators on Herz and Herz type Hardy spaces. AIMS Mathematics, 2021, 6(5): 4989-4999. doi: 10.3934/math.2021293 |
[4] | Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352 |
[5] | Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051 |
[6] | Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007 |
[7] | Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888 |
[8] | Shuhui Yang, Yan Lin . Multilinear strongly singular integral operators with generalized kernels and applications. AIMS Mathematics, 2021, 6(12): 13533-13551. doi: 10.3934/math.2021786 |
[9] | Dazhao Chen . Weighted boundedness for Toeplitz type operator related to singular integral transform with variable Calderón-Zygmund kernel. AIMS Mathematics, 2021, 6(1): 688-697. doi: 10.3934/math.2021041 |
[10] | Jing Liu, Kui Li . Compactness for commutators of Calderón-Zygmund singular integral on weighted Morrey spaces. AIMS Mathematics, 2024, 9(2): 3483-3504. doi: 10.3934/math.2024171 |
In this paper, we introduce weighted Morrey-Herz spaces M˙Kα,λq,p(⋅)(w p(⋅)) with variable exponent p(⋅). Then we prove the boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and weighted Morrey-Herz spaces with variable exponents.
In last decades there have been many works on the boundedness for the multilinear singular integral operators in the product of Lebesgue spaces, Morrey type spaces and Herz spaces etc. Let T be a multilinear singular integral operator which is initially defined on the m-fold product of the Schwartz space S(Rn) with values in the space of tempered distributions S′(Rn) such that for x∉∩mi=1suppfi,
T(f1,⋯,fm)(x)=∫(Rn)mK(x,y1,⋯,ym)m∏i=1fi(yi)dy1⋯dym, | (1.1) |
where f1,⋯,fm are in L∞c(Rn), the space of compactly supported bounded functions. The kernel K is a function in (Rn)m+1 away from the diagonal y0=y1=⋯=ym and satisfies the standard estimates
|K(x,y1,⋯,ym)|≤C(|x−y1|+⋯+|x−ym|)−mn, | (1.2) |
and for some ε>0,
|K(x,y1,⋯,ym)−K(x′,y1,⋯,ym)|≤C|x−x′|ε(|x−y1|+⋯+|x−ym|)mn+ε, | (1.3) |
provided that |x−x′|≤12max{|x−y1|,⋯,|x−ym|} and
|K(x,y1,⋯,yi,⋯,ym)−K(x,y1,⋯,y′i,⋯,ym)|≤C|yi−y′i|ε(|x−y1|+⋯+|x−ym|)mn+ε, | (1.4) |
provided that |yi−y′i|≤12max{|x−y1|,⋯,|x−ym|} for all 1≤i≤m.
Such kernels are called Calderón-Zygmund kernel and the collection of such functions is denoted by m−CZK(C,ε) in [1]. Let T be as in (1.1) with an m−CZK(C,ε) kernel. If T is bounded from L p1×⋯×L pm to Lp for some 1<p1,⋯,pm<∞ and 1p=1p1+⋯+1pm, then we say that T is an m−linear Calderón-Zygmund operator. If T is an m−linear Calderón-Zygmund operator, Grafakos and Torres in [1] proved its boundedness from Lq1×⋯×Lqm to Lq for all 1<q1,⋯,qm<∞ and 1q=1q1+⋯+1qm and from L1×⋯×L1 to L1/m,∞. Curbera et al. in [2] obtained its weighted inequalities. Pˊerez and Torres in [3] presented a new proof of a weighted norm inequality for multilinear singular integral of Calderón-Zygmund type and studied an application of certain multilinear commutators. Recently, Tao and Zhang in [4] obtained the boundedness of the multilinear singular integral operators on weighted Morrey-Herz spaces and gave their weak estimates on endpoints.
Function spaces with variable exponents have been intensively studied in the recent years by a significant number of authors, e.g. [5,6,7,8,9,10,11]. The motivation for the increasing interest in such spaces comes not only from theoretical purpose, but also from applications to fluid dynamics, image restoration and PDE with non-standard growth conditions. The results above had been extended to the variable exponent Lebesgue spaces L p(⋅)(Ω) and the variable exponent Morrey spaces Mp(⋅)q(⋅)(Ω) over an open set Ω⊆Rn in [12,13,14]. Lu and Zhu in [15] discussed the boundedness of multilinear Calderón-Zygmund singular operators on Morrey-Herz spaces M˙Kα(⋅),λq,p(⋅)(Rn) and Herz spaces ˙Kα(⋅)q,p(⋅)(Rn) with two variable exponents α(⋅) and p(⋅).
Recently the generalized Muckenhoupt weights with variable exponents have been studied. Cruz-Uribe and Wang in [6] obtained the boundedness of fractional integrals on weighted Lebesgue spaces with variable exponents by applying the extrapolation. Izuki and Noi in [7] proved the the boundedness of fractional integrals on weighted Herz spaces with variable exponents by the theory of Banach functions spaces and Muckenhoupt theory with variable exponents. We refer readers [16,17,18,19,20] for more references about weights in variable exponent spaces.
Motivated by the results above, we give the definition of weighted Morrey-Herz spaces with variable exponents and prove the boundedness of multilinear Calderón-Zygmund singular operators on the product of weighted Lebesgue spaces and weighted Morrey-Herz spaces with variable exponents.
Definition 1. Let p(⋅):Rn→[1,∞) be a measurable function. The Lebesgue space with variable exponent L p(⋅)(Rn) is defined by
L p(⋅)(Rn):={f is measurable:ρp(fλ)<∞ for some constant λ>0}, |
where ρp(f)=∫Rn|f(x)|p(x)dx.
L p(⋅)(Rn) is a Banach space with the norm defined by
‖f‖L p(⋅)(Rn):=inf{λ>0:ρp(fλ)≤1}. |
We denote
p−:=essinf{p(x):x∈Rn},p+:=esssup{p(x):x∈Rn}. |
The set P(Rn) consists of all p(⋅) satisfying p−>1 and p+<∞. p′(⋅) means the conjugate exponent of p(⋅), namely 1p(x)+1p′(x)=1 holds. We also note that generalized Hölder's inequality
∫Rn|f(x)g(x)|dx≤rp‖f‖L p(⋅)(Rn)‖g‖L p′(⋅)(Rn) |
is true for all f∈L p(⋅)(Rn) and g∈L p′(⋅)(Rn), where rp:=1+1p−−1p+ ([5]).
We say that a function p:Rn→R is locally log-Hölder continuous, if it satisfies
|p(x)−p(y)|≤−Clog(|x−y|)for x,y∈Rn,|x−y|≤12. | (2.1) |
If
|p(x)−p∞|≤Clog(e+|x|) for some p∞≥1 and all x∈Rn | (2.2) |
we say p satisfies the log-Hölder decay condition at infinity. The set of p(⋅) satisfying (2.1) and (2.2) is denoted by LH(Rn). It is also well known that the Hardy-Littlewood maximal operator M defined by
Mf(x)=supB:ball,x∈B1|B|∫B|f(y)|dy, |
is bounded on L p(⋅)(Rn) whenever p(⋅)∈P(Rn)∩LH(Rn).
Let p(⋅)∈P(Rn) and w be a weight. The weighted variable exponent Lebesgue space L p(⋅)(w) is the set of all complex-valued measurable functions f such that fw1p(⋅)∈L p(⋅)(Rn). The space L p(⋅)(w) is a Banach space equipped with the norm
‖f‖L p(⋅)(w):=‖fw1p(⋅)‖L p(⋅). |
Now we define the Muckenhoupt classes. We begin with the classical Muckenhoupt A1 weights.
Definition 2. A weight is said to be a Muckenhoupt A1 weight if Mw(x)≤Cw(x) holds for almost every x∈Rn. The set A1 consists of all Muckenhoupt A1 weights.
The original Muckenhoupt Ap class with constant exponent p∈(1,∞) established by Muckenhoupt [21] can be generalized in terms of a variable exponent as follows.
Definition 3. ([7,20]) Suppose p(⋅)∈P(Rn). A weight w is said to be an Ap(⋅) weight if
supB:ball1|B|‖w1p(⋅)χB ‖L p(⋅)‖w−1p(⋅)χB ‖L p′(⋅)<∞. |
Next we state the monotone property of the class Ap(⋅).
Lemma 1. ([7] Corollary 1) If p(⋅),q(⋅)∈P(Rn)∩LH(Rn) and p(⋅)≤q(⋅), then we have
A1⊂Ap(⋅)⊂Aq(⋅). |
Definition 4. ([7]) Given p(⋅)∈P(Rn) and a weight w, we say (p(⋅),w) is an M-pair if the maximal operator M is bounded on both L p(⋅)(w p(⋅)) and L p′(⋅)(w−p′(⋅)).
Lemma 2. If (p(⋅),w) is an M-pair, then we have that for all balls B in Rn,
C−1≤1|B|‖χB ‖L p(⋅)(w p(⋅))‖χB ‖L p′(⋅)(w−p′(⋅))≤C. |
We introduce the sharp maximal function
M♯f(x):=supx∈Q1|Q|∫Q|f(y)−fQ|dy, |
where the supremum is taken over all cubes Q containing x, as usual, fQ denotes the average of over Q. For δ>0, we denote by M♯δ the operator
M♯δf=M♯(|f|δ)1/δ. |
Similarly as above, for δ>0, we denote by Mδ the operator Mδ(f)=M(|f|δ)1/δ.
The next lemma gives an estimate for the norm ‖⋅‖L p(⋅)(w p(⋅)) in terms of M♯.
Lemma 3. If (p(⋅),w) is an M-pair, then we have that for all f∈L p(⋅)(w p(⋅)),
‖f‖L p(⋅)(w p(⋅))≤C‖M♯f‖L p(⋅)(w p(⋅)). |
The two Lemmas above are the generalization of Lemmas 2 and 4 in [22] to the weighted case, which can be found in [16] and [6] respectively.
Lemma 4. Suppose p(⋅)∈P(Rn)∩LH(Rn) and w∈Ap(⋅), then we can take constants δ1,δ2∈(0,1) such that
‖χE‖(L p(⋅)(w p(⋅)))′‖χB ‖(L p(⋅)(w p(⋅)))′=‖χE‖L p′(⋅)(w−p′(⋅))‖χB ‖L p′(⋅)(w−p′(⋅))≤C(|E||B|)δ1, | (2.3) |
‖χE‖(L p(⋅)(w p(⋅)))′‖χB‖(L p(⋅)(w p(⋅)))′≤C(|E||B|)δ2, | (2.4) |
‖χB ‖L p(⋅)(w p(⋅))‖χE‖L p(⋅)(w p(⋅))≤C|B||E|, | (2.5) |
for all balls B and all measurable sets E⊂B.
Equations (2.3) and (2.4) are from [7]. (2.5) is the generalization of inequality (6) of Lemma 1 in [23] to the weighted case. Their proofs are similar, we omit it here.
Lemma 5. ([3]) Let T be an m-linear Calderón-Zygmund operator and let 0<δ<1/m. Then, there exists a constant C>0 such that for any vector function →f=(f1,…,fm), where each fj is a smooth function and with compact support, the following inequality holds
M♯δ(T(f1,…,fm))(x)≤Cm∏j=1M(fj)(x). |
Let E⊂Rn be a measurable set and w a positive and locally integrable function on E. The set L p(⋅)loc(E,w) consists of all functions f satisfying the following condition: For all compact sets K⊂E, there exists a constant λ>0 such that
∫K|f(x)λ|p(x)w(x)dx<∞. |
Next we define weighted Morrey-Herz spaces with variable exponents motivated by [7,24]. We use the following notations. For each k∈Z, we denote
Bk=:{x∈Rn:|x|≤2k},Ck=:Bk∖Bk−1,andχk=:χCk. |
Definition 5. Let 0<q<∞, p(⋅)∈P(Rn), 0≤λ<∞ and α∈R. The weighted Morrey-Herz space with variable exponents M˙Kα,λq,p(⋅)(w p(⋅)) is defined by
M˙Kα,λq,p(⋅)(w p(⋅))={f∈Lp(⋅)loc(Rn∖{0},w):‖f‖M˙Kα,λq,p(⋅)(w p(⋅))<∞}, |
where
‖f‖M˙Kα,λq,p(⋅)(w p(⋅))=:supL∈Z2−Lλ(L∑k=−∞2kαq‖fχk‖qL p(⋅)(w))1q. |
It obviously follows that M˙Kα,0q,p(⋅)(w p(⋅)) coincides with the weighted Herz spaces with variable exponents ˙Kα,qp(⋅)(w) defined in [7].
Theorem 1. Let (pj(⋅),w) be M-pairs, j=1,2,…,m, and p(⋅)∈P(Rn)∩LH(Rn) satisfy 1p(x)=1p1(x)+1p2(x)+⋯+1pm(x). Let w be a weight in Ap0(⋅) where p0(⋅)=min{p1(⋅),…,pm(⋅)}. Then, there exists a constant C>0 so that for all →f=(f1,…,fm), where each fj is a smooth function and with compact support, the m-linear Calderón-Zygmund operator T is bounded on the product of weighted variable exponent Lebesgue spaces. Moreover,
‖T(f1,…,fm)‖L p(⋅)(w p(⋅))≤Cm∏j=1‖fj‖L pj(⋅)(wpj(⋅)). | (3.1) |
Proof. By using Lemma 3, Lemma 5, Hölder's inequality and the boundedness of M on L pj(⋅)(wpj(⋅)), we get
‖T(f1,⋯,fm)‖L p(⋅)(w p(⋅))=‖T(f1,⋯,fm)(x)w(x)‖L p(⋅)≤C‖M♯δ(T(f1,⋯,fm))(x)w(x)‖L p(⋅)≤C‖m∏j=1‖M(fj)(x)w(x)‖L p(⋅)≤Cm∏j=1‖M(fj)w(x)‖L pj(⋅)=Cm∏j=1‖M(fj)‖L pj(⋅)(wpj(⋅))≤Cm∏j=1‖fj‖L pj(⋅)(wpj(⋅)). |
This yields (3.1).
Theorem 2. Let (pj(⋅),w) be M-pairs, j=1,2,…,m, and p(⋅)∈P(Rn)∩LH(Rn) satisfy 1p(x)=1p1(x)+1p2(x)+⋯+1pm(x). Let w be a weight in Ap0(⋅) where p0(⋅)=min{p1(⋅),…,pm(⋅)}, δ1∈(0,1) be the constant appearing in (2.3). Suppose that λ=∑mi=1λi,α=∑mi=1αi,0<λi<αi<nδ1,1q=∑mi=11qi. Then, there exists a constant C>0 so that for all →f=(f1,…,fm), where each fj is a smooth function and with compact support, the m−linear Calderón-Zygmund operator T is bounded on the product of weighted variable exponent Morrey-Herz spaces. Moreover, we have
‖T(→f)‖M˙Kα,λq,p(⋅) (w p(⋅))≤Cm∏j=1‖fj‖M˙Kαj,λjqj,pj(⋅) (wpj(⋅)). | (3.2) |
Let λi=0, we immediately get the boundedness of the multilinear Calderón-Zygmund integral operator on the product of weighted Herz spaces with variable exponents.
Proof. Without loss of generality, we only consider the case m=2. Actually, the similar procedure works for all m∈N. When m=2, we have
T(f1,f2)(x)=∫Rn∫RnK(x,y1,y2)f1(y1)f2(y2)dy1dy2. |
Write
fi(x)=∞∑li=−∞fi(x)χli(x)=:∞∑li=−∞fli(x),i=1,2. |
L p(⋅)(w p(⋅)) is a Banach space, hence we have
‖T(f1,f2)‖M˙Kα,λq,p(⋅)(w p(⋅))=supL∈Z2−Lλ(L∑k=−∞2kαq‖T(f1,f2)χk‖qL p(⋅)(w p(⋅)))1/q≤supL∈Z2−Lλ(L∑k=−∞2kαq‖∞∑l1=−∞∞∑l2=−∞T(fl1,fl2))χk‖qL p(⋅)(w p(⋅)))1/q≤C9∑i=1Ii. |
where
I1=supL∈Z2−Lλ(L∑k=−∞2kαq‖k−2∑l1=−∞k−2∑l2=−∞T(fl1,fl2))χk‖qL p(⋅)(w p(⋅)))1/q, |
I2=supL∈Z2−Lλ(L∑k=−∞2kαq‖k−2∑l1=−∞k+1∑l2=k−1T(fl1,fl2))χk‖qL p(⋅)(w p(⋅)))1/q, |
I3=supL∈Z2−Lλ(L∑k=−∞2kαq‖k−2∑l1=−∞∞∑l2=k+2T(fl1,fl2))χk‖qL p(⋅)(w p(⋅)))1/q, |
I4=supL∈Z2−Lλ(L∑k=−∞2kαq‖k+1∑l1=k−1k−2∑l2=−∞T(fl1,fl2))χk‖qL p(⋅)(w p(⋅)))1/q, |
I5=supL∈Z2−Lλ(L∑k=−∞2kαq‖k+1∑l1=k−1k+1∑l2=k−1T(fl1,fl2))χk‖qL p(⋅)(w p(⋅)))1/q, |
I6=supL∈Z2−Lλ(L∑k=−∞2kαq‖k+1∑l1=k−1∞∑l2=k+2T(fl1,fl2))χk‖qL p(⋅)(w p(⋅)))1/q, |
I7=supL∈Z2−Lλ(L∑k=−∞2kαq‖∞∑l1=k+2k−2∑l2=−∞T(fl1,fl2))χk‖qL p(⋅)(w p(⋅)))1/q, |
I8=supL∈Z2−Lλ(L∑k=−∞2kαq‖∞∑l1=k+2k+1∑l2=k−1T(fl1,fl2))χk‖qL p(⋅)(w p(⋅)))1/q, |
I9=supL∈Z2−Lλ(L∑k=−∞2kαq‖∞∑l1=k+2∞∑l2=k+2T(fl1,fl2))χk‖qL p(⋅)(w p(⋅)))1/q. |
Because of the symmetry of f1 and f2, we see that the estimate of I2 is analogous to that of I4, the estimate of I3 is similar to that of I7 and the estimate of I6 is similar to that of I8. We will estimate I1−I3,I5,I6 and I9 respectively.
(i) To estimate I1, we note li≤k−2 for i=1,2, and
|x−yi|≥||x|−|yi||>2k−1−2li>2k−2,forx∈Ck,yi∈Cli. |
Thus, for x∈Ck, we get
|T(fl1,fl2)(x)|≤C∫Rn∫Rn|fl1(y1)||fl2(y2)|(|x−y1|+|x−y2|)2ndy1dy2≤C2−2kn∫Rn|fl1(y1)|dy1∫Rn|fl2(y2)|dy2. |
Applying the generalized Hölder's inequality to the last two integrals, we obtain
‖k−2∑l1=−∞k−2∑l2=−∞T(fl1,fl2)χk‖L p(⋅)(w p(⋅))≤Ck−2∑l1=−∞k−2∑l2=−∞2−2kn‖fl1‖L p1(⋅)(wp1(⋅))‖χl1‖(L p1(⋅)(wp1(⋅)))′⋅‖fl2‖L p2(⋅)(wp2(⋅))‖χl2‖(L p2(⋅)(wp2(⋅)))′‖χk‖L p(⋅)(w p(⋅)). |
By 1p(x)=1p1(x)+1p2(x), using the generalized Hölder's inequality and Lemmas 2 and 4, we get
‖χl1‖(L p1(⋅)(wp1(⋅)))′‖χl2‖(L p2(⋅)(wp2(⋅)))′‖χk‖L p(⋅)(w p(⋅))≤‖χB l1‖(L p1(⋅)(wp1(⋅)))′‖χB l2‖(L p2(⋅)(wp2(⋅)))′‖χB k‖L p(⋅)(w p(⋅))≤C‖χB l1‖(L p1(⋅)(wp1(⋅)))′‖χB l2‖(L p2(⋅)(wp2(⋅)))′‖χB k‖L p1(⋅)(wp1(⋅))‖χB k‖L p2(⋅)(wp2(⋅))≤C‖χB l1‖(L p1(⋅)(wp1(⋅)))′‖χB l2‖(L p2(⋅)(wp2(⋅)))′|Bk|‖χB k‖−1(L p1(⋅)(wp1(⋅)))′|Bk|‖χB k‖−1(L p2(⋅)(wp2(⋅)))′≤C22kn(|Bl1||Bk|)δ1(|Bl2||Bk|)δ1=C22kn2(l1−k)nδ12(l2−k)nδ1. |
Therefore, we arrive at the inequality
‖k−2∑l1=−∞k−2∑l2=−∞T(fl1,fl2)χk‖L p(⋅)(w p(⋅))≤C2∏i=1k−2∑li=−∞2(li−k)nδ1‖fli‖L pi(⋅)(wpi(⋅)). |
Since 1q=1q1+1q2, we have
I1≤CsupL∈Z2−Lλ{L∑k=−∞2kαq(2∏i=1k−2∑li=−∞2(li−k)nδ1‖fli‖L pi(⋅)(wpi(⋅)))q}1q≤C2∏i=1supL∈Z2−Lλi{L∑k=−∞(k−2∑li=−∞2(li−k)(nδ1−αi)2liαi‖fli‖L pi(⋅)(wpi(⋅)))qi}1qi:=I11I12. |
We consider the two cases 0<qi≤1 and 1<qi<∞. When 0<qi≤1, we apply inequality
(∞∑h=1ah)qi≤∞∑h=1aqih,(a1,a2…≥0), | (3.3) |
and obtain
I1i≤CsupL∈Z2−Lλi{L∑k=−∞k−2∑li=−∞2(li−k)(nδ1−αi)qi2liαiqi‖fli‖qiL pi(⋅)(wpi(⋅))}1qi=CsupL∈Z2−Lλi{L−2∑li=−∞2liαiqi‖fli‖qiL pi(⋅)(wpi(⋅))L∑k=li+22(li−k)(nδ1−αi)qi}1qi≤CsupL∈Z2−Lλi{L−2∑li=−∞2liαiqi‖fli‖qiL pi(⋅)(wpi(⋅))}1qi≤C‖fi‖M˙Kαi(⋅),λiqi,pi(⋅)(wpi(⋅)). |
When 1<qi<∞, by Hölder's inequality we obtain
I1i=CsupL∈Z2−Lλi{L∑k=−∞(k−2∑li=−∞2(li−k)(nδ1−αi)2liαi‖fli‖L pi(⋅)(wpi(⋅)))qi}1qi≤CsupL∈Z2−Lλi{L∑k=−∞(k−2∑li=−∞2(li−k)(nδ1−αi)qi22liαiqi‖fli‖qiL pi(⋅)(wpi(⋅)))×(k−2∑li=−∞2(li−k)(nδ1−αi)q′i2)qiq′i}1qi≤CsupL∈Z2−Lλi{L∑k=−∞(k−2∑li=−∞2(li−k)(nδ1−αi)qi22liαiqi‖fli‖qiL pi(⋅)(wpi(⋅)))}1qi=CsupL∈Z2−Lλi{L−2∑li=−∞2liαiqi‖fli‖qiL pi(⋅)(wpi(⋅))L∑k=li+22(li−k)(nδ1−αi)qi2}1qi≤CsupL∈Z2−Lλi{L−2∑li=−∞2liαiqi‖fli‖qiL pi(⋅)(wpi(⋅))}1qi≤C‖fi‖M˙Kαi,λiqi,pi(⋅)(wpi(⋅)). |
Therefore, for any 0<qi<∞, we could obtain
I1≤C‖f1‖M˙Kα1,λ1q1,p1(⋅)(wp1(⋅))‖f2‖M˙Kα2,λ2q2,p2 (⋅)(wp2(⋅)). |
(ii) To estimate I2, we have l1≤k−2, and k−1≤l2≤k+1, then
|x−y1|+|x−y2|≥|x−y1|≥||x|−|y1||>2k−2,for x∈Ck,yi∈Cli,i=1,2. |
From the inequality above, we obtain
‖k−2∑l1=−∞k+1∑l2=k−1T(fl1,fl2)χk‖L p(⋅)(w p(⋅))≤Ck−2∑l1=−∞k+1∑l2=k−12(l1−k)nδ1‖fl1‖L p1(⋅)(wp1(⋅))‖χB l2‖(L p2(⋅)(wp2(⋅)))′‖χB k‖(L p2(⋅)(wp2(⋅)))′‖fl2‖L p2(⋅)(wp2(⋅)). |
By Lemma 4, we have
if l2=k−1, ‖χB l2 ‖(L p2 (⋅) (wp2(⋅) ))′ ‖χB k‖(L p2 (⋅) (wp2(⋅) ))′≤C(|Bl2||Bk|)δ1=C2(l2−k)nδ1=C2−nδ1,
if l2=k, ‖χB l2 ‖(L p2 (⋅) (wp2(⋅) ))′ ‖χB k‖(L p2 (⋅) (wp2(⋅) ))′=1,
if l2=k+1, ‖χB l2 ‖(L p2 (⋅) (wp2(⋅) ))′ ‖χB k‖(L p2 (⋅) (wp2(⋅) ))′≤C|Bl2||Bk|=C2(l2−k)n=C2n.
Combing the estimates above, we arrive the inequality
‖χB l2‖(L p2(⋅)(wp2(⋅)))′‖χB k‖(L p2(⋅)(wp2(⋅)))′≤C,for k−1≤l2≤k+1, |
where C is independent of l2 and k.
For I2, we get
I2≤CsupL∈Z2−Lλ{L∑k=−∞2kαq(k−2∑l1=−∞k+1∑l2=k−12(l1−k)nδ1‖fl1‖L p1(⋅)(wp1(⋅))‖fl2‖L p2(⋅)(wp2(⋅)))q}1q≤CsupL∈Z2−Lλ1{L∑k=−∞(k−2∑l1=−∞2(l1−k)(nδ1−α1)2l1α1‖fl1‖L p1(⋅)(wp1(⋅)))q1}1q1×supL∈Z2−Lλ2{L∑k=−∞(k+1∑l2=k−12kα2‖fl2‖L p2(⋅)(wp2(⋅)))q2}1q2=:CI21I22. |
Note that
I21=I11≤C‖f1‖M˙Kα1,λ1q1,p1(⋅)(wp1(⋅)). |
I22=supL∈Z2−Lλ2{L∑k=−∞2kα2q2(k+1∑l2=k−1‖fl2‖L p2(⋅)(wp2(⋅)))q2}1q2≤CsupL∈Z2−Lλ2{L∑k=−∞2kα2q2‖f2χ2k−1≤|⋅|≤2k+1(⋅)‖q2L p2(⋅)(wp2(⋅))}1q2≤CsupL∈Z2−Lλ2{L+1∑k=−∞2kα2q2‖f2χk‖q2L p2(⋅)(wp2(⋅))}1q2≤C‖f2‖M˙Kα2,λ2q2,p2 (⋅)(wp2(⋅)). |
(iii) To estimate I3, for x∈Ck,yi∈Cli and l1≤k−2, l2≥k+2, we have
|x−y1|≥|x|−|y1|>2k−2,|x−y2|≥|y2|−|x|>2l2−2. |
Thus, for x∈Ck, we get
|T(fl1,fl2(x)|≤C2−kn∫Rn|fl1(y1)|dy12−l2n∫Rn|fl2(y2)|dy2. |
By Hölder's inequality, Lemmas 2 and 4, we obtain
‖k−2∑l1=−∞∞∑l2=k+2T(fl1,fl2)χk‖L p(⋅)(w p(⋅))≤Ck−2∑l1=−∞∞∑l2=k+22(k−l2)n‖χB l1‖(L p1(⋅)(wp1(⋅)))′‖χB k‖(L p1(⋅)(wp1(⋅)))′‖χB l2‖(L p2(⋅)(wp2(⋅)))′‖χB k‖(L p2(⋅)(wp2(⋅)))′‖fl1‖L p1(⋅)(wp1(⋅))‖fl2‖L p2(⋅)(wp2(⋅))≤Ck−2∑l1=−∞∞∑l2=k+22(k−l2)n(|Bl1||Bk|)δ1|Bl2||Bk|‖fl1‖L p1(⋅)(wp1(⋅))‖fl2‖L p2(⋅)(wp2(⋅))≤Ck−2∑l1=−∞∞∑l2=k+22(l1−k)nδ1‖fl1‖L p1(⋅)(wp1(⋅))‖fl2‖L p2(⋅)(wp2(⋅)). |
For I3, we get
I3≤CsupL∈Z2−Lλ{L∑k=−∞2kαq(k−2∑l1=−∞∞∑l2=k+22(l1−k)nδ1‖fl1‖L p1(⋅)(wp1(⋅))‖fl2‖L p2(⋅)(wp2(⋅)))q}1q≤CsupL∈Z2−Lλ1{L∑k=−∞(k−2∑l1=−∞2(l1−k)(nδ1−α1)2l1α1‖fl1‖L p1(⋅)(wp1(⋅)))q1}1q1×supL∈Z2−Lλ2{L∑k=−∞(∞∑l2=k+22kα2‖fl2‖L p2(⋅)(wp2(⋅)))q2}1q2=:CI31I32. |
Note that
I31=I21=I11≤C‖f1‖M˙Kα1,λ1q1,p1(⋅)(wp1(⋅)). |
As for I32, we write
I32=supL∈Z2−Lλ2{L∑k=−∞2kα2q2(∞∑l2=k+2‖fl2‖L p2(⋅)(wp2(⋅)))q2}1q2≤supL∈Z2−Lλ2{L∑k=−∞(L−1∑l2=k+22(k−l2)α22l2α2‖fl2‖L p2(⋅)(wp2(⋅)))q2}1q2+supL∈Z2−Lλ2{L∑k=−∞(∞∑l2=L2(k−l2)α22l2α2‖fl2‖L p2(⋅)(wp2(⋅)))q2}1q2=:I132+I232. |
Now, we estimate I132 and I232 respectively. For I132, using similar methods as that for I1i. Observing that α2>0, we consider the following two cases:
When 0<q2≤1, by (3.3), it follows that
I132≤CsupL∈Z2−Lλ2{L∑k=−∞L−1∑l2=k+22(k−l2)α2q22l2α2q2‖fl2‖q2L p2(⋅)(wp2(⋅))}1q2=CsupL∈Z2−Lλ2{L−1∑l2=−∞2l2α2q2‖fl2‖q2L p2(⋅)(wp2(⋅))l2−2∑k=−∞2(k−l2)α2q2}1q2≤CsupL∈Z2−Lλ2{L−1∑l2=−∞2l2α2q2‖fl2‖q2L p2(⋅)(wp2(⋅))}1q2≤C‖f2‖M˙Kα2,λ2q2,p2 (⋅)(wp2(⋅)). |
When 1<q2<∞, we use Hölder's inequality and obtain
I132≤CsupL∈Z2−Lλ2{L∑k=−∞(L−1∑l2=k+22(k−l2)α2q222l2α2q2‖fl2‖q2L p2(⋅)(wp2(⋅))×(L−1∑l2=k+22(k−l2)α2)q′22)q2q′2}1q2≤CsupL∈Z2−Lλ2{L∑k=−∞(L−1∑l2=k+22(k−l2)α2q222l2α2q2‖fl2‖q2L p2(⋅)(wp2(⋅))}1q2=CsupL∈Z2−Lλ2{L−1∑l2=−∞2l2α2q2‖fl2‖q2L p2(⋅)(wp2(⋅))l2−2∑k=−∞2(k−l2)α2q22}1q2≤C‖f2‖M˙Kα2,λ2q2,p2 (⋅)(wp2(⋅)). |
For I232, when 0<q2≤1, by the fact that 0<λ2<α2, we have
I232≤CsupL∈Z2−Lλ2{L∑k=−∞∞∑l2=L2(k−l2)α2q22l2α2q2‖fl2‖q2L p2(⋅)(wp2(⋅))}1q2≤CsupL∈Z2−Lλ2{L∑k=−∞∞∑l2=L2(k−l2)α2q22l2λ2q22−l2λ2q2l2∑j=−∞2jα2q2‖f2j‖q2L p2(⋅)(wp2(⋅))}1q2≤CsupL∈Z2−Lλ2{L∑k=−∞∞∑l2=L2(k−l2)α2q22l2λ2q2‖f2‖q2M˙Kα2,λ2q2,p2 (⋅)(wp2(⋅))}1q2=CsupL∈Z2−Lλ2{L∑k=−∞2kα2q2∞∑l2=L2l2(λ2−α2)q2‖f2‖q2M˙Kα2,λ2q2,p2 (⋅)(wp2(⋅))}1q2=CsupL∈Z2−Lλ2{2Lα2q22L(λ2−α2)q2‖f2‖q2M˙Kα2,λ2q2,p2 (⋅)(wp2(⋅))}1q2=‖f2‖M˙Kα2,λ2q2,p2 (⋅)(wp2(⋅)). |
When 1<q2<∞, because α2−λ2>0, we have
I232=supL∈Z2−Lλ2{L∑k=−∞(∞∑l2=L2l2α2‖fl2‖L p2(⋅)(wp2(⋅))2(k−l2)(α2+λ2)22(k−l2)(α2−λ2)2)q2}1q2≤CsupL∈Z2−Lλ2{L∑k=−∞(∞∑l2=L2l2α2q2‖fl2‖q2L p2(⋅)(wp2(⋅))2(k−l2)(α2+λ2)q22)×(∞∑l2=L2(k−l2)(α2−λ2)q′22)q2q′2}1q2≤CsupL∈Z2−Lλ2{L∑k=−∞∞∑l2=L2l2α2q2‖fl2‖q2L p2(⋅)(wp2(⋅))2(k−l2)(α2+λ2)q22}1q2≤CsupL∈Z2−Lλ2{L∑k=−∞∞∑l2=L2(k−l2)(α2+λ2)q222l2λ2q22−l2λ2q2l2∑j=−∞2jα2q2‖f2j‖q2L p2(⋅)(wp2(⋅))}1q2≤CsupL∈Z2−Lλ2{L∑k=−∞∞∑l2=L2(k−l2)(α2+λ2)q222l2λ2q2‖f2‖q2M˙Kα2,λ2q2,p2 (⋅)(wp2(⋅))}1q2=CsupL∈Z2−Lλ2{L∑k=−∞2kλ2q2∞∑l2=L2(k−l2)(α2−λ2)q22‖f2‖q2M˙Kα2,λ2q2,p2 (⋅)(wp2(⋅))}1q2≤CsupL∈Z2−Lλ2{L∑k=−∞2kλ2q2‖f2‖q2M˙Kα2,λ2q2,p2 (⋅)(wp2(⋅))}1q2≤C‖f2‖M˙Kα2,λ2q2,p2 (⋅)(wp2(⋅)). |
Therefore we get
I3≤C‖f1‖M˙Kα1,λ1q1,p1(⋅)(wp2(⋅))‖f2‖M˙Kα2,λ2q2,p2 (⋅)(wp2(⋅)). |
(iv) To estimate the term I5, by Theorem 1, the L p(⋅)(w p(⋅))- boundedness of T, we note that
‖T(fl1,fl2)‖L p(⋅)(w p(⋅))≤C‖fl1‖L p1(⋅)(wp1(⋅))‖fl2‖L p2(⋅)(wp2(⋅)). |
Since 1q=1q1+1q2, we have
I5≤CsupL∈Z2−Lλ{L∑k=−∞2kαq(2∏i=1k+1∑li=k−1‖fli‖L pi(⋅)(wpi(⋅)))q}1q≤CsupL∈Z2∏i=12−Lλi{L∑k=−∞(k+1∑li=k−12kαi‖fli‖L pi(⋅)(wpi(⋅)))qi}1qi≤CsupL∈Z2∏i=12−Lλi{L+1∑k=−∞2kαiqi‖fiχk‖qiL pi(⋅)(wpi(⋅))}1qi≤C‖f1‖M˙Kα1,λ1q1,p1(⋅)(wp1(⋅))‖f2‖M˙Kα2,λ2q2,p2 (⋅)(wp2(⋅)). |
(v) To estimate the term I6, for Ck, yi∈Cli, k−1≤l1≤k+1, l2≥k+2, we have
|T(fl1,fl2(x)|≤C2−kn∫Rn|fl1(y1)|dy12−l2n∫Rn|fl2(y2)|dy2. |
By the generalized Hölder's inequality, Lemmas 2 and 4, we obtain
‖k+1∑l1=k−1∞∑l2=k+2T(fl1,fl2)χk‖L p(⋅)(w p(⋅))≤Ck+1∑l1=k−1∞∑l2=k+22(k−l2)n‖χB l1‖(L p1(⋅)(wp1(⋅)))′‖χB k‖(L p1(⋅)(wp1(⋅)))′‖χB l2‖(L p2(⋅)(wp2(⋅)))′‖χB k‖(L p2(⋅)(wp2(⋅)))′‖fl1‖L p1(⋅)(wp1(⋅))‖fl2‖L p2(⋅)(wp2(⋅))≤Ck+1∑l1=k−1∞∑l2=k+22(k−l2)n|Bl2||Bk|‖fl1‖L p1(⋅)(wp1(⋅))‖fl2‖L p2(⋅)(wp2(⋅))≤Ck+1∑l1=k−1∞∑l2=k+2‖fl1‖L p1(⋅)(wp1(⋅))‖fl2‖L p2(⋅)(wp2(⋅)), |
where
‖χB l1‖(L p1(⋅)(wp1(⋅)))′‖χB k‖(L p1(⋅)(wp1(⋅)))′≤C,fork−1≤l1≤k+1, |
with the constant C independent of l1 and k.
Hence
I6≤CsupL∈Z2−Lλ{L∑k=−∞2kαq(k+1∑l1=k−1∞∑l2=k+2‖fl1‖L p1(⋅)(wp1(⋅))‖fl2‖L p2(⋅)(wp2(⋅)))q}1q≤CsupL∈Z2−Lλ1{L∑k=−∞(k+1∑l1=k−12kα1‖fl1‖L p1(⋅)(wp1(⋅)))q1}1q1×supL∈Z2−Lλ2{L∑k=−∞(∞∑l2=k+22kα2‖fl2‖L p2(⋅)(wp2(⋅)))q2}1q2:=CI61I62. |
Here the estimate of I61 is equal to that of I22 and I62=I32.
(vi) Finally to estimate the term I9, we note l2≥k+2 and |x−yi|>2li−2, \, for x∈Ck, yi∈Cli,
|T(fl1,fl2(x)|≤C2−l1n∫Rn|fl1(y1)|dy12−l2n∫Rn|fl2(y2)|dy2. |
Applying Hölder's inequality to the last integral, we obtain
‖∞∑l1=k+2∞∑l2=k+2T(fl1,fl2)χk‖L p(⋅)(w p(⋅)))≤C∞∑l1=k+2∞∑l2=k+22(k−l1)n2(k−l2)n‖χB l1‖(L p1(⋅)(wp1(⋅)))′‖χB k‖(L p1(⋅)(wp1(⋅)))′‖χB l2‖(L p2(⋅)(wp2(⋅)))′‖χB k‖(L p2(⋅)(wp2(⋅)))′×‖fl1‖L p1(⋅)(wp1(⋅))‖fl2‖L p2(⋅)(wp2(⋅))≤C∞∑l1=k+2∞∑l2=k+22(k−l1)n|Bl1||Bk|2(k−l2)n|Bl2||Bk|‖fl1‖L p1(⋅)(wp1(⋅))‖fl2‖L p2(⋅)(wp2(⋅))≤C∞∑l1=k+2∞∑l2=k+2‖fl1‖L p1(⋅)(wp1(⋅))‖fl2‖L p2(⋅)(wp2(⋅)). |
Thus
I9≤CsupL∈Z2−Lλ{L∑k=−∞2kαq(2∏i=1∞∑li=k+2‖fli‖L pi(⋅)(wpi(⋅)))q}1q≤CsupL∈Z2∏i=12−Lλi{L∑k=−∞(∞∑li=k+22kαi‖fli‖L pi(⋅)(wpi(⋅)))qi}1qi=:CI91I92≤C‖f1‖M˙Kα1,λ1q1,p1(⋅)(wp1(⋅))‖f2‖M˙Kα2,λ2q2,p2 (⋅)(wp2(⋅)), |
where the estimate of I9i(i=1,2) is equal to that of I32.
Combining all the estimates for Ii together (i=1,2,⋯,9), we get
‖T(f1,f1)‖M˙Kα,λq,p(⋅)(w p(⋅))≤Cm∏j=1‖fj‖M˙Kαj,λjqj,pj(⋅)(wpj(⋅)). |
Consequently, we have proved the Theorem 2.
In this paper we define the Muckenhoupt weights with variable exponent and introduce weighted Morrey-Herz spaces M˙Kα,λq,p(⋅)(w p(⋅)) with variable exponent p(⋅). We investigate the boundedness of multi-linear Calder´on-Zygmund operator on weighted Lebesgue spaces and weighted Morrey-Herz spaces with variable exponents. The results we obtain are the generalization of these in the references, and they could be applied more widely.
The authors thank the referees for their valuable comments which helped to improve the paper. The work was supported by NNSF of China grants (11771223).
The authors declare no conflict of interest.
[1] |
L. Grafakos, R. H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math., 165 (2002), 124-164. doi: 10.1006/aima.2001.2028
![]() |
[2] |
G. P. Curbera, J. García-Cuerva, J. M. Martell, C. Pérez, Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals, Adv. Math., 203 (2006), 256-318. doi: 10.1016/j.aim.2005.04.009
![]() |
[3] |
C. Pérez, R. H. Torres, Sharp maximal function estimates for multinear singular integrals, Contemp. Math., 320 (2003), 1-9. doi: 10.1090/conm/320/05594
![]() |
[4] | X. X. Tao, H. H. Zhang, On the boundedness of multilinear operators on weighted Herz-Morrey spaces, Taiwan. J. Math., 15 (2011), 1527-1543. |
[5] |
O. Kováčik, J. Rákosník, On spaces L p(x) and Wk,p(x), Czech. Math. J., 41 (1991), 592-618. doi: 10.21136/CMJ.1991.102493
![]() |
[6] | D. Cruz-Uribe, L. A. D. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Am. Math. Soc., 369 (2017), 1205-1235. |
[7] |
M. Izuki, T. Noi, Boundedness of fractional integral on weighted Herz spaces with variable exponent, J. Inequal. Appl., 2016 (2016), 199. doi: 10.1186/s13660-016-1142-9
![]() |
[8] |
D. C. Yang, C. Q. Zhuo, W. Yuan, Besov-type spaces with variable smoothness and integrability, J. Funct. Anal., 269 (2015), 1840-1898. doi: 10.1016/j.jfa.2015.05.016
![]() |
[9] |
D. C. Yang, C. Q. Zhuo, W. Yuan, Triebel-Lizorkin type spaces with variable exponents, Banach J. Math. Anal., 9 (2015), 146-202. doi: 10.15352/bjma/09-4-9
![]() |
[10] |
X. J. Yan, D. C. Yang, W. Yuan, C. Q. Zhuo, Variable weak Hardy spaces and their applications, J. Funct. Anal., 271 (2016), 2822-2887. doi: 10.1016/j.jfa.2016.07.006
![]() |
[11] |
L. W. Wang, L. S. Shu, Higher order commutators of fractional integrals on Morrey type spaces with variable exponents, Math. Nachr., 291 (2018), 1437-1449. doi: 10.1002/mana.201600438
![]() |
[12] |
A. W. Huang, J. S. Xu, Multilinear singular integrals and commutators in variable exponent Lebesgue spaces, Appl. Math. J. Chin. Univ., 25 (2010), 69-77. doi: 10.1007/s11766-010-2167-3
![]() |
[13] |
X. X. Tao, X. Yu, H. H. Zhang, Multilinear Calderón Zygmund operators on variable exponent Morrey spaces over domains, Appl. Math. J. Chin. Univ., 26 (2011), 187-197. doi: 10.1007/s11766-011-2704-8
![]() |
[14] |
Z. W. Fu, S. Z. Lu, H. B. Wang, L. G. Wang, Singular integral operators with rough kernels on central Morrey spaces with variable exponent, Ann. Acad. Sci. Fenn. Math., 44 (2019), 505-522. doi: 10.5186/aasfm.2019.4431
![]() |
[15] |
Y. Lu, Y. P. Zhu, Boundedness of multilinear Calderón-Zygmund singular operators on Morrey-Herz spaces with variable exponents, Acta Math. Sin.-English Ser., 30 (2014), 1180-1194. doi: 10.1007/s10114-014-3410-2
![]() |
[16] |
D. Cruz-Uribe, L. Diening, P. Hästö, The maximal operator on weighted variable Lebesgue spaces, Fractional Calculus Appl. Anal., 14 (2011), 361-374. doi: 10.2478/s13540-011-0023-7
![]() |
[17] |
D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl., 394 (2012), 744-760. doi: 10.1016/j.jmaa.2012.04.044
![]() |
[18] |
A. Lerner, On a dual property of the maximal operator on weighted variable Lp spaces, Contemp. Math., 693 (2017), 283-300. doi: 10.1090/conm/693/13932
![]() |
[19] | L. Diening, P. Hästö, Muckenhoupt weights in variable exponent spaces, 2008. Available from: https://www.researchgate.net/publication/228779582. |
[20] | M. Izuki, T. Noi, An intrinsic square function on weighted Herz spaces with variable exponent, 2016. Available from: https://arXiv.org/abs/1606.01019. |
[21] |
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Am. Math. Soc., 165 (1972), 207-226. doi: 10.1090/S0002-9947-1972-0293384-6
![]() |
[22] |
M. Izuki, Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59 (2010), 461-472. doi: 10.1007/s12215-010-0034-y
![]() |
[23] |
M. Izuki, Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59 (2010), 199-213. doi: 10.1007/s12215-010-0015-1
![]() |
[24] | M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J., 40 (2010), 343-355. |
1. | Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy, Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents, 2022, 7, 2473-6988, 19147, 10.3934/math.20221051 | |
2. | Mitsuo Izuki, Takahiro Noi, Yoshihiro Sawano, Extrapolation to two-weighted Herz spaces with three variable exponents, 2024, 9, 2662-2009, 10.1007/s43036-024-00333-w |