In this paper, the authors study the boundedness properties of a class of multilinear strongly singular integral operator with generalized kernels on product of weighted Lebesgue spaces and product of variable exponent Lebesgue spaces, respectively. Moreover, the types $ L^{\infty}\times \dots \times L^{\infty}\rightarrow BMO $ and $ BMO\times \dots \times BMO\rightarrow BMO $ endpoint estimates are also obtained.
Citation: Shuhui Yang, Yan Lin. Multilinear strongly singular integral operators with generalized kernels and applications[J]. AIMS Mathematics, 2021, 6(12): 13533-13551. doi: 10.3934/math.2021786
In this paper, the authors study the boundedness properties of a class of multilinear strongly singular integral operator with generalized kernels on product of weighted Lebesgue spaces and product of variable exponent Lebesgue spaces, respectively. Moreover, the types $ L^{\infty}\times \dots \times L^{\infty}\rightarrow BMO $ and $ BMO\times \dots \times BMO\rightarrow BMO $ endpoint estimates are also obtained.
[1] | R. R. Coifman, Y. Meyer, On commutators of singular integrals and bilinear singular integrals, T. Am. Math. Soc., 212 (1975), 315–331. doi: 10.1090/S0002-9947-1975-0380244-8 |
[2] | R. R. Coifman, Y. Meyer, Au delà des Opérateurs pseudo-différentiels, Astèrisque, 57 (1978), 1–199. |
[3] | R. R. Coifman, Y. Meyer, Commutateurs d'intégrales singulières et opérateurs multilinaires, Ann. Ins. Fourier (Grenoble), 28 (1978), 177–202. doi: 10.5802/aif.708 |
[4] | T. A. Bui, X. T. Duong, Weighted norm inequalities for multilinear operators and applications to multilinear Fourier multipliers, Bull. Sci. Math., 137 (2013), 63–75. doi: 10.1016/j.bulsci.2012.04.001 |
[5] | L. Grafakos, R. Torres, Multilinear Calderón-Zygmund theory, Adv. Math., 165 (2002), 124–164. doi: 10.1006/aima.2001.2028 |
[6] | L. Grafakos, R. Torres, Maximal operator and weighted norm inequalities for multilinear singular integrals, Indiana Univ. Math. J., 51 (2002), 1261–1276. doi: 10.1512/iumj.2002.51.2114 |
[7] | J. Hart, Bilinear square functions and vector-valued Calderón-Zygmund operators, J. Fourier Anal. Appl., 18 (2012), 1291–1313. doi: 10.1007/s00041-012-9238-1 |
[8] | J. Hart, A new proof of the bilinear $T(1)$ theorem, Proc. Am. Math. Soc., 142 (2014), 3169–3181. doi: 10.1090/S0002-9939-2014-12054-5 |
[9] | A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres, R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math., 220 (2009), 1222–1264. doi: 10.1016/j.aim.2008.10.014 |
[10] | K. Li, W. Sun, Weak and strong type weighted estimates for multilinear Calderón-Zygmund operators, Adv. Math., 254 (2014), 736–771. doi: 10.1016/j.aim.2013.12.027 |
[11] | D. Maldonado, V. Naibo, Weighted norm inequalities for paraproducts and bilinear pseudodifferential operators with mild regularity, J. Fourier Anal. Appl., 15 (2009), 218–261. doi: 10.1007/s00041-008-9029-x |
[12] | K. Moen, Weighted inequalities for multilinear fractional integral operators, Collect. Math., 60 (2009), 213–238. doi: 10.1007/BF03191210 |
[13] | C. Pérez, R. H. Torres, Sharp maximal function estimates for multilinear singular integrals, Contemp. Math., 320 (2003), 323–331. doi: 10.1090/conm/320/05615 |
[14] | C. Pérez, R. H. Torres, Minimal regularity conditions for the end-point estimate of bilinear Calderón-Zygmund operators, Proc. Am. Math. Soc. Ser. B, 1 (2014), 1–13. doi: 10.1090/S2330-1511-2014-00009-2 |
[15] | Y. Lin, Multilinear theory of strongly singular Calderón-Zygmund operators and applications, Nonlinear Anal., 192 (2020), 111699. doi: 10.1016/j.na.2019.111699 |
[16] | Y. Lin, G. Z. Lu, S. Z. Lu, Sharp maximal estimates for multilinear commutators of multilinear strongly singular Calderón-Zygmund operators and applications, Forum Math., 31 (2019), 1–18. doi: 10.1515/forum-2018-0008 |
[17] | Y. Lin, Y. Y. Han, Sharp maximal and weighted estimates for multilinear iterated commutators of multilinear strongly singular Calderón-Zygmund operators, Chinese J. Contemp. Math., 40 (2019), 399–416. |
[18] | S. Spanne, Some function spaces defined using the mean oscillation over cubes, Ann. Sc. Norm. Super. Pisa., 19 (1965), 593–608. |
[19] | Y. Lin, H. H. Yan, Multilinear strongly singular Calderón-Zygmund operators and commutators on Morrey type spaces, Jordan J. Math. Stat., 14 (2021), 351–375. |
[20] | Á. Bényi, L. Chaffee, V. Naibo, Strongly singular bilinear Calderón-Zygmund operators and a class of bilinear pseudodifferential operators, J. Math. Soc. Jpn., 71 (2019), 569–587. |
[21] | J. Garcia-Cuerva, J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Math Studies, Vol. 116, Amsterdam: North-Holland Publishing Co., 1985. |
[22] | L. Grafakos, J. M. Martell, Extrapolation of weighted norm inequalities for multivariable operators and applications, J. Geom. Anal., 14 (2004), 19–46. doi: 10.1007/BF02921864 |
[23] | L. Diening, Maximal function on Musielak-Orlicz spaces and generlaized Lebesgue spaces, Bull. Sci. Math., 129 (2005), 657–700. doi: 10.1016/j.bulsci.2003.10.003 |
[24] | L. Diening, P. Harjulehto, P. Hästö, M. R${\rm{\dot u}}$žička, Lebesgue and sobolev spaces with variable exponents, In: Lecture notes in mathematics, Berlin: Springer, 2011. |
[25] | G. Z. Lu, P. Zhang, Multilinear Calderón-Zygmund operator with kernels of Dini's type and applications, Nonlinear Anal., 107 (2014), 92–117. doi: 10.1016/j.na.2014.05.005 |
[26] | Y. Lin, S. Z. Lu, Strongly singular Calderón-Zygmund operators and their commutators, Jordan J. Math. Stat., 1 (2008), 31–49. |