We calculate the norms of several concrete operators, mostly of some integral-type ones between weighted-type spaces of continuous functions on several domains. We also calculate the norm of an integral-type operator on some subspaces of the weighted Lebesgue spaces.
Citation: Stevo Stević. Norms of some operators between weighted-type spaces and weighted Lebesgue spaces[J]. AIMS Mathematics, 2023, 8(2): 4022-4041. doi: 10.3934/math.2023201
We calculate the norms of several concrete operators, mostly of some integral-type ones between weighted-type spaces of continuous functions on several domains. We also calculate the norm of an integral-type operator on some subspaces of the weighted Lebesgue spaces.
[1] | K. L. Avetisyan, Hardy Bloch-type spaces and lacunary series on the polydisk, Glasgow J. Math., 49 (2007), 345–356. https://dx.doi.org/10.1017/S001708950700359X doi: 10.1017/S001708950700359X |
[2] | K. D. Bierstedt, W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Aust. Math. Soc. Ser. A, 54 (1993), 70–79. https://dx.doi.org/10.1017/S1446788700036983 doi: 10.1017/S1446788700036983 |
[3] | D. C. Chang, S. Li, S. Stević, On some integral operators on the unit polydisk and the unit ball, Taiwanese J. Math., 11 (2007), 1251–1285. https://dx.doi.org/10.11650/twjm/1500404862 doi: 10.11650/twjm/1500404862 |
[4] | M. Christ, L. Grafakos, Best constants for two nonconvolution inequalities, Proc. Amer. Math. Soc., 123 (1995), 1687–1693. |
[5] | J. Du, X. Zhu, Essential norm of an integral-type operator from $\omega$-Bloch spaces to $\mu$-Zygmund spaces on the unit ball, Opuscula Math., 38 (2018), 829–839. |
[6] | N. Dunford, J. T. Schwartz, Linear operators, Part I: general theory, New York: Wiley-Interscience, 1988. |
[7] | Z. Fu, L. Grafakos, S. Lu, F. Zhao, Sharp bounds for $m$-linear Hardy and Hilbert operators, Houston J. Math., 38 (2012), 225–244. |
[8] | L. Grafakos, Best bounds for the Hilbert transform on $L^p({\mathbb R}^1), $ Math. Res. Lett., 4 (1997), 469–471. https://dx.doi.org/10.4310/MRL.1997.v4.n4.a3 |
[9] | L. Grafakos, Modern Fourier analysis, Graduate Texts in Mathematics 250, 2 Eds., New York: Springer, 2009. |
[10] | L. Grafakos, Classical Fourier analysis, 3 Eds., Graduate Texts in Mathematics 249, Springer, New York, 2014. |
[11] | L. Grafakos, T. Savage, Best bounds for the Hilbert transform on $L^p({\mathbb R}^1):$ a corrigendum, Math. Res. Lett., 22 (2015), 1333–1335. https://dx.doi.org/10.4310/MRL.2015.V22.N5.A4 doi: 10.4310/MRL.2015.V22.N5.A4 |
[12] | Z. Guo, Y. Shu, On Stević-Sharma operators from Hardy spaces to Stević weighted spaces, Math. Inequal. Appl., 23 (2020), 217–229. https://dx.doi.org/10.7153/mia-2020-23-17 doi: 10.7153/mia-2020-23-17 |
[13] | G. H. Hardy, Notes on some points in the integral calculus LX: an inequality between integrals, Messenger Math., 54 (1925), 150–156. |
[14] | G. H. Hardy, Notes on some points in the integral calculus, LXIV: further inequalities between integrals, Messenger Math., 57 (1927), 12–16. |
[15] | G. H. Hardy, Divergent series, Oxford: Oxford University Press, 1949. |
[16] | G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge: Cambridge University Press, 1952. |
[17] | W. Hayman, P. B. Kennedy, Subharmonic functions, Vol. I, Academic Press, London, 1976. |
[18] | L. L. Helms, Introduction to potential theory, Pure and Applied Mathematics, Wiley-Interscience, New York, 1969. |
[19] | H. Li, Z. Guo, Note on a Li-Stević integral-type operator from mixed-norm spaces to $n$th weighted spaces, J. Math. Inequal., 11 (2017), 77–85. https://dx.doi.org/10.7153/jmi-11-07 doi: 10.7153/jmi-11-07 |
[20] | H. Li, S. Li, Norm of an integral operator on some analytic function spaces on the unit disk, J. Inequal. Math., 2013 (2013), 1–7. https://doi.org/10.1186/1029-242X-2013-342 doi: 10.1186/1029-242X-2013-342 |
[21] | S. Li, Volterra composition operators between weighted Bergman spaces and Bloch type spaces, J. Korean Math. Soc., 45 (2008), 229–248. |
[22] | C. Pan, On an integral-type operator from $Q_k(p, q)$ spaces to $\alpha$-Bloch spaces, Filomat, 25 (2011), 163–173. https://doi.org/10.2298/FIL1103163P doi: 10.2298/FIL1103163P |
[23] | A. Pelczynski, Norms of classical operators in function spaces, Astérisque, 131 (1985), 137–162. |
[24] | R. Qian, S. Li, Volterra type operators on Morrey type spaces, Math. Inequal. Appl., 18 (2015), 1589–1599. https://doi.org/10.7153/mia-18-122 doi: 10.7153/mia-18-122 |
[25] | L. A. Rubel, A. L. Shields, The second duals of certain spaces of analytic functions, J. Aust. Math. Soc., 11 (1970), 276–280. https://doi.org/10.1017/S1446788700006649 doi: 10.1017/S1446788700006649 |
[26] | W. Rudin, Real and complex analysis, McGraw-Hill Series in Higher Mathematics, 3 Eds., McGraw-Hill Education, London, New York, Sidney, 1987. |
[27] | W. Rudin, Functional analysis, McGraw-Hill, Inc., 1991. |
[28] | J. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math., 140 (1911), 1–28. https://doi.org/10.1515/crll.1911.140.1 doi: 10.1515/crll.1911.140.1 |
[29] | B. Sehba, S. Stević, On some product-type operators from Hardy-Orlicz and Bergman-Orlicz spaces to weighted-type spaces, Appl. Math. Comput., 233 (2014), 565–581. https://doi.org/10.1016/j.amc.2014.01.002 doi: 10.1016/j.amc.2014.01.002 |
[30] | E. M. Stein, Singular integrals and differentiability properties of functions, Princeton: Princeton University Press, 1970. |
[31] | E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton: Princeton University Press, 1971. |
[32] | S. Stević, Boundedness and compactness of an integral operator on a weighted space on the polydisc, Indian J. Pure Appl. Math., 37 (2006), 343–355. |
[33] | S. Stević, Norms of some operators from Bergman spaces to weighted and Bloch-type space, Util. Math., 76 (2008), 59–64. |
[34] | S. Stević, Norm of weighted composition operators from ${\alpha}$-Bloch spaces to weighted-type spaces, Appl. Math. Comput., 215 (2009), 818–820. https://doi.org/10.1016/j.amc.2009.06.005 doi: 10.1016/j.amc.2009.06.005 |
[35] | S. Stević, Norms of multiplication operators on Hardy spaces and weighted composition operators from Hardy spaces to weighted-type spaces on bounded symmetric domains, Appl. Math. Comput., 217 (2010), 2870–2876. https://doi.org/10.1016/j.amc.2010.08.022 doi: 10.1016/j.amc.2010.08.022 |
[36] | S. Stević, Norms of some operators on bounded symmetric domains, Appl. Math. Comput., 216 (2010), 187–191. https://doi.org/10.1016/j.amc.2010.01.030 doi: 10.1016/j.amc.2010.01.030 |
[37] | S. Stević, On operator $P_{\varphi}^g$ from the logarithmic Bloch-type space to the mixed-norm space on unit ball, Appl. Math. Comput., 215 (2010), 4248–4255. https://doi.org/10.1016/j.amc.2009.12.048 doi: 10.1016/j.amc.2009.12.048 |
[38] | S. Stević, Norm of some operators from logarithmic Bloch-type spaces to weighted-type spaces, Appl. Math. Comput., 218 (2012), 11163–11170. https://doi.org/10.1016/j.amc.2012.04.073 doi: 10.1016/j.amc.2012.04.073 |
[39] | S. Stević, Essential norm of some extensions of the generalized composition operators between $k$th weighted-type spaces, J. Inequal. Appl., 2017 (2017), 1–13. https://doi.org/10.1186/s13660-017-1493-x doi: 10.1186/s13660-017-1493-x |
[40] | S. Stević, Norm of a multilinear integral operator from product of weighted-type spaces to weighted-type space, Math. Methods Appl. Sci., 45 (2021), 546–556. https://doi.org/10.1002/mma.7794 doi: 10.1002/mma.7794 |
[41] | S. Stević, Note on norm of an $m$-linear integral-type operator between weighted-type spaces, Adv. Differ. Equ., 2021 (2021), 1–10. https://doi.org/10.1186/s13662-021-03346-4 doi: 10.1186/s13662-021-03346-4 |
[42] | S. Stević, Note on norms of two integral-type operators on some spaces of functions on $ {\mathbb R}^n$, Math. Methods Appl. Sci., 44 (2021), 6500–6514. https://doi.org/10.1002/mma.7202 doi: 10.1002/mma.7202 |
[43] | S. Stević, S. I. Ueki, Integral-type operators acting between weighted-type spaces on the unit ball, Appl. Math. Comput., 215 (2009), 2464–2471. https://doi.org/10.1016/j.amc.2009.08.050 doi: 10.1016/j.amc.2009.08.050 |
[44] | V. A. Trenogin, Funktsional'niy analiz (in Russian), Nauka, Moskva, 1970. |
[45] | V. A. Trenogin, B. M. Pisarevskiy, T. S. Soboleva, Zadachi i uprazhneniya po funktsional'nomu analizu (in Russian), Nauka, Moskva, 1984. |
[46] | W. Yang, On an integral-type operator between Bloch-type spaces, Appl. Math. Comput., 215 (2009), 954–960. https://doi.org/10.1016/j.amc.2009.06.016 doi: 10.1016/j.amc.2009.06.016 |
[47] | W. Yang, X. Meng, Generalized composition operators from $F(p, q, s)$ spaces to Bloch-type spaces, Appl. Math. Comput., 217 (2010), 2513–2519. https://doi.org/10.1016/j.amc.2010.07.063 doi: 10.1016/j.amc.2010.07.063 |
[48] | W. Yang, W. Yan, Generalized weighted composition operators from area Nevanlinna spaces to weighted-type spaces, Bull. Korean Math. Soc., 48 (2011), 1195–1205. https://doi.org/10.4134/BKMS.2011.48.6.1195 doi: 10.4134/BKMS.2011.48.6.1195 |
[49] | X. Zhu, Multiplication followed by differentiation on Bloch-type spaces, Bull. Allahbad Math. Soc., 23 (2008), 25–39. |
[50] | X. Zhu, Generalized weighted composition operators from Bloch spaces into Bers-type spaces, Filomat, 26 (2012), 1163–1169. |
[51] | X. Zhu, Weighted composition operators from weighted-type spaces to Zygmund-type spaces, Math. Inequal. Appl., 19 (2016), 1067–1087. https://doi.org/10.7153/mia-19-79 doi: 10.7153/mia-19-79 |
[52] | V. A. Zorich, Mathematical analysis II, Springer-Verlag, Berlin, Heidelberg, 2004. |