The notion of the bipolar complex fuzzy set (BCFS) is a fundamental notion to be considered for tackling tricky and intricate information. Here, in this study, we want to expand the notion of BCFS by giving a general algebraic structure for tackling bipolar complex fuzzy (BCF) data by fusing the conception of BCFS and semigroup. Firstly, we investigate the bipolar complex fuzzy (BCF) sub-semigroups, BCF left ideal (BCFLI), BCF right ideal (BCFRI), BCF two-sided ideal (BCFTSI) over semigroups. We also introduce bipolar complex characteristic function, positive $ \left(\omega , \eta \right) $-cut, negative $ \left(\varrho , \sigma \right) $-cut, positive and $ \left(\left(\omega , \eta \right), \left(\varrho , \sigma \right)\right) $-cut. Further, we study the algebraic structure of semigroups by employing the most significant concept of BCF set theory. Also, we investigate numerous classes of semigroups such as right regular, left regular, intra-regular, and semi-simple, by the features of the bipolar complex fuzzy ideals. After that, these classes are interpreted concerning BCF left ideals, BCF right ideals, and BCF two-sided ideals. Thus, in this analysis, we portray that for a semigroup $ Ş $ and for each BCFLI $ {М}_{1} = \left({\mathrm{\lambda }}_{P-{М}_{1}}, {\mathrm{\lambda }}_{N-{М}_{1}}\right) = \left({\mathrm{\lambda }}_{RP-{М}_{1}}+\iota {\mathrm{\lambda }}_{IP-{М}_{1}}, {\mathrm{\lambda }}_{RN-{М}_{1}}+\iota {\mathrm{\lambda }}_{IN-{М}_{1}}\right) $ and BCFRI $ {М}_{2} = \left({\mathrm{\lambda }}_{P-{М}_{2}}, {\mathrm{\lambda }}_{N-{М}_{2}}\right) = \left({\mathrm{\lambda }}_{RP-{М}_{2}}+\iota {\mathrm{\lambda }}_{IP-{М}_{2}}, {\mathrm{\lambda }}_{RN-{М}_{2}}+\iota {\mathrm{\lambda }}_{IN-{М}_{2}}\right) $ over $ Ş $, $ {М}_{1}\cap {М}_{2} = {М}_{1}⊚{М}_{2} $ if and only if $ Ş $ is a regular semigroup. At last, we introduce regular, intra-regular semigroups and show that $ {М}_{1}\cap {М}_{2}\preccurlyeq {М}_{1}⊚{М}_{2} $ for each BCFLI $ {М}_{1} = \left({\mathrm{\lambda }}_{P-{М}_{1}}, {\mathrm{\lambda }}_{N-{М}_{1}}\right) = \left({\mathrm{\lambda }}_{RP-{М}_{1}}+\iota {\mathrm{\lambda }}_{IP-{М}_{1}}, {\mathrm{\lambda }}_{RN-{М}_{1}}+\iota {\mathrm{\lambda }}_{IN-{М}_{1}}\right) $ and for each BCFRI $ {М}_{2} = \left({\mathrm{\lambda }}_{P-{М}_{2}}, {\mathrm{\lambda }}_{N-{М}_{2}}\right) = \left({\mathrm{\lambda }}_{RP-{М}_{2}}+\iota {\mathrm{\lambda }}_{IP-{М}_{2}}, {\mathrm{\lambda }}_{RN-{М}_{2}}+\iota {\mathrm{\lambda }}_{IN-{М}_{2}}\right) $ over $ Ş $ if and only if a semigroup $ Ş $ is regular and intra-regular.
Citation: Ubaid Ur Rehman, Tahir Mahmood, Muhammad Naeem. Bipolar complex fuzzy semigroups[J]. AIMS Mathematics, 2023, 8(2): 3997-4021. doi: 10.3934/math.2023200
The notion of the bipolar complex fuzzy set (BCFS) is a fundamental notion to be considered for tackling tricky and intricate information. Here, in this study, we want to expand the notion of BCFS by giving a general algebraic structure for tackling bipolar complex fuzzy (BCF) data by fusing the conception of BCFS and semigroup. Firstly, we investigate the bipolar complex fuzzy (BCF) sub-semigroups, BCF left ideal (BCFLI), BCF right ideal (BCFRI), BCF two-sided ideal (BCFTSI) over semigroups. We also introduce bipolar complex characteristic function, positive $ \left(\omega , \eta \right) $-cut, negative $ \left(\varrho , \sigma \right) $-cut, positive and $ \left(\left(\omega , \eta \right), \left(\varrho , \sigma \right)\right) $-cut. Further, we study the algebraic structure of semigroups by employing the most significant concept of BCF set theory. Also, we investigate numerous classes of semigroups such as right regular, left regular, intra-regular, and semi-simple, by the features of the bipolar complex fuzzy ideals. After that, these classes are interpreted concerning BCF left ideals, BCF right ideals, and BCF two-sided ideals. Thus, in this analysis, we portray that for a semigroup $ Ş $ and for each BCFLI $ {М}_{1} = \left({\mathrm{\lambda }}_{P-{М}_{1}}, {\mathrm{\lambda }}_{N-{М}_{1}}\right) = \left({\mathrm{\lambda }}_{RP-{М}_{1}}+\iota {\mathrm{\lambda }}_{IP-{М}_{1}}, {\mathrm{\lambda }}_{RN-{М}_{1}}+\iota {\mathrm{\lambda }}_{IN-{М}_{1}}\right) $ and BCFRI $ {М}_{2} = \left({\mathrm{\lambda }}_{P-{М}_{2}}, {\mathrm{\lambda }}_{N-{М}_{2}}\right) = \left({\mathrm{\lambda }}_{RP-{М}_{2}}+\iota {\mathrm{\lambda }}_{IP-{М}_{2}}, {\mathrm{\lambda }}_{RN-{М}_{2}}+\iota {\mathrm{\lambda }}_{IN-{М}_{2}}\right) $ over $ Ş $, $ {М}_{1}\cap {М}_{2} = {М}_{1}⊚{М}_{2} $ if and only if $ Ş $ is a regular semigroup. At last, we introduce regular, intra-regular semigroups and show that $ {М}_{1}\cap {М}_{2}\preccurlyeq {М}_{1}⊚{М}_{2} $ for each BCFLI $ {М}_{1} = \left({\mathrm{\lambda }}_{P-{М}_{1}}, {\mathrm{\lambda }}_{N-{М}_{1}}\right) = \left({\mathrm{\lambda }}_{RP-{М}_{1}}+\iota {\mathrm{\lambda }}_{IP-{М}_{1}}, {\mathrm{\lambda }}_{RN-{М}_{1}}+\iota {\mathrm{\lambda }}_{IN-{М}_{1}}\right) $ and for each BCFRI $ {М}_{2} = \left({\mathrm{\lambda }}_{P-{М}_{2}}, {\mathrm{\lambda }}_{N-{М}_{2}}\right) = \left({\mathrm{\lambda }}_{RP-{М}_{2}}+\iota {\mathrm{\lambda }}_{IP-{М}_{2}}, {\mathrm{\lambda }}_{RN-{М}_{2}}+\iota {\mathrm{\lambda }}_{IN-{М}_{2}}\right) $ over $ Ş $ if and only if a semigroup $ Ş $ is regular and intra-regular.
[1] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[2] | A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517. https://doi.org/10.1016/0022-247X(71)90199-5 doi: 10.1016/0022-247X(71)90199-5 |
[3] | N. Kuroki, Fuzzy bi-ideal in semigroups, Comm. Math. Univ. Sancti Pauli, 27 (1979), 17–21. |
[4] | N. Kuroki, Fuzzy bi-ideals in semigroups, Rikkyo Daigaku sugaku zasshi, 28 (1980), 17–21. |
[5] | N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Set. Syst., 5 (1981), 203–215. https://doi.org/10.1016/0165-0114(81)90018-X doi: 10.1016/0165-0114(81)90018-X |
[6] | N. Kuroki, On fuzzy semigroups, Inform. Sci., 53 (1991), 203–236. https://doi.org/10.1016/0020-0255(91)90037-U doi: 10.1016/0020-0255(91)90037-U |
[7] | K. A. Dib, N. Galhum, Fuzzy ideals and fuzzy bi-ideals in fuzzy semigroups, Fuzzy Set. Syst., 92 (1997), 103–111. https://doi.org/10.1016/S0165-0114(96)00170-4 doi: 10.1016/S0165-0114(96)00170-4 |
[8] | B. Budimirović, V. Budimirović, B. Šešelja, A. Tepavčević, Fuzzy identities with application to fuzzy semigroups, Inform. Sci., 266 (2014), 148–159. https://doi.org/10.1016/j.ins.2013.11.007 doi: 10.1016/j.ins.2013.11.007 |
[9] | Y. B. Jun, S. Z. Song, Generalized fuzzy interior ideals in semigroups, Inform. Sci., 176 (2006), 3079–3093. https://doi.org/10.1016/j.ins.2005.09.002 doi: 10.1016/j.ins.2005.09.002 |
[10] | X. P. Wang, W. J. Liu, Fuzzy regular subsemigroups in semigroups, Inform. Sci., 68 (1993), 225–231. https://doi.org/10.1016/0020-0255(93)90106-V doi: 10.1016/0020-0255(93)90106-V |
[11] | N. Kehayopulu, M. Tsingelis, Fuzzy bi-ideals in ordered semigroups, Inform. Sci., 171 (2005), 13–28. https://doi.org/10.1016/j.ins.2004.03.015 doi: 10.1016/j.ins.2004.03.015 |
[12] | X. Y. Xie, J. Tang, Fuzzy radicals and prime fuzzy ideals of ordered semigroups, Inform. Sci., 178 (2008), 4357–4374. https://doi.org/10.1016/j.ins.2008.07.006 doi: 10.1016/j.ins.2008.07.006 |
[13] | N. Kehayopulu, M. Tsingelis, Intra-regular ordered semigroups in terms of fuzzy sets, Lobachevskii J. Math., 30 (2009), 23–29. https://doi.org/10.1134/S1995080209010041 doi: 10.1134/S1995080209010041 |
[14] | X. Y. Xie, J. Tang, Regular ordered semigroups and intra-regular ordered semigroups in terms of fuzzy subsets, Iran. J. Fuzzy Syst., 7 (2010), 121–140. |
[15] | M. Khan, F. Feng, S. Anis, M. Qadeer, Some characterizations of intra-regular semigroups by their generalized fuzzy ideals, Ann. Fuzzy Math. Inform., 5 (2013), 97–105. |
[16] | A. Jaradat, A. Al-Husban, The multi-fuzzy group spaces on multi-fuzzy space, J. Math. Comput. Sci., 11 (2021), 7535–7552. https://doi.org/10.28919/jmcs/5998 doi: 10.28919/jmcs/5998 |
[17] | W. R. Zhang, Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis, In Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, The Industrial Fuzzy Control and Intellige, IEEE, 1994,305–309. |
[18] | C. S. Kim, J. G. Kang, J. M. Kang, Ideal theory of semigroups based on the bipolar valued fuzzy set theory, Ann. Fuzzy Math. Inform., 2 (2011), 193–206. |
[19] | M. K. Kang, J. G. Kang, Bipolar fuzzy set theory applied to sub-semigroups with operators in semigroups, Pure Appl. Math., 19 (2012), 23–35. https://doi.org/10.7468/jksmeb.2012.19.1.23 doi: 10.7468/jksmeb.2012.19.1.23 |
[20] | S. K. Majumder, Bipolar valued fuzzy sets in Γ-semigroups, Math. Aeterna, 2 (2012), 203–213. |
[21] | M. S. Anitha, B. Yasodara, Properties of bipolar-valued fuzzy subsemigroups of a semigroup, J. Discret. Math. Sci. C., 22 (2019), 711–717. https://doi.org/10.1080/09720529.2019.1696239 doi: 10.1080/09720529.2019.1696239 |
[22] | P. Khamrot, M. Siripitukdet, On properties of generalized bipolar fuzzy semigroups, Songklanakarin J. Sci. Technol., 41 (2019). |
[23] | V. Chinnadurai, K. Arulmozhi, Characterization of bipolar fuzzy ideals in ordered gamma semigroups, J. Int. Math. Virtual Inst., 8 (2018), 141–156. https://doi.org/10.7251/JIMVI1801141C doi: 10.7251/JIMVI1801141C |
[24] | C. Li, B. Xu, H. Huang, Bipolar fuzzy abundant semigroups with applications, J. Intell. Fuzzy Syst., 39 (2020), 167–176. https://doi.org/10.3233/JIFS-190951 doi: 10.3233/JIFS-190951 |
[25] | H. Y. Ban, M. J. Kim, Y. J. Park, Bipolar fuzzy ideals with operators in semigroups, Ann. Fuzzy Math. Inform., 4 (2012), 253–265. |
[26] | T. Gaketem, P. Khamrot, On some semigroups characterized in terms of bipolar fuzzy weakly interior ideals, IAENG Int. J. Comput. Sci., 48 (2021), 250–256. |
[27] | M. Ibrar, A. Khan, F. Abbas, Generalized bipolar fuzzy interior ideals in ordered semigroups, Honam Math. J., 41 (2019), 285–300. https://doi.org/10.5831/HMJ.2019.41.2.285 doi: 10.5831/HMJ.2019.41.2.285 |
[28] | M. Akram, Bipolar fuzzy graphs, Inform. Sci., 181 (2011), 5548–5564. https://doi.org/10.1016/j.ins.2011.07.037 doi: 10.1016/j.ins.2011.07.037 |
[29] | N. O. Alshehri, M. Akram, Cayley bipolar fuzzy graphs, The Scientific World J., 2013 (2013). https://doi.org/10.1155/2013/156786 doi: 10.1155/2013/156786 |
[30] | M. Akram, M. Sarwar, W. A. Dudek, Special types of bipolar fuzzy graphs, In Graphs for the Analysis of Bipolar Fuzzy Information, Springer, Singapore, 2021,127–159. https://doi.org/10.1007/978-981-15-8756-6_3 |
[31] | T. Mahmood, A novel approach towards bipolar soft sets and their applications, J. Math., 2020 (2020). https://doi.org/10.1155/2020/4690808 doi: 10.1155/2020/4690808 |
[32] | M. Akram, J. Kavikumar, A. B. Khamis, Characterization of bipolar fuzzy soft Γ-semigroups, Indian J. Sci. Technol., 7 (2014), 1211–1221. https://doi.org/10.17485/ijst/2014/v7i8.18 doi: 10.17485/ijst/2014/v7i8.18 |
[33] | I. Deli, F. Karaaslan, Bipolar FPSS-tsheory with applications in decision making, Afr. Mat., 31 (2020), 493–505. https://doi.org/10.1007/s13370-019-00738-4 doi: 10.1007/s13370-019-00738-4 |
[34] | I. Deli, M. Ali, F. Smarandache, Bipolar neutrosophic sets and their application based on multi-criteria decision making problems, In 2015 International conference on advanced mechatronic systems (ICAMechS), IEEE, 2015,249–254. https://doi.org/10.1109/ICAMechS.2015.7287068 |
[35] | İ. Deli, Y. Şubaş, Bipolar neutrosophic refined sets and their applications in medical diagnosis, International Conference on Natural Science and Engineering, 2016. |
[36] | M. Ali, L. H. Son, I. Deli, N. D. Tien, Bipolar neutrosophic soft sets and applications in decision making, J. Intell. Fuzzy Syst., 33 (2017), 4077–4087. https://doi.org/10.3233/JIFS-17999 doi: 10.3233/JIFS-17999 |
[37] | D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE T. Fuzzy Syst., 10 (2002), 171–186. https://doi.org/10.1109/91.995119 doi: 10.1109/91.995119 |
[38] | D. E. Tamir, L. Jin, A. Kandel, A new interpretation of complex membership grade, Int. J. Intell. Syst., 26 (2011), 285–312. https://doi.org/10.1002/int.20454 doi: 10.1002/int.20454 |
[39] | A. Al-Husban, A. R. Salleh, Complex fuzzy group based on complex fuzzy space, Glob. J. Pure Appl. Math., 12 (2016), 1433–1450. https://doi.org/10.1063/1.4937059 doi: 10.1063/1.4937059 |
[40] | H. Alolaiyan, H. A. Alshehri, M. H. Mateen, D. Pamucar, M. Gulzar, A novel algebraic structure of (α, β)-complex fuzzy subgroups, Entropy, 23 (2021), 992. https://doi.org/10.3390/e23080992 doi: 10.3390/e23080992 |
[41] | T. Mahmood, U. Ur Rehman, A novel approach towards bipolar complex fuzzy sets and their applications in generalized similarity measures, Int. J. Intell. Syst., 37(2022), 535–567. https://doi.org/10.1002/int.22639 doi: 10.1002/int.22639 |
[42] | A. Al-Husban, A. Amourah, J. J. Jaber, Bipolar complex fuzzy sets and their properties, Ital. J. Pure Appl. Math., 43 (2020), 754–761. |
[43] | T. Mahmood, U. U. Rehman, J. Ahmmad, G. Santos-García, Bipolar complex fuzzy Hamacher aggregation operators and their applications in multi-attribute decision making, Mathematics, 10 (2021), 23. https://doi.org/10.3390/math10010023 doi: 10.3390/math10010023 |
[44] | T. Mahmood, A method to multi-attribute decision making technique based on Dombi aggregation operators under bipolar complex fuzzy information, Comput. Appl. Math., 41 (2022), 1–23. https://doi.org/10.1007/s40314-021-01695-0 doi: 10.1007/s40314-021-01695-0 |
[45] | T. Mahmood, U. U. Rehman, Z. Ali, M. Aslam, R. Chinram, Identification and classification of aggregation operators using bipolar complex fuzzy settings and their application in decision support systems, Mathematics, 10 (2022), 1726. https://doi.org/10.3390/math10101726 doi: 10.3390/math10101726 |
[46] | T. Mahmood, U. U. Rehman, A. Jaleel, J. Ahmmad, R. Chinram, Bipolar complex fuzzy soft sets and their applications in decision-making, Mathematics, 10 (2022), 1048. https://doi.org/10.3390/math10071048 doi: 10.3390/math10071048 |
[47] | K. H. Kim, Y. B. Jun, Intuitionistic fuzzy interior ideals of semigroups, Int. J. Math. Math. Sci., 27 (2001), 261–267. https://doi.org/10.1155/S0161171201010778 doi: 10.1155/S0161171201010778 |
[48] | I. Deli, Interval-valued neutrosophic soft sets and its decision making, Int. J. Mach. Learn. Cyb., 8 (2017), 665–676. https://doi.org/10.1007/s13042-015-0461-3 doi: 10.1007/s13042-015-0461-3 |
[49] | A. Al-Husban, Bipolar complex intuitionistic fuzzy sets, Earthline J. Math. Sci., 8(2022), 273–280. https://doi.org/10.34198/ejms.8222.273280 doi: 10.34198/ejms.8222.273280 |