Processing math: 36%
Research article Special Issues

Existence results by Mönch's fixed point theorem for a tripled system of sequential fractional differential equations

  • In this paper, we study the existence of the solutions for a tripled system of Caputo sequential fractional differential equations. The main results are established with the aid of Mönch's fixed point theorem. The stability of the tripled system is also investigated via the Ulam-Hyer technique. In addition, an applied example with graphs of the behaviour of the system solutions with different fractional orders are provided to support the theoretical results obtained in this study.

    Citation: Abeer Al Elaiw, Murugesan Manigandan, Muath Awadalla, Kinda Abuasbeh. Existence results by Mönch's fixed point theorem for a tripled system of sequential fractional differential equations[J]. AIMS Mathematics, 2023, 8(2): 3969-3996. doi: 10.3934/math.2023199

    Related Papers:

    [1] Muhammed Jamil, Rahmat Ali Khan, Kamal Shah, Bahaaeldin Abdalla, Thabet Abdeljawad . Application of a tripled fixed point theorem to investigate a nonlinear system of fractional order hybrid sequential integro-differential equations. AIMS Mathematics, 2022, 7(10): 18708-18728. doi: 10.3934/math.20221029
    [2] Gang Chen, Jinbo Ni, Xinyu Fu . Existence, and Ulam's types stability of higher-order fractional Langevin equations on a star graph. AIMS Mathematics, 2024, 9(5): 11877-11909. doi: 10.3934/math.2024581
    [3] Naimi Abdellouahab, Keltum Bouhali, Loay Alkhalifa, Khaled Zennir . Existence and stability analysis of a problem of the Caputo fractional derivative with mixed conditions. AIMS Mathematics, 2025, 10(3): 6805-6826. doi: 10.3934/math.2025312
    [4] Choukri Derbazi, Zidane Baitiche, Mohammed S. Abdo, Thabet Abdeljawad . Qualitative analysis of fractional relaxation equation and coupled system with Ψ-Caputo fractional derivative in Banach spaces. AIMS Mathematics, 2021, 6(3): 2486-2509. doi: 10.3934/math.2021151
    [5] Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari . Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222
    [6] Abeer Al Elaiw, Murugesan Manigandan, Muath Awadalla, Kinda Abuasbeh . Mönch's fixed point theorem in investigating the existence of a solution to a system of sequential fractional differential equations. AIMS Mathematics, 2023, 8(2): 2591-2610. doi: 10.3934/math.2023134
    [7] Yige Zhao, Yibing Sun, Zhi Liu, Yilin Wang . Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type. AIMS Mathematics, 2020, 5(1): 557-567. doi: 10.3934/math.2020037
    [8] Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263
    [9] Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with ABC fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071
    [10] M. Latha Maheswari, K. S. Keerthana Shri, Mohammad Sajid . Analysis on existence of system of coupled multifractional nonlinear hybrid differential equations with coupled boundary conditions. AIMS Mathematics, 2024, 9(6): 13642-13658. doi: 10.3934/math.2024666
  • In this paper, we study the existence of the solutions for a tripled system of Caputo sequential fractional differential equations. The main results are established with the aid of Mönch's fixed point theorem. The stability of the tripled system is also investigated via the Ulam-Hyer technique. In addition, an applied example with graphs of the behaviour of the system solutions with different fractional orders are provided to support the theoretical results obtained in this study.



    Fractional calculus (FCs) was first employed in 1695 when L'Hôpital's summarized his discoveries in a letter to Leibniz. (FCs) was studied by several twentieth-century authors, including Liouville, Grunwald, Letnikov, and Riemann. This field of mathematics, known as fractional differential equations (FDEs), was invented by mathematicians as a pure branch of mathematics with just a few applications in mathematics. Fractional differential equations appear naturally in a number of fields, such as physics, engineering, biophysics, blood flow phenomena, aerodynamics electroanalytical chemistry, biology, and economics. For more details, we refer the readers to [1,2,3,4,5] and many other references therein.

    In [6], the authors studied the drug concentration in the blood model via Psi-Caputo fractional derivative, where the fractional model there shows more accurate results in estimating the drug concentration in the blood. And in [7], again the fractional modeling for the logistic population growth shows superiority over the ordinary one.

    The majority of research on FDEs is based on fractional derivatives of the R-L and Caputo types. See [8,9,10,11,12,13]. Several studies have been conducted over the years to investigate how stability concepts such as Mittag-Lefler function, exponential, and Lyapunov stability apply to various types of dynamic systems. Ulam and Hyers, on the other hand, identified previously unknown types of stability known as Ulam-stability [14,15,16,17,18,19]. Hyer's type of stability study contributes significantly to our understanding of chemical processes and fluid movement, as well as semiconductors, population dynamics, heat conduction, and elasticity. While others have reported results using other types of stability, Ulam's group designed and implemented a type of stability for ordinary, fractional differential, and difference equations, see [20,21,22].

    Tripled fractional boundary conditions are regulated by three related differential equations with three initial or boundary conditions. Despite popular belief, researchers have paid less attention to studies of tripled fractional systems. According to the author's observations, there is no analytical literature on the existence of tripled systems of SFDEs. This is true to the best of their knowledge. A tripled fractional boundary value problem is being investigated by a few researchers. In [23], nonlinear mappings in partially ordered complete metric spaces were only studied by Berinde and Borcut, who developed the idea of tripled fixed points. Karakaya et al.[24] studied tripled fixed points for a class of condensing operators in Banach spaces.

    Recently, Subramanian et al. [18] investigated the existence and Hyers-Ulam type stability results fa or nonlinear coupled system of Caputo-Hadamard type FDEs with multi-point a non-local integral boundary conditions via the alternatives of Leray-Schauder, Banach fixed point theorems, H-U stable. Authors in [25], studied a nonlinear coupled system of three fractional differential equations with non-local coupled boundary conditions

    {cDηa+u(ϖ)=ρ(ϖ,u(ϖ),x(ϖ),y(ϖ)),1<η2,ϖ[a,b],cDξa+x(ϖ)=φ(ϖ,u(ϖ),x(ϖ),y(ϖ)),1<ξ2,ϖ[a,b],cDζa+y(ϖ)=ψ(ϖ,u(ϖ),x(ϖ),y(ϖ)),2<ζ3,ϖ[a,b],u(a)=u0,u(b)=mi=1pix(ψi),x(a)=0,x(b)=nj=1qjy(ϕj),y(ξ1)=0,y(ξ2)=0,y(b)=lk=1rku(ωk),a<ξ1<ξ2<ψ1<<ψm<ϕ1<<ϕn<ω1<<ωl<b,

    where cDχ is a CFDs of order χ{η,ξ,ζ},ρ,φ,ψ:[a,b]×Re×Re×ReRe are given functions, pi,qj,rkRe,i=1,,m,j=1,,n,k=1,,l. The existence and uniqueness results for the system are proved via Leray-Schauder alternative and Banach's contraction mapping principle.

    In[26], the authors investigated the existence and uniqueness of a solution for the tripled fractional systems with cyclic boundary conditions:

    {cDψkwk(τ)=fk(τ,w(τ)),1<ψk2,w(j)k(0)=ak,jw(j)ε(k)(T),k=1,2,3;j=0,1.

    Where cDψk0 denotes the Caputo fractional derivatives (CFDs) of order ψk, τJ=[0,T],fk:J×R3eRe are continuous functions, w=(w1,w2,w3)R3e,ε=(1,2,3) is a cyclic permutation, and ak,jk=1,2,3,j=0,1.

    Recently, in 2022, the authors developed the existence theory for a new class of nonlinear coupled systems of sequential fractional differential equations supplemented with coupled, non-conjugate, Riemann-Stieltjes, integro-multipoint boundary conditions [27]:

    {(cDξ1+1+cDξ1)Φ1(ω)=G1(ω,Φ1(ω),Ψ1(ω)),    2<ξ1<3,ω[0,1],(cDζ1+1+cDζ1)Ψ1(ω)=G2(ω,Φ1(ω),Ψ1(ω)),    2<ζ1<3,ω[0,1], (1.1)

    subject to the coupled boundary conditions:

    {Φ1(0)=0,Φ1(0)=0, Φ1(0)=0, Φ1(1)=kρ0Ψ1(s)dAs+n2i=1αiΨ1(σi)+k11vΨ1(s)dA(s),Ψ1(0)=0,Ψ1(0)=0, Ψ1(0)=0, Ψ1(1)=hρ0Φ1(s)dAs+n2i=1βiΦ1(σi)+h11vΦ1(s)dA(s), (1.2)

    where cDP denotes the Caputo fractional derivative of order Pξ1,ζ1, 0<ρ<σi<v<1, G1,G2:[0,1]×R×R×RR are given continuous functions, k,k1,h,h1,αi,βiR,i=1,2,n2 and A is a function of bounded variation.

    Motivated by the aforementioned works, the following system represents a unique class of tripled systems of SFDEs equipped with non-local multi-point coupled boundary conditions:

    {(cDψ+φcDψ1)w(ϖ)=f(ϖ,w(ϖ),v(ϖ),u(ϖ)),2<ψ3,(cDϕ+φcDϕ1)v(ϖ)=g(ϖ,w(ϖ),v(ϖ),u(ϖ)),2<ϕ3,(cDω+φcDω1)u(ϖ)=h(ϖ,w(ϖ),v(ϖ),u(ϖ)),3<ω4,w(0)=0,w(0)=0,w(T)=Υ1k2j=1ξjv(ζj)+Π1Iςv(ϑ),v(0)=0,v(0)=0,v(T)=Υ2k2j=1νju(ζj)+Π2Iϱu(ϑ),u(0)=0,u(0)=0,u(0)=0,u(T)=Υ3k2j=1σjw(ζj)+Π3Iδw(ϑ), (1.3)

    where cDχ is a CFDs of order χ{ψ,ϕ,ω},f,g,h:[0,T]×Re×Re×ReRe are given functions, ξj,νj,σjRe,j=1,,k2,0<ζj,ϑ<1,φ>0 are non-negative real constants and Υ1,Υ2,Υ3,Π1,Π2,Π3 are real constants.

    The originality and distinction of this work are summarized in employing mönch's fixed point theorem with the aid of the Kuratowski measure of non-compactness and Carathéodory's conditions, to verify the necessary conditions for the existence of the solution to the system of fractional and nonlinear equations of sequential type. This work also examines the stability of the solution for the proposed system of equations.

    The following is the remainder of the article: The second section is dedicated to explaining the fundamental principles of fractional calculus and the associated definitions and lemmas. mönch's fixed point theorem is used in Section 3 to show existence results. In Section 4, the stability of Hyers- Ulam solutions is examined, and a set of requirements are established that ensures the stability of these solutions. Section 5 provides some examples are provided applied example support the theoretical claims.

    This portion introduces basic fractional calculus concepts, definitions, and tentative results [1,2,3].

    Definition 2.1. [28] The left and right-sided generalized fractional integrals (GFIs) of fZqb(c,d) of order ξ>0 and ρ<0 for <c<τ<d<, are are defined as follows:

    (ρIξc+f)(τ)=ρ1ξω(ξ)τcsρ1(τρsρ)1ξf(ρ)dρ, (2.1)
    (ρIζdf)(τ)=ρ1ξω(ξ)dτsρ1(sρτρ)1ξf(ρ)dρ. (2.2)

    Definition 2.2. [28] The fractional integral of order ψ with the lower limit zero for a function k is defined as

    Iψk(τ)=1Γ(ψ)τ0k(ρ)(τρ)1ψds,τ>0,ψ>0, (2.3)

    provided the right-hand side is point-wise defined on [0,), where Γ() is the gamma function, which is defined by Γ(ψ)=0τψ1eτdτ.

    Definition 2.3. [28] The generalized fractional derivatives (GFDs) which are associated with GFIs (2.1) and (2.2) for 0c<τ<d<, are defined as follows:

    (ρDξc+f)(τ)=(τ1ρddτ)n(ρInξc+f)(τ)=ρξn+1ω(nξ)(τ1ρddτ)nτcsρ1(τρsρ)ξn+1f(ρ)dρ, (2.4)
    (ρDξdf)(τ)=(τ1ρddτ)n(ρInξdf)(τ)=ρξn+1ω(nξ)(τ1ρddτ)ndτsρ1(τρsρ)ξn+1f(ρ)dρ, (2.5)

    if the integrals exist.

    Definition 2.4. [28] The Riemann-Liouville fractional derivative of order ψ>0,n1<ψ<n,nN is defined as

    Dψ0+k(τ)=1Γ(nψ)(ddτ)nτ0(τρ)nψ1k(ρ)dρ,τ>0, (2.6)

    where the function k has absolutely continuous derivative up to order (n1).

    Definition 2.5. [28] The Caputo derivative of order ψ[n1,n) for a function k:[0,)(R) can be written as

    cDψ0+k(τ)=Dψ0+(k(τ)n1m=0τmm!f(m)(0)),τ>0,n1<r<n. (2.7)

    Note that the CFDs of order ψ[n1,n) almost everywhere on [0,) if kACn([0,),(R)).

    Remark 2.1. [28] If kCn[0,), then

    cDψ0+k(τ)=1Γ(nψ)τ0kn(ρ)(τρ)ψ+1nds=Inψk(n)(τ),τ>0,n1<ψ<n.

    Denote the Banach space of all continuous functions z from [a,T] into Q by C([a,T],Q), accompanied by the norm: ||Z||=supaτT{z(τ)}

    Definition 2.6. (See [29]). The Kuratowski measure of non-compactness k(). Defined on bounded set U of Banach space Q is :

    k(U):=inf{r>0:U=mi=1Ui  anddiam(Ui)r, for 1im}.

    Lemma 2.1. (See [29]). Given the Banach space Q with U,V are two bounded proper subsets of Q, then the following properties hold true:

    (1) If UV, then k(U)k(V);

    (2) k(U)=k(ˉU)=k(¯convU);

    (3) U is relatively compact k(U)=0;

    (4) k(δU)=|δ|k(U),δ;

    (5) k(UV)=max{k(U),k(V)};

    (6) k(U+V)=k(U)+k(V),U+V={x|x=u+v,uU,vV};

    (7) k(U+y)=k(U),yQ.

    Lemma 2.2. (See [30]). Given an equicontinuous and bounded set SC([a,T],Q), then the function ϖk(S(ϖ)) is continuous on [a,T],kC(S)=maxϖ[a,T]k(S(ϖ)), and

    k(Tax(τ)dτ)(Ta(x(τ))dτ),S(τ)={x(τ):xS}. (2.8)

    Definition 2.7. (See [31]). Given the function Ψ:[a,T]×QQ,Ψ satisfy the Carathˊeodory's conditions, if the following conditions applies:

    Ψ(ϖ,z) is measurable in ϖ for zQ;

    Ψ(ϖ,z) is continuous in zQ for ϖ[a,T].

    Theorem 2.1. (mönch's fixed point theorem [32]). Given a bounded, closed, and convex subset ΩQ, such that 0Ω, let also T be a continuous mapping of Ω into itself.

    If S=¯convT(S), or S=T(S){0}, then k(S)=0, satisfied SΩ, then T has a fixed point.

    We are now ready to introduce an important lemma that we have discovered to solve the system.

    Lemma 2.3. Let ~G1,~G2,~G3C[0,T] and Δ0. Then the solution of the linear fractional differential system

    {(cDψ+φcDψ1)w(ϖ)=~G1,2<ψ3,(cDϕ+φcDϕ1)v(ϖ)=~G2,2<ϕ3,(cDω+φcDω1)u(ϖ)=~G3,3<ω4,w(0)=0,w(0)=0,w(T)=Υ1k2j=1ξjv(ζj)+Π1Iςv(ϑ),v(0)=0,v(0)=0,v(T)=Υ2k2j=1νju(ζj)+Π2Iϱu(ϑ),u(0)=0,u(0)=0,u(0)=0,u(T)=Υ3k2j=1σjw(ζj)+Π3Iδw(ϑ), (2.9)

    it is provided by the following equations

    w(ϖ)=(φϖ1+eφϖ)φ2E1[Υ1k2j=1ξjζj0eφ(ζjρ)(ρ0(ρτ)ϕ2Γ(ϕ1)~G2(τ)dτ)dρ+Π1ς0(ςρ)ϑ1Γ(ϑ)(ρ0eφ(ρτ)(τ0(τm)ϕ2Γ(ϕ1)~G2(m)dm)dτ)dρT0eφ(Tρ)(ρ0(ρτ)ψ2Γ(ψ1)~G1(τ)dτ)dρ+1Δ(E1E2E5{Υ2k2j=1νjζj0eφ(ζjρ)(ρ0(ρτ)ω2Γ(ω1)~G3(τ)dτ)dρ+Π2ϱ0(ϱρ)ϑ1Γ(ϑ)(ρ0eφ(ρτ)(τ0(τm)ω2Γ(ω1)~G3(m)dm)dτ)dρT0eφ(Tρ)(ρ0(ρτ)ϕ2Γ(ϕ1)~G2(τ)dτ)dρ}+E2E4E6{Υ1k2j=1ξjζj0eφ(ζjρ)(ρ0(ρτ)ϕ2Γ(ϕ1)~G2(τ)dτ)dρ+Π1ς0(ςρ)ϑ1Γ(ϑ)(ρ0eφ(ρτ)(τ0(τm)ϕ2Γ(ϕ1)~G2(m)dm)dτ)dρT0eφ(Tρ)(ρ0(ρτ)ψ2Γ(ψ1)~G1(τ)dτ)dρ}+E1E2E4{Υ3k2j=1σjζj0eφ(ζjρ)(ρ0(ρτ)ψ2Γ(ψ1)~G1(τ)dτ)dρ+Π3δ0(δρ)ϑ1Γ(ϑ)(ρ0eφ(ρτ)(τ0(τm)ψ2Γ(ψ1)~G1(m)dm)dτ)dρT0eφ(Tρ)(ρ0(ρτ)ω2Γ(ω1)~G3(τ)dτ)dρ})]+ϖ0eφ(ϖρ)(ρ0(ρτ)ψ2Γ(ψ1)~G1(τ)dτ)dρ, (2.10)
    v(ϖ)=(φϖ1+eφϖ)φ2Δ[(E1E5{Υ2k2j=1νjζj0eφ(ζjρ)(ρ0(ρτ)ω2Γ(ω1)~G3(τ)dτ)dρ+Π2ϱ0(ϱρ)ϑ1Γ(ϑ)(ρ0eφ(ρτ)(τ0(τm)ω2Γ(ω1)~G3(m)dm)dτ)dρT0eφ(Tρ)(ρ0(ρτ)ϕ2Γ(ϕ1)~G2(τ)dτ)dρ}+E4E6{Υ1k2j=1ξjζj0eφ(ζjρ)(ρ0(ρτ)ϕ2Γ(ϕ1)~G2(τ)dτ)dρ+Π1ς0(ςρ)ϑ1Γ(ϑ)(ρ0eφ(ρτ)(τ0(τm)ϕ2Γ(ϕ1)~G2(m)dm)dτ)dρT0eφ(Tρ)(ρ0(ρτ)ψ2Γ(ψ1)~G1(τ)dτ)dρ}+E1E4{Υ3k2j=1σjζj0eφ(ζjρ)(ρ0(ρτ)ψ2Γ(ψ1)~G1(τ)dτ)dρ+Π3δ0(δρ)ϑ1Γ(ϑ)(ρ0eφ(ρτ)(τ0(τm)ψ2Γ(ψ1)~G1(m)dm)dτ)dρT0eφ(Tρ)(ρ0(ρτ)ω2Γ(ω1)~G3(τ)dτ)dρ})]+ϖ0eφ(ϖρ)(ρ0(ρτ)ϕ2Γ(ϕ1)~G2(τ)dτ)dρ, (2.11)
    u(ϖ)=(φ2ϖ22φϖ+2eφϖ)φ3Δ×[(E3E6{Υ1k2j=1ξjζj0eφ(ζjρ)(ρ0(ρτ)ϕ2Γ(ϕ1)~G2(τ)dτ)dρ+Π1ς0(ςρ)ϑ1Γ(ϑ)(ρ0eφ(ρτ)(τ0(τm)ϕ2Γ(ϕ1)~G2(m)dm)dτ)dρT0eφ(Tρ)(ρ0(ρτ)ψ2Γ(ψ1)~G1(τ)dτ)dρ}+E1E3{Υ3k2j=1σjζj0eφ(ζjρ)(ρ0(ρτ)ψ2Γ(ψ1)~G1(τ)dτ)dρ+Π3δ0(δρ)ϑ1Γ(ϑ)(ρ0eφ(ρτ)(τ0(τm)ψ2Γ(ψ1)~G1(m)dm)dτ)dρT0eφ(Tρ)(ρ0(ρτ)ω2Γ(ω1)~G3(τ)dτ)dρ}+E2E6{Υ2k2j=1νjζj0eφ(ζjρ)(ρ0(ρτ)ω2Γ(ω1)~G3(τ)dτ)dρ+Π2ϱ0(ϱρ)ϑ1Γ(ϑ)(ρ0eφ(ρτ)(τ0(τm)ω2Γ(ω1)~G3(m)dm)dτ)dρT0eφ(Tρ)(ρ0(ρτ)ϕ2Γ(ϕ1)~G2(τ)dτ)dρ})]+ϖ0eφ(ϖρ)(ρ0(ρτ)ω2Γ(ω1)~G3(τ)dτ)dρ, (2.12)

    where

    E1=(φT1+eφT)φ2,E2=1φ2[Υ1k2j=1ξj(φζj1+eφζj)+Π1ϑ0(ϑρ)ς1Γ(ς)(φs1+eφs)dρ],E3=(φT1+eφT)φ2,E4=1φ3[Υ2k2j=1νj(φ2ζj22φζj+2eφζj)+Π2ϑ0(ϑρ)ϱ1Γ(ϱ)(φ2s22φs+22eφs)dρ],E5=(φ2T22φT+22eφT)φ3,E6=1φ2[Υ3k2j=1σj(φζj1+eφζj)+Π3ϑ0(ϑρ)δ1Γ(δ)(φs1+eφs)dρ],Δ=E1E3E5E2E4E6. (2.13)

    Let ˆJ=C([0,T],Re) be a Banach space endowed with the norm w=sup{|w(ϖ)|,ϖ[0,T]}. Then (ˆJ׈J׈J,(w,v,u)ˆJ) is also a Banach space equipped with the norm (w,v,u)ˆJ=w+v+u,w,v,uˆJ.

    In view of Lemma 2.3, we define an operator F:ˆJ׈J׈JˆJ׈J׈J by

    F(w(ϖ),v(ϖ),u(ϖ))=F1(w(ϖ),v(ϖ),u(ϖ)),F2(w(ϖ),v(ϖ),u(ϖ)),F3(w(ϖ),v(ϖ),u(ϖ)),

    where,

    F1(w(ϖ),v(ϖ),u(ϖ))=(φϖ1+eφϖ)φ2E1[Υ1k2j=1ξjζj0eφ(ζjρ)(ρ0(ρτ)ϕ2Γ(ϕ1)g(τ,w(τ),v(τ),u(τ))dτ)dρ+Π1ς0(ςρ)ϑ1Γ(ϑ)(ρ0eφ(ρτ)(τ0(τm)ϕ2Γ(ϕ1)g(m,w(m),v(m),u(m))dm)dτ)dρT0eφ(Tρ)(ρ0(ρτ)ψ2Γ(ψ1)f(τ,w(τ),v(τ),u(τ))dτ)dρ+1Δ(E1E2E5{Υ2k2j=1νjζj0eφ(ζjρ)(ρ0(ρτ)ω2Γ(ω1)h(τ,w(τ),v(τ),u(τ))dτ)dρ+Π2ϱ0(ϱρ)ϑ1Γ(ϑ)(ρ0eφ(ρτ)(τ0(τm)ω2Γ(ω1)h(m,w(m),v(m),u(m))dm)dτ)dρT0eφ(Tρ)(ρ0(ρτ)ϕ2Γ(ϕ1)g(τ,w(τ),v(τ),u(τ))dτ)dρ}+E2E4E6{Υ1k2j=1ξjζj0eφ(ζjρ)(ρ0(ρτ)ϕ2Γ(ϕ1)g(τ,w(τ),v(τ),u(τ))dτ)dρ+Π1ς0(ςρ)ϑ1Γ(ϑ)(ρ0eφ(ρτ)(τ0(τm)ϕ2Γ(ϕ1)g(m,w(m),v(m),u(m))dm)dτ)dρT0eφ(Tρ)(ρ0(ρτ)ψ2Γ(ψ1)f(τ,w(τ),v(τ),u(τ))dτ)dρ}+E1E2E4{Υ3k2j=1σjζj0eφ(ζjρ)(ρ0(ρτ)ψ2Γ(ψ1)f(τ,w(τ),v(τ),u(τ))dτ)dρ+Π3δ0(δρ)ϑ1Γ(ϑ)(ρ0eφ(ρτ)(τ0(τm)ψ2Γ(ψ1)f(m,w(m),v(m),u(m))dm)dτ)dρT0eφ(Tρ)(ρ0(ρτ)ω2Γ(ω1)h(τ,w(τ),v(τ),u(τ))dτ)dρ})]+ϖ0eφ(ϖρ)(ρ0(ρτ)ψ2Γ(ψ1)f(τ,w(τ),v(τ),u(τ))dτ)dρ, (3.1)
    F2(w(ϖ),v(ϖ),u(ϖ))=(φϖ1+eφϖ)φ2Δ×[(E1E5{Υ2k2j=1νjζj0eφ(ζjρ)(ρ0(ρτ)ω2Γ(ω1)h(τ,w(τ),v(τ),u(τ))dτ)dρ+Π2ϱ0(ϱρ)ϑ1Γ(ϑ)(ρ0eφ(ρτ)(τ0(τm)ω2Γ(ω1)h(m,w(m),v(m),u(m))dm)dτ)dρT0eφ(Tρ)(ρ0(ρτ)ϕ2Γ(ϕ1)g(τ,w(τ),v(τ),u(τ))dτ)dρ}+E4E6{Υ1k2j=1ξjζj0eφ(ζjρ)(ρ0(ρτ)ϕ2Γ(ϕ1)g(τ,w(τ),v(τ),u(τ))dτ)dρ+Π1ς0(ςρ)ϑ1Γ(ϑ)(ρ0eφ(ρτ)(τ0(τm)ϕ2Γ(ϕ1)g(m,w(m),v(m),u(m))dm)dτ)dρT0eφ(Tρ)(ρ0(ρτ)ψ2Γ(ψ1)f(τ,w(τ),v(τ),u(τ))dτ)dρ}+E1E4{Υ3k2j=1σjζj0eφ(ζjρ)(ρ0(ρτ)ψ2Γ(ψ1)f(τ,w(τ),v(τ),u(τ))dτ)dρ+Π3δ0(δρ)ϑ1Γ(ϑ)(ρ0eφ(ρτ)(τ0(τm)ψ2Γ(ψ1)f(m,w(m),v(m),u(m))dm)dτ)dρT0eφ(Tρ)(ρ0(ρτ)ω2Γ(ω1)h(τ,w(τ),v(τ),u(τ))dτ)dρ})]+ϖ0eφ(ϖρ)(ρ0(ρτ)ϕ2Γ(ϕ1)g(τ,w(τ),v(τ),u(τ))dτ)dρ, (3.2)
    \begin{align} &\mathscr{F}_{3} \bigl(\mathfrak{w}(\varpi), \mathfrak{v}(\varpi), \mathfrak{u}(\varpi)\bigr) = \frac{(\varphi^{2}\varpi^{2}-2\varphi\varpi+2-e^{-\varphi\varpi})}{\varphi^{3}\Delta}\\\times&\left[\left(\mathcal{E}_{3}\mathcal{E}_{6}\left\lbrace\Upsilon_{1}\sum\limits_{j = 1}^{k-2} \xi_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} \mathfrak{g}(\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))d\tau \right)d\rho \right.\right.\right.\\& \left. \left. \left. +\Pi_{1}\int_{0}^{\varsigma} \frac{(\varsigma-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\phi-2}}{\varGamma(\phi-1)} \mathfrak{g}(m, \mathfrak{w}(m), \mathfrak{v}(m), \mathfrak{u}(m))dm \right)d\tau\right)d\rho \right.\right.\right.\\& \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} \mathfrak{f}(\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))d\tau \right)d\rho \right\rbrace \right.\right.\\& \left.\left. +\mathcal{E}_{1}\mathcal{E}_{3}\left\lbrace \Upsilon_{3}\sum\limits_{j = 1}^{k-2} \sigma_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} \mathfrak{f}(\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))d\tau \right)d\rho \right.\right.\right.\\& \left. \left. \left. + \Pi_{3}\int_{0}^{\delta} \frac{(\delta-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\psi-2}}{\varGamma(\psi-1)} \mathfrak{f}(m, \mathfrak{w}(m), \mathfrak{v}(m), \mathfrak{u}(m))dm \right)d\tau\right)d\rho \right.\right.\right.\\& \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\omega-2}}{\varGamma(\omega-1)} \mathfrak{h}(\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))d\tau \right)d\rho \right\rbrace \right.\right.\\& \left. \left. +\mathcal{E}_{2}\mathcal{E}_{6}\left\lbrace \Upsilon_{2}\sum\limits_{j = 1}^{k-2} \nu_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\omega-2}}{\varGamma(\omega-1)} \mathfrak{h}(\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))d\tau \right)d\rho \right.\right.\right.\\& \left. \left. \left. +\Pi_{2}\int_{0}^{\varrho} \frac{(\varrho-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\omega-2}}{\varGamma(\omega-1)} \mathfrak{h}(m, \mathfrak{w}(m), \mathfrak{v}(m), \mathfrak{u}(m))dm \right)d\tau\right)d\rho \right.\right.\right.\\& \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} \mathfrak{g}(\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))d\tau \right)d\rho \right\rbrace \right) \right] \\& + \int_{0}^{\varpi} e^{-\varphi(\varpi-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\omega-2}}{\varGamma(\omega-1)} \mathfrak{h}(\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))d\tau \right)d\rho. \end{align} (3.3)

    For easy computations, we set

    \begin{array}{l} \mathcal{P}_{1} = \frac{(\varphi-1+e^{-\varphi})}{\varphi^{2}\mathcal{E}_{1}}\\ \times\left[\frac{\mathcal{T}^{\psi-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\psi)}+ \frac{\mathcal{E}_{2}\mathcal{E}_{4}\mathcal{E}_{6}}{\Delta}\frac{\mathcal{T}^{\psi-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\psi)} +\frac{\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{4}}{\Delta} \left\lbrace \Upsilon_{3}\sum\limits_{j = 1}^{k-2}|\sigma_{j}|\left(\frac{\zeta_{j}^{\psi}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\psi)} \right) \right.\right.\\ \left.\left.+\Pi_{3} \frac{\delta^{\psi+\vartheta-1}}{\varphi^{2}\varGamma(\psi)\varGamma(\vartheta)}(\delta\varphi+e^{-\varphi\delta}-1) \right\rbrace \right] + \frac{(1-e^{-\varphi})}{\varphi\varGamma(\psi)}, \\ \mathcal{Q}_{1} = \frac{(\varphi-1+e^{-\varphi})}{\varphi^{2}\mathcal{E}_{1}} \left[ \left\lbrace \Upsilon_{1}\sum\limits_{j = 1}^{k-2}|\xi_{j}|\left(\frac{\zeta_{j}^{\phi}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\phi)} \right) +\Pi_{1} \frac{\varsigma^{\phi+\vartheta-1}}{\varphi^{2}\varGamma(\phi)\varGamma(\vartheta)}(\varsigma\varphi+e^{-\varphi\varsigma}-1) \right\rbrace \right. \\ \left. +\frac{\mathcal{E}_{2}\mathcal{E}_{4}\mathcal{E}_{6}}{\Delta} \left\lbrace \Upsilon_{1}\sum\limits_{j = 1}^{k-2}|\xi_{j}|\left(\frac{\zeta_{j}^{\phi}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\phi)} \right) +\Pi_{1} \frac{\varsigma^{\phi+\vartheta-1}}{\varphi^{2}\varGamma(\phi)\varGamma(\vartheta)}(\varsigma\varphi+e^{-\varphi\varsigma}-1) \right\rbrace \right. \\ \left. +\frac{\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{5}}{\Delta}\frac{\mathcal{T}^{\phi-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\phi)} \right], \\ \mathcal{O}_{1} = \frac{(\varphi-1+e^{-\varphi})}{\varphi^{2}\mathcal{E}_{1}}\left[ \frac{\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{4}}{\Delta}\left\lbrace \frac{\mathcal{T}^{\omega-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\omega)}\right\rbrace+ \frac{\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{5}}{\Delta} \left\lbrace\Upsilon_{2}\sum\limits_{j = 1}^{k-2}|\nu_{j}|\left(\frac{\zeta_{j}^{\omega}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\omega)} \right)\right.\right.\\ \left.\left. +\Pi_{2} \frac{\varrho^{\omega+\vartheta-1}}{\varphi^{2}\varGamma(\omega)\varGamma(\vartheta)}(\varrho\varphi+e^{-\varphi\varrho}-1) \right\rbrace \right], \end{array}
    \begin{array}{l} \mathcal{P}_{2} = \frac{(\varphi-1+e^{-\varphi})}{\varphi^{2}\Delta}\left[{\mathcal{E}_{4}\mathcal{E}_{6}} \left\lbrace\frac{\mathcal{T}^{\psi-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\psi)} \right\rbrace +{\mathcal{E}_{1}\mathcal{E}_{4}} \left\lbrace \Upsilon_{3}\sum\limits_{j = 1}^{k-2}|\sigma_{j}|\left(\frac{\zeta_{j}^{\psi}(1-e^{-\varphi\zeta_{j}}\;\;)}{\varphi\varGamma(\psi)} \right) \right.\right.\\ \left.\left.+\Pi_{3} \frac{\delta^{\psi+\vartheta-1}}{\varphi^{2}\varGamma(\psi)\varGamma(\vartheta)}(\delta\varphi+e^{-\varphi\delta}-1) \right\rbrace \right], \\ \mathcal{Q}_{2} = \frac{(\varphi-1+e^{-\varphi})}{\varphi^{2}\Delta} \left[{\mathcal{E}_{4}\mathcal{E}_{6}} \left\lbrace \Upsilon_{1}\sum\limits_{j = 1}^{k-2}|\xi_{j}|\left(\frac{\zeta_{j}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\phi)} \right) +\Pi_{1} \frac{\varsigma^{\phi+\vartheta-1}}{\varphi^{2}\varGamma(\phi)\varGamma(\vartheta)}(\varsigma\varphi+e^{-\varphi\varsigma}-1) \right\rbrace \right. \\ \left. +{\mathcal{E}_{1}\mathcal{E}_{5}}\left\lbrace \frac{\mathcal{T}^{\phi-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\phi)} \right\rbrace \right]+\frac{(1-e^{-\varphi})}{\varphi\varGamma(\phi)}, \\ \mathcal{O}_{2} = \frac{(\varphi-1+e^{-\varphi})}{\varphi^{2}\Delta}\left[ {\mathcal{E}_{1}\mathcal{E}_{4}}\left\lbrace \frac{\mathcal{T}^{\omega-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\omega)}\right\rbrace+ {\mathcal{E}_{1}\mathcal{E}_{5}} \left\lbrace\Upsilon_{2}\sum\limits_{j = 1}^{k-2}|\nu_{j}|\left(\frac{\zeta_{j}^{\omega}(1-e^{-\varphi\zeta_{j}}\;\;)}{\varphi\varGamma(\omega)} \right)\right.\right.\\ \left.\left. +\Pi_{2} \frac{\varrho^{\omega+\vartheta-1}}{\varphi^{2}\varGamma(\omega)\varGamma(\vartheta)}(\varrho\varphi+e^{-\varphi\varrho}-1) \right\rbrace \right], \\ \mathcal{P}_{3} = \frac{(\varphi^{2}-2\varphi+2-2e^{-\varphi})}{\varphi^{3}\Delta}\left[{\mathcal{E}_{3}\mathcal{E}_{6}} \left\lbrace\frac{\mathcal{T}^{\psi-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\psi)} \right\rbrace +{\mathcal{E}_{1}\mathcal{E}_{3}} \left\lbrace \Upsilon_{3}\sum\limits_{j = 1}^{k-2}|\sigma_{j}|\left(\frac{\zeta_{j}^{\psi}(1-e^{-\varphi\zeta_{j}}\;\;)}{\varphi\varGamma(\psi)} \right) \right.\right.\\ \left.\left.+\Pi_{3} \frac{\delta^{\psi+\vartheta-1}}{\varphi^{2}\varGamma(\psi)\varGamma(\vartheta)}(\delta\varphi+e^{-\varphi\delta}-1) \right\rbrace \right], \\ \mathcal{Q}_{3} = \frac{(\varphi^{2}-2\varphi+2-2e^{-\varphi})}{\varphi^{3}\Delta} \left[{\mathcal{E}_{3}\mathcal{E}_{6}} \left\lbrace \Upsilon_{1}\sum\limits_{j = 1}^{k-2}|\xi_{j}|\left(\frac{\zeta_{j}^{\phi}(1-e^{-\varphi\zeta_{j}}\;\;)}{\varphi\varGamma(\phi)} \right)\right. \right. \\ \left. \left. +\Pi_{1} \frac{\varsigma^{\phi+\vartheta-1}}{\varphi^{2}\varGamma(\phi)\varGamma(\vartheta)}(\varsigma\varphi+e^{-\varphi\varsigma}-1) \right\rbrace +{\mathcal{E}_{2}\mathcal{E}_{6}}\left\lbrace \frac{\mathcal{T}^{\phi-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\phi)} \right\rbrace \right], \\ \mathcal{O}_{3} = \frac{(\varphi^{2}-2\varphi+2-2e^{-\varphi})}{\varphi^{3}\Delta}\left[ {\mathcal{E}_{1}\mathcal{E}_{3}}\left\lbrace \frac{\mathcal{T}^{\omega-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\omega)}\right\rbrace+ {\mathcal{E}_{2}\mathcal{E}_{6}} \left\lbrace\Upsilon_{2}\sum\limits_{j = 1}^{k-2}|\nu_{j}|\left(\frac{\zeta_{j}^{\omega}(1-e^{-\varphi\zeta_{j}}\;\;)}{\varphi\varGamma(\omega)} \right)\right.\right.\\ \left.\left. +\Pi_{2} \frac{\varrho^{\omega+\vartheta-1}}{\varphi^{2}\varGamma(\omega)\varGamma(\vartheta)}(\varrho\varphi+e^{-\varphi\varrho}-1) \right\rbrace \right] + \frac{(1-e^{-\varphi})}{\varphi\varGamma(\omega)}. \end{array} (3.4)

    For the applicability of the Mönch's fixed point theorem of our proposed triple system of our proposed triple system given in (1.3), we set the following assumptions:

    (\mathcal{H}_{1}) Assume the functions \mathfrak{f}, \mathfrak{g}, \mathfrak{h} : [0, \mathcal{T}] \times \mathcal{R}_{e}^{3}\rightarrow \mathcal{R}_{e} satisfy Carathéodory's conditions.

    (\mathcal{H}_{2}) There exist \mathfrak{l}_\mathfrak{f}, \mathfrak{l}_\mathfrak{g}, \mathfrak{l}_\mathfrak{h} \in \mathcal{L}^{\infty} ([0, \mathcal{T}]), \mathcal{R}_{{e}_{+}} , and there exist a non-decreasing continuous functions \partial_\mathfrak{f}, \partial_\mathfrak{g}, \partial_\mathfrak{h} :\mathcal{R}_{{e}_{+}} \rightarrow \mathcal{R}_{{e}_{+}} , such that \forall \varpi \in[0, \mathcal{T}] \ \ \forall (\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) \in \hat{\mathcal{J}}^{3} we have

    \begin{align*} ||\mathfrak{f} (\varpi, \mathfrak{w}, \mathfrak{v}, \mathfrak{u})|| \leq& \mathfrak{l}_{\mathfrak{f}}(\varpi)\partial_\mathfrak{f} \left(||\mathfrak{w}||_{\infty}+||\mathfrak{v}||_{\infty}+||\mathfrak{u}||_{\infty} \right), \\ ||\mathfrak{g} (\varpi, \mathfrak{w}, \mathfrak{v}, \mathfrak{u})|| \leq& \mathfrak{l}_{\mathfrak{g}}(\varpi)\partial_\mathfrak{g} \left(||\mathfrak{w}||_{\infty}+||\mathfrak{v}||_{\infty}+||\mathfrak{u}||_{\infty} \right), \\ ||\mathfrak{h} (\varpi, \mathfrak{w}, \mathfrak{v}, \mathfrak{u})|| \leq& \mathfrak{l}_{\mathfrak{h}}(\varpi)\partial_\mathfrak{h} \left(||\mathfrak{w}||_{\infty}+||\mathfrak{v}||_{\infty}+||\mathfrak{u}||_{\infty} \right). \end{align*}

    (\mathcal{H}_{3}) let \mathcal{S} \subset \hat{\mathcal{J}}^{3} be a bounded set, and \forall \varpi \in [0, \mathcal{T}] , then

    \begin{align*} K(\mathfrak{f}(\varpi, \mathcal{S})) \leq&\mathfrak{l}_{\mathfrak{f}} (\varpi)K(\mathcal{S}), \\ K(\mathfrak{g}(\varpi, \mathcal{S})) \leq& \mathfrak{l}_{\mathfrak{g}} (\varpi)K(\mathcal{S}), \\ K(\mathfrak{h}(\varpi, \mathcal{S})) \leq& \mathfrak{l}_{\mathfrak{h}} (\varpi)K(\mathcal{S}). \end{align*}

    Theorem 3.1. Assume that the assumptions (\mathcal{H}_{1}), (\mathcal{H}_{2}), and (\mathcal{H}_{3}) are satisfied. If

    \begin{align} \max \{ \mathcal{P}_{1} \mathfrak{l}_{\mathfrak{f}}^{*}+\mathcal{P}_{2} \mathfrak{l}_{\mathfrak{g}}^{*}+ \mathcal{P}_{3} \mathfrak{l}_{\mathfrak{h}}^{*}, \mathcal{Q}_{1} \mathfrak{l}_{\mathfrak{f}}^{*}+\mathcal{Q}_{2} \mathfrak{l}_{\mathfrak{g}}^{*}+ \mathcal{Q}_{3} \mathfrak{l}_{\mathfrak{h}}^{*}, \mathcal{O}_{1} \mathfrak{l}_{\mathfrak{f}}^{*}+\mathcal{O}_{2} \mathfrak{l}_{\mathfrak{g}}^{*}+ \mathcal{O}_{3} \mathfrak{l}_{\mathfrak{h}}^{*} \} < 1, \end{align} (3.5)

    where \mathfrak{l}_{\mathfrak{f}}^{*} = \sup_{0\leq \varpi\leq \mathcal{T}} \mathfrak{l}_{\mathfrak{f}}(\varpi) , \mathfrak{l}_{\mathfrak{g}}^{*} = \sup_{0\leq \varpi\leq \mathcal{T}} \mathfrak{l}_{\mathfrak{g}}(\varpi) , \mathfrak{l}_{\mathfrak{h}}^{*} = \sup_{0\leq \varpi\leq \mathcal{T}} \mathfrak{l}_{\mathfrak{h}}(\varpi) .

    Then there exist at least one solution for the boundary value problem (1.3) on [0, \mathcal{T}] .

    Proof. Introducing the following continuous operator \mathscr{F} :\hat{\mathcal{J}} \times \hat{\mathcal{J}} \times \hat{\mathcal{J}} \rightarrow \hat{\mathcal{J}} \times\hat{\mathcal{J}} \times \hat{\mathcal{J}}

    \begin{align*} \mathscr{F} \bigl(\mathfrak{w}(\varpi), \mathfrak{v}(\varpi), \mathfrak{u}(\varpi)\bigr) = \left( \begin{matrix} \mathscr{F}_{1}\bigl(\mathfrak{w}(\varpi), \mathfrak{v}(\varpi), \mathfrak{u}(\varpi) \bigr)\\\mathscr{F}_{2}\bigl(\mathfrak{w}(\varpi), \mathfrak{v}(\varpi), \mathfrak{u}(\varpi)\bigr)\\\mathscr{F}_{3} \bigl(\mathfrak{w}(\varpi), \mathfrak{v}(\varpi), \mathfrak{u}(\varpi)\bigr) \end{matrix}\right). \end{align*}

    According to the assumptions (\mathcal{H}_{1}) and (\mathcal{H}_{2}) , the operator \mathscr{F} is well defined, then the following operator equation can be an equivalent equation to the fractional equation given by (3.1)–(3.3)

    \begin{align} (\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) = \mathfrak{F}( (\mathfrak{w}, \mathfrak{v}, \mathfrak{u})). \end{align} (3.6)

    Subsequently, proving the existence of the solution to Eq (3.6) is equivalent to proving the existence of a solution to Eq (1.3).

    Let \mathcal{A}_{\varPsi} = \{(\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) \in \hat{\mathcal{J}}^{3}: ||(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})_{\infty}|| \leq \varPsi, \varPsi > 0\} , be a closed bounded convex ball in \hat{\mathcal{J}}^{3} with

    \begin{align*} \varPsi &\geq \mathfrak{l}_{\mathfrak{f}}^{*} \partial_\mathfrak{f}(\varPsi) \left[ {\mathcal{P}_{1}} + {\mathcal{P}_{2}} + {\mathcal{P}_{3}} \right] +\mathfrak{l}_{\mathfrak{g}}^{*} \partial_\mathfrak{g}(\varPsi) \left[ {\mathcal{Q}_{1}} + {\mathcal{Q}_{2}} + {\mathcal{Q}_{3}} \right] + \mathfrak{l}_{\mathfrak{h}}^{*} \partial_\mathfrak{h}(\varPsi) \left[ {\mathcal{O}_{1}} + {\mathcal{O}_{2}} + {\mathcal{O}_{3}} \right]. \end{align*}

    For the possibility of applying mönch's fixed point theorem, we will proceed with the proof in the form of four steps and thus we achieve the desired goal by proving the existence of a solution to the Eq (1.3).

    Step 1. \mathcal{F} maps \mathcal{A}_{\varPsi} , into itself.

    For all (\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) \in \mathcal{A}_{\varPsi} , \varpi \in [0, \mathcal{T}] , we obtain

    \begin{align} &||\mathscr{F}_{1}\bigl(\mathfrak{w}(\varpi), \mathfrak{v}(\varpi), \mathfrak{u}(\varpi) \bigr)||_{\infty} \end{align} (3.7)
    \begin{align} = &\frac{(\varphi\varpi-1+e^{-\varphi\varpi})}{\varphi^{2}\mathcal{E}_{1}}\left[ \Upsilon_{1}\sum\limits_{j = 1}^{k-2} \xi_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} ||\mathfrak{g} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right.\\& \left. +\Pi_{1}\int_{0}^{\varsigma} \frac{(\varsigma-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\phi-2}}{\varGamma(\phi-1)} ||\mathfrak{g} (m, \mathfrak{w}(m), \mathfrak{v}(m), \mathfrak{u}(m))||_{\infty}dm \right)d\tau\right)d\rho\right.\\& \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} ||\mathfrak{f} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right.\\& \left. +\frac{1}{\Delta}\left( \mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{5}\left\lbrace \Upsilon_{2}\sum\limits_{j = 1}^{k-2} \nu_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\omega-2}}{\varGamma(\omega-1)} ||\mathfrak{h} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right.\right.\right.\\& \left. \left. \left. +\Pi_{2}\int_{0}^{\varrho} \frac{(\varrho-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\omega-2}}{\varGamma(\omega-1)} ||\mathfrak{h} (m, \mathfrak{w}(m), \mathfrak{v}(m), \mathfrak{u}(m))||_{\infty}dm \right)d\tau\right)d\rho \right.\right.\right.\\& \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} ||\mathfrak{g} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right\rbrace \right.\right.\\& \left. \left. + \mathcal{E}_{2}\mathcal{E}_{4}\mathcal{E}_{6}\left\lbrace\Upsilon_{1}\sum\limits_{j = 1}^{k-2} \xi_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} ||\mathfrak{g} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right.\right.\right.\\& \left. \left. \left. +\Pi_{1}\int_{0}^{\varsigma} \frac{(\varsigma-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\phi-2}}{\varGamma(\phi-1)} ||\mathfrak{g} (m, \mathfrak{w}(m), \mathfrak{v}(m), \mathfrak{u}(m))||_{\infty}dm \right)d\tau\right)d\rho \right.\right.\right.\\& \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} ||\mathfrak{f} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right\rbrace \right.\right.\\& \left.\left. +\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{4}\left\lbrace \Upsilon_{3}\sum\limits_{j = 1}^{k-2} \sigma_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} ||\mathfrak{f} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right.\right.\right.\\& \left. \left. \left. + \Pi_{3}\int_{0}^{\delta} \frac{(\delta-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\psi-2}}{\varGamma(\psi-1)} ||\mathfrak{f} (m, \mathfrak{w}(m), \mathfrak{v}(m), \mathfrak{u}(m))||_{\infty}dm \right)d\tau\right)d\rho \right.\right.\right.\\& \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\omega-2}}{\varGamma(\omega-1)} ||\mathfrak{h} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right\rbrace \right) \right] \\& + \int_{0}^{\varpi} e^{-\varphi(\varpi-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} ||\mathfrak{f}(\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \\& \leq \mathfrak{l}_{\mathfrak{f}}^{*}\partial_\mathfrak{f}(\varPsi)\mathcal{P}_{1} + \mathfrak{l}_{\mathfrak{g}}^{*} \partial_\mathfrak{g}(\varPsi)\mathcal{P}_{2} + \mathfrak{l}_{\mathfrak{h}}^{*}\partial_\mathfrak{h}(\varPsi)\mathcal{P}_{3}, \end{align} (3.8)

    then

    \begin{align} ||\mathscr{F}_{1}\bigl(\mathfrak{w}(\varpi), \mathfrak{v}(\varpi), \mathfrak{u}(\varpi) \bigr)||_{\infty} \leq \mathfrak{l}_{\mathfrak{f}}^{*}\partial_\mathfrak{f}(\varPsi)\mathcal{P}_{1} + \mathfrak{l}_{\mathfrak{g}}^{*} \partial_\mathfrak{g}(\varPsi)\mathcal{P}_{2} + \mathfrak{l}_{\mathfrak{h}}^{*}\partial_\mathfrak{h}(\varPsi)\mathcal{P}_{3}, \end{align} (3.9)

    similarly,

    \begin{align} ||\mathscr{F}_{2}\bigl(\mathfrak{w}(\varpi), \mathfrak{v}(\varpi), \mathfrak{u}(\varpi) \bigr)||_{\infty} \leq \mathfrak{l}_{\mathfrak{f}}^{*}\partial_\mathfrak{f}(\varPsi)\mathcal{Q}_{1} + \mathfrak{l}_{\mathfrak{g}}^{*} \partial_\mathfrak{g}(\varPsi)\mathcal{Q}_{2} + \mathfrak{l}_{\mathfrak{h}}^{*}\partial_\mathfrak{h}(\varPsi)\mathcal{Q}_{3}, \end{align} (3.10)

    and

    \begin{align} ||\mathscr{F}_{3}\bigl(\mathfrak{w}(\varpi), \mathfrak{v}(\varpi), \mathfrak{u}(\varpi) \bigr)||_{\infty} \leq \mathfrak{l}_{\mathfrak{f}}^{*}\partial_\mathfrak{f}(\varPsi)\mathcal{O}_{1} + \mathfrak{l}_{\mathfrak{g}}^{*} \partial_\mathfrak{g}(\varPsi)\mathcal{O}_{2} + \mathfrak{l}_{\mathfrak{h}}^{*}\partial_\mathfrak{h}(\varPsi)\mathcal{O}_{3}. \end{align} (3.11)

    Consequently,

    \begin{align} ||\mathscr{F}\bigl(\mathfrak{w}(\varpi), \mathfrak{v}(\varpi), \mathfrak{u}(\varpi) \bigr)||_{\infty} \leq & \mathfrak{l}_{\mathfrak{f}}^{*}\partial_\mathfrak{f}(\varPsi)(\mathcal{P}_{1} + \mathcal{Q}_{1}+ \mathcal{O}_{1})+ \\&\mathfrak{l}_{\mathfrak{g}}^{*} \partial_\mathfrak{g}(\varPsi)(\mathcal{P}_{2} +\mathcal{Q}_{2}+ \mathcal{O}_{2}) + \mathfrak{l}_{\mathfrak{h}}^{*}\partial_\mathfrak{h}(\varPsi)(\mathcal{P}_{3}+\mathcal{Q}_{2}+\mathcal{O}_{3})\\& \leq \varPsi. \end{align} (3.12)

    Hence, the operator \mathcal{F} maps the ball \mathcal{A}_{\varPsi} into itself.

    Step 2. The operator \mathcal{F} is continuous.

    Let \{(\mathfrak{w}_{n}, \mathfrak{v}_{n}, \mathfrak{u}_{n})\} \in \mathcal{A}_{\varPsi} such that (\mathfrak{w}_{n}, \mathfrak{v}_{n}, \mathfrak{u}_{n}) \rightarrow (\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) as n \rightarrow \infty . We indicate that ||\mathscr{F}(\mathfrak{w}_{n}, \mathfrak{v}_{n}, \mathfrak{u}_{n})-\mathscr{F}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})|| \rightarrow 0. Since functions \mathfrak{f} , \mathfrak{g} and \mathfrak{h} satisfy Carath \acute{e} odory's conditions, we conclude that \mathscr{F}_{1}(\mathfrak{w}_{n}, \mathfrak{v}_{n}, \mathfrak{u}_{n})\rightarrow \mathscr{F}_{1}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) , \mathscr{F}_{2}(\mathfrak{w}_{n}, \mathfrak{v}_{n}, \mathfrak{u}_{n})\rightarrow \mathscr{F}_{2}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) , and \mathscr{F}_{3}(\mathfrak{w}_{n}, \mathfrak{v}_{n}, \mathfrak{u}_{n})\rightarrow \mathscr{F}_{3}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) as n\rightarrow \infty . Now, due to condition (\mathcal{H}_{2}) and the Lebesgue dominated convergence theorem, we obtain that ||\mathscr{F}_{1}(\mathfrak{w}_{n}, \mathfrak{v}_{n}, \mathfrak{u}_{n})-\mathscr{F}_{1}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})||, ||\mathscr{F}_{2}(\mathfrak{w}_{n}, \mathfrak{v}_{n}, \mathfrak{u}_{n})-\mathscr{F}_{2}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})|| , and ||\mathscr{F}_{3}(\mathfrak{w}_{n}, \mathfrak{v}_{n}, \mathfrak{u}_{n})-\mathscr{F}_{3}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})|| \rightarrow 0 . as n \rightarrow \infty . Consequently, ||\mathscr{F}(\mathfrak{w}_{n}, \mathfrak{v}_{n}, \mathfrak{u}_{n})-\mathscr{F}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})||_{\infty} \rightarrow 0 , which implies that \mathcal{F} is continuous on \mathcal{A}_{\varPsi} .

    Step 3. The operator \mathcal{F} is equicontinuous.

    Let \varpi_{1}, \varpi_{2} \in [0, \mathcal{T}] with \varpi_{1} < \varpi_{2} . Then we have

    \begin{align*} &||\mathscr{F}_{1}\bigl((\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) \bigr)(\varpi_{2})-\mathscr{F}_{1}\bigl(\mathfrak{w}, \mathfrak{v}, \mathfrak{u} \bigr)(\varpi_{1})||_{\infty}\leq \frac{(\varphi\varpi_{2}-\varphi\varpi_{1}+e^{\varphi\varpi_{2}}-e^{\varphi\varpi_{1}})}{\varphi^{2}\mathcal{E}_{1}}\\ \times&\left[ \Upsilon_{1}\sum\limits_{j = 1}^{k-2} \xi_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} ||\mathfrak{g} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right.\\& \left. +\Pi_{1}\int_{0}^{\varsigma} \frac{(\varsigma-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\phi-2}}{\varGamma(\phi-1)}|| \mathfrak{g} (m, \mathfrak{w}(m), \mathfrak{v}(m), \mathfrak{u}(m))||_{\infty}dm \right)d\tau\right)d\rho\right.\\& \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} ||\mathfrak{f} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right.\\& \left. +\frac{1}{\Delta}\left( \mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{5}\left\lbrace \Upsilon_{2}\sum\limits_{j = 1}^{k-2} \nu_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\omega-2}}{\varGamma(\omega-1)} ||\mathfrak{h} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right.\right.\right.\\& \left. \left. \left. +\Pi_{2}\int_{0}^{\varrho} \frac{(\varrho-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\omega-2}}{\varGamma(\omega-1)} ||\mathfrak{h} (m, \mathfrak{w}(m), \mathfrak{v}(m), \mathfrak{u}(m))||_{\infty}dm \right)d\tau\right)d\rho \right.\right.\right.\\& \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} ||\mathfrak{g} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right\rbrace \right.\right.\\& \left. \left. + \mathcal{E}_{2}\mathcal{E}_{4}\mathcal{E}_{6}\left\lbrace\Upsilon_{1}\sum\limits_{j = 1}^{k-2} \xi_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} ||\mathfrak{g} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right.\right.\right.\\& \left. \left. \left. +\Pi_{1}\int_{0}^{\varsigma} \frac{(\varsigma-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\phi-2}}{\varGamma(\phi-1)} ||\mathfrak{g} (m, \mathfrak{w}(m), \mathfrak{v}(m), \mathfrak{u}(m))||_{\infty}dm \right)d\tau\right)d\rho \right.\right.\right.\\& \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} ||\mathfrak{f} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right\rbrace \right.\right. \\& \left.\left. +\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{4}\left\lbrace \Upsilon_{3}\sum\limits_{j = 1}^{k-2} \sigma_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} ||\mathfrak{f} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right.\right.\right.\\& \left. \left. \left. + \Pi_{3}\int_{0}^{\delta} \frac{(\delta-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\psi-2}}{\varGamma(\psi-1)} ||\mathfrak{f} (m, \mathfrak{w}(m), \mathfrak{v}(m), \mathfrak{u}(m))||_{\infty}dm \right)d\tau\right)d\rho \right.\right.\right.\\& \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\omega-2}}{\varGamma(\omega-1)} ||\mathfrak{h} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right\rbrace \right) \right] \\& + \left| \int_{0}^{\varpi_{1}} (e^{-\varphi(\varpi_{2}-\rho)}-e^{-\varphi(\varpi_{1}-\rho)})\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} ||\mathfrak{f}(\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right.\\&\left.+ \int_{\varpi_{2}}^{\varpi_{1}} e^{-\varphi(\varpi_{2}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} ||\mathfrak{f}(\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho\right|, \end{align*}
    \begin{array}{l} \leq \frac{(\varphi\varpi_{2}-\varphi\varpi_{1}+e^{\varphi\varpi_{2}}-e^{\varphi\varpi_{1}})}{\varphi^{2}\mathcal{E}_{1}}\\ \times\left\lbrace \left[\frac{\mathcal{T}^{\psi-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\psi)}+ \frac{\mathcal{E}_{2}\mathcal{E}_{4}\mathcal{E}_{6}}{\Delta}\frac{\mathcal{T}^{\psi-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\psi)} +\frac{\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{4}}{\Delta} \left\lbrace \Upsilon_{3}\sum\limits_{j = 1}^{k-2}|\sigma_{j}|\left(\frac{\zeta_{j}^{\psi}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\psi)} \right) \right.\right.\right. \\ \left. \left.\left.+\Pi_{3} \frac{\delta^{\psi+\vartheta-1}}{\varphi^{2}\varGamma(\psi)\varGamma(\vartheta)}(\delta\varphi+e^{-\varphi\delta}-1) \right\rbrace \right] \right.\\ \left. + \left[ \left\lbrace \Upsilon_{1}\sum\limits_{j = 1}^{k-2}|\xi_{j}|\left(\frac{\zeta_{j}^{\phi}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\phi)} \right) +\Pi_{1} \frac{\varsigma^{\phi+\vartheta-1}}{\varphi^{2}\varGamma(\phi)\varGamma(\vartheta)}(\varsigma\varphi+e^{-\varphi\varsigma}-1) \right\rbrace \right. \right. \\ \left. \left. +\frac{\mathcal{E}_{2}\mathcal{E}_{4}\mathcal{E}_{6}}{\Delta} \left\lbrace \Upsilon_{1}\sum\limits_{j = 1}^{k-2}|\xi_{j}|\left(\frac{\zeta_{j}^{\phi}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\phi)} \right) +\Pi_{1} \frac{\varsigma^{\phi+\vartheta-1}}{\varphi^{2}\varGamma(\phi)\varGamma(\vartheta)}(\varsigma\varphi+e^{-\varphi\varsigma}-1) \right\rbrace \right. \right. \\ \left. \left. +\frac{\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{5}}{\Delta}\frac{\mathcal{T}^{\phi-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\phi)} \right] +\\ \left[ \frac{\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{4}}{\Delta}\left\lbrace \frac{\mathcal{T}^{\omega-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\omega)}\right\rbrace+ \frac{\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{5}}{\Delta} \left\lbrace\Upsilon_{2}\sum\limits_{j = 1}^{k-2}|\nu_{j}|\left(\frac{\zeta_{j}^{\omega}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\omega)} \right)\right.\right.\right. \\ \left. \left.\left. +\Pi_{2} \frac{\varrho^{\omega+\vartheta-1}}{\varphi^{2}\varGamma(\omega)\varGamma(\vartheta)}(\varrho\varphi+e^{-\varphi\varrho}-1) \right\rbrace \right]\wp_{3} \right\rbrace \\ + \int_{0}^{\varpi_{1}} (e^{-\varphi(\varpi_{2}-\rho)}-e^{-\varphi(\varpi_{1}-\rho)})\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} du \right)d\rho + \\ \int_{\varpi_{2}}^{\varpi_{1}} e^{-\varphi(\varpi_{2}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} du \right)d\rho\rightarrow 0, \ \ \mbox{as} \ \ \varpi_{1} \rightarrow \varpi_{2}. \end{array}

    As \varpi_{2} \rightarrow \varpi_{1} , we obtain that ||\mathscr{F}_{1}\bigl((\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) \bigr)(\varpi_{2})-\mathscr{F}_{1}\bigl(\mathfrak{w}, \mathfrak{v}, \mathfrak{u} \bigr)(\varpi_{1})|| \rightarrow 0 . Similarly, ||\mathscr{F}_{2}\bigl((\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) \bigr)(\varpi_{2})-\mathscr{F}_{2}\bigl(\mathfrak{w}, \mathfrak{v}, \mathfrak{u} \bigr)(\varpi_{1})|| \rightarrow 0 , and ||\mathscr{F}_{3}\bigl((\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) \bigr)(\varpi_{2})-\mathscr{F}_{3}\bigl(\mathfrak{w}, \mathfrak{v}, \mathfrak{u} \bigr)(\varpi_{1})|| \rightarrow 0 as \varpi_{2} \rightarrow \varpi_{1} . Consequently, ||\mathscr{F}\bigl((\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) \bigr)(\varpi_{2})-\mathscr{F}\bigl(\mathfrak{w}, \mathfrak{v}, \mathfrak{u} \bigr)(\varpi_{1})||_{\infty} \rightarrow 0 , as \varpi_{2} \rightarrow \varpi_{1} . Thus \mathcal{F} is equicontinuous.

    Step 4. Finally, we need to satisfy the mönch's hypothesis, so we let \mathcal{U} = \mathcal{U}_{1} \cap \mathcal{U}_{2}\cap \mathcal{U}_{3} , where \mathcal{U}_{1}, \mathcal{U}_{2}, \mathcal{U}_{3} \subseteq \mathcal{A}_{\varPsi} . Moreover, \mathcal{U}_{1}, \mathcal{U}_{2} , and \mathcal{U}_{3} are assumed to be bounded and equicontinuous, such that \mathcal{U}_{1} \subset \overline{conv}(\mathcal{F}_{1}(\mathcal{U}_{1}) \cup \{0\}) , \mathcal{U}_{2} \subset \overline{conv}(\mathcal{F}_{2}(\mathcal{U}_{2}) \cup \{0\}) and \mathcal{U}_{3} \subset \overline{conv}(\mathcal{F}_{3}(\mathcal{U}_{3}) \cup \{0\}) , thus the functions \mathcal{W}_{1} (\varpi) = K(\mathcal{U}_{1}(\varpi)) , \mathcal{W}_{2} (\varpi) = K(\mathcal{U}_{2}(\varpi)) , and \mathcal{W}_{3} (\varpi) = K(\mathcal{U}_{3}(\varpi)) are continuous on [0, \mathcal{T}] . Based on (\mathcal{H}_{3}) , Lemmas 2.1 and 2.2, we get

    \mathcal{W}_{1} (\varpi) = K(\mathcal{U}_{1}(\varpi)) \leq K\left(\overline{conv}(\mathcal{F}_{1}(\mathcal{U}_{1})(\varpi)\cup \{0\}) \right) \leq K (\mathcal{F}_{1}(\mathcal{U}_{1})(\varpi))

    \begin{align} \leq&K\left\lbrace \frac{(\varphi\varpi-1+e^{-\varphi\varpi})}{\varphi^{2}\mathcal{E}_{1}}\left[ \Upsilon_{1}\sum\limits_{j = 1}^{k-2} \xi_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} ||\mathfrak{g} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right. \right.\\& \left.r \left. +\Pi_{1}\int_{0}^{\varsigma} \frac{(\varsigma-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\phi-2}}{\varGamma(\phi-1)} ||\mathfrak{g} (m, \mathfrak{w}(m), \mathfrak{v}(m), \mathfrak{u}(m))||_{\infty}dm \right)d\tau\right)d\rho\right. \right.\\& \left.\left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} ||\mathfrak{f} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right. \right.\\& \left.\left. +\frac{1}{\Delta}\left( \mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{5}\left\lbrace \Upsilon_{2}\sum\limits_{j = 1}^{k-2} \nu_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\omega-2}}{\varGamma(\omega-1)} ||\mathfrak{h} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right.\right.\right. \right.\\& \left.\left. \left. \left. +\Pi_{2}\int_{0}^{\varrho} \frac{(\varrho-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\omega-2}}{\varGamma(\omega-1)} ||\mathfrak{h} (m, \mathfrak{w}(m), \mathfrak{v}(m), \mathfrak{u}(m))||_{\infty}dm \right)d\tau\right)d\rho \right.\right.\right. \right.\\& \left. \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} ||\mathfrak{g} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right\rbrace \right.\right. \right.\\& \left. \left. \left. + \mathcal{E}_{2}\mathcal{E}_{4}\mathcal{E}_{6}\left\lbrace\Upsilon_{1}\sum\limits_{j = 1}^{k-2} \xi_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} ||\mathfrak{g} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right.\right.\right. \right.\\& \left.\left. \left. \left. +\Pi_{1}\int_{0}^{\varsigma} \frac{(\varsigma-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\phi-2}}{\varGamma(\phi-1)} ||\mathfrak{g} (m, \mathfrak{w}(m), \mathfrak{v}(m), \mathfrak{u}(m))||_{\infty}dm \right)d\tau\right)d\rho \right.\right.\right. \right.\\& \left.\left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} ||\mathfrak{f} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right\rbrace \right.\right. \right.\\& \left.\left.\left. +\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{4}\left\lbrace \Upsilon_{3}\sum\limits_{j = 1}^{k-2} \sigma_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} ||\mathfrak{f} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right.\right.\right. \right.\\& \left. \left. \left. \left. + \Pi_{3}\int_{0}^{\delta} \frac{(\delta-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\psi-2}}{\varGamma(\psi-1)} ||\mathfrak{f} (m, \mathfrak{w}(m), \mathfrak{v}(m), \mathfrak{u}(m))||_{\infty}dm \right)d\tau\right)d\rho \right.\right.\right. \right.\\& \left. \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\omega-2}}{\varGamma(\omega-1)} ||\mathfrak{h} (\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho \right) \right] \right.\right.\\& \left. \left. + \int_{0}^{\varpi} e^{-\varphi(\varpi-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} ||\mathfrak{f}(\tau, \mathfrak{w}(\tau), \mathfrak{v}(\tau), \mathfrak{u}(\tau))||_{\infty}d\tau \right)d\rho\right\rbrace : (\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) \in \mathcal{U}_{1} \right\rbrace \end{align}
    \begin{align*} \leq&\nonumber\frac{(\varphi\varpi-1+e^{-\varphi\varpi})}{\varphi^{2}\mathcal{E}_{1}}\left[ \Upsilon_{1}\sum\limits_{j = 1}^{k-2} \xi_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} \mathfrak{l}_{\mathfrak{g}}^{*}(\varpi) K(\mathcal{U}_{1}(\varpi))d\tau \right)d\rho \right.\\&\nonumber \left. +\Pi_{1}\int_{0}^{\varsigma} \frac{(\varsigma-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\phi-2}}{\varGamma(\phi-1)} \mathfrak{l}_{\mathfrak{g}}^{*}(\varpi) K(\mathcal{U}_{1}(\varpi))dm \right)d\tau\right)d\rho\right.\\& \nonumber\left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} \mathfrak{l}_{\mathfrak{f}}^{*}(\varpi) K(\mathcal{U}_{1}(\varpi))d\tau \right)d\rho \right.\\& \nonumber\left. +\frac{1}{\Delta}\left( \mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{5}\left\lbrace \Upsilon_{2}\sum\limits_{j = 1}^{k-2} \nu_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\omega-2}}{\varGamma(\omega-1)} \mathfrak{l}_{\mathfrak{h}}^{*}(\varpi) K(\mathcal{U}_{1}(\varpi))d\tau \right)d\rho \right.\right.\right.\\& \nonumber\left. \left. \left. +\Pi_{2}\int_{0}^{\varrho} \frac{(\varrho-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\omega-2}}{\varGamma(\omega-1)} \mathfrak{l}_{\mathfrak{h}}^{*}(\varpi) K(\mathcal{U}_{1}(\varpi))dm \right)d\tau\right)d\rho \right.\right.\right.\\&\nonumber \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} \mathfrak{l}_{\mathfrak{g}}^{*}(\varpi) K(\mathcal{U}_{1}(\varpi))d\tau \right)d\rho \right\rbrace \right.\right.\\&\nonumber \left. \left. + \mathcal{E}_{2}\mathcal{E}_{4}\mathcal{E}_{6}\left\lbrace\Upsilon_{1}\sum\limits_{j = 1}^{k-2} \xi_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} \mathfrak{l}_{\mathfrak{g}}^{*}(\varpi) K(\mathcal{U}_{1}(\varpi))d\tau \right)d\rho \right.\right.\right.\\& \nonumber\left. \left. \left. +\Pi_{1}\int_{0}^{\varsigma} \frac{(\varsigma-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\phi-2}}{\varGamma(\phi-1)} \mathfrak{l}_{\mathfrak{g}}^{*}(\varpi) K(\mathcal{U}_{1}(\varpi))dm \right)d\tau\right)d\rho \right.\right.\right.\\&\nonumber \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} \mathfrak{l}_{\mathfrak{f}}^{*}(\varpi) K(\mathcal{U}_{1}(\varpi))d\tau \right)d\rho \right\rbrace \right.\right.\\& \nonumber\left.\left. +\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{4}\left\lbrace \Upsilon_{3}\sum\limits_{j = 1}^{k-2} \sigma_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} \mathfrak{l}_{\mathfrak{f}}^{*}(\varpi) K(\mathcal{U}_{1}(\varpi))d\tau \right)d\rho \right.\right.\right.\\&\nonumber \left. \left. \left. + \Pi_{3}\int_{0}^{\delta} \frac{(\delta-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\psi-2}}{\varGamma(\psi-1)} \mathfrak{l}_{\mathfrak{f}}^{*}(\varpi) K(\mathcal{U}_{1}(\varpi))dm \right)d\tau\right)d\rho \right.\right.\right.\\&\nonumber \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\omega-2}}{\varGamma(\omega-1)} \mathfrak{l}_{\mathfrak{h}}^{*}(\varpi) K(\mathcal{U}_{1}(\varpi))d\tau \right)d\rho \right\rbrace \right) \right] \\&\nonumber + \int_{0}^{\varpi} e^{-\varphi(\varpi-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} \mathfrak{l}_{\mathfrak{f}}^{*}(\varpi)K(\mathcal{U}_{1}(\varpi))d\tau \right)d\rho \\ \leq & (\mathfrak{l}_{\mathfrak{f}}^{*}\mathcal{P}_{1} + \mathfrak{l}_{\mathfrak{g}}^{*} \mathcal{P}_{2} + \mathfrak{l}_{\mathfrak{h}}^{*}\mathcal{P}_{3})||\mathcal{W}_{1}||_{\infty}. \end{align*}

    That is,

    \begin{align} ||\mathcal{W}_{1} (\varpi)||\leq (\mathfrak{l}_{\mathfrak{f}}^{*}\mathcal{P}_{1} + \mathfrak{l}_{\mathfrak{g}}^{*} \mathcal{P}_{2} + \mathfrak{l}_{\mathfrak{h}}^{*}\mathcal{P}_{3})||\mathcal{W}_{1}||_{\infty}, \end{align} (3.13)

    and it is assumed that

    \begin{align} \max \{ \mathcal{P}_{1} \mathfrak{l}_{\mathfrak{f}}^{*}+\mathcal{P}_{2} \mathfrak{l}_{\mathfrak{g}}^{*}+ \mathcal{P}_{3} \mathfrak{l}_{\mathfrak{h}}^{*}, \mathcal{Q}_{1} \mathfrak{l}_{\mathfrak{f}}^{*}+\mathcal{Q}_{2} \mathfrak{l}_{\mathfrak{g}}^{*}+ \mathcal{Q}_{3} \mathfrak{l}_{\mathfrak{h}}^{*}, \mathcal{O}_{1} \mathfrak{l}_{\mathfrak{f}}^{*}+\mathcal{O}_{2} \mathfrak{l}_{\mathfrak{g}}^{*}+ \mathcal{O}_{3} \mathfrak{l}_{\mathfrak{h}}^{*} \} < 1, \end{align} (3.14)

    which implies that ||\mathcal{W}_{1}||_{\infty} = 0 . i.e \mathcal{W}_{1} = 0 , \forall \ \ \varpi \in [0, \mathcal{T}] . In a like manner, we have \mathcal{W}_{2} = 0 , \forall \ \ \varpi \in [0, \mathcal{T}] and \mathcal{W}_{3} = 0 , \forall \ \ \varpi \in [0, \mathcal{T}] . So K(\mathcal{U}(\varpi)) \leq K(\mathcal{U}_{1}(\varpi)) = 0 , K(\mathcal{U}(\varpi)) \leq K(\mathcal{U}_{2}(\varpi)) = 0 , and K(\mathcal{U}(\varpi)) \leq K(\mathcal{U}_{3}(\varpi)) = 0 , which implies that \mathcal{U}(\varpi) is relatively compact in \hat{\mathcal{J}} \times \hat{\mathcal{J}} \times \hat{\mathcal{J}} . Now, Arzela-Ascoli is applicable, which means that \mathcal{U} is relatively compact in \mathcal{A}_{\varPsi} , and therefore, using Theorem 3.1, we deduce that the operator \mathcal{F} has a fixed point (\mathfrak{f}, \mathfrak{g}, \mathfrak{h}) solution of the problem on \mathcal{A}_{\varPsi} . And that ends the proof.

    This section discusses the stability of boundary value problem solutions for Hyers-Ulam (1.3) by integral representing its solution provided by

    \begin{align*} \mathfrak{w}(\varpi) = \mathcal{F}_{1} (\mathfrak{w}, \mathfrak{u}, \mathfrak{v})(\varpi), \\ \mathfrak{u}(\varpi) = \mathcal{F}_{2} (\mathfrak{w}, \mathfrak{u}, \mathfrak{v})(\varpi), \\ \mathfrak{v}(\varpi) = \mathcal{F}_{3} (\mathfrak{w}, \mathfrak{u}, \mathfrak{v})(\varpi), \end{align*}

    where \mathscr{F}_{1}, \mathscr{F}_{2}, and \mathscr{F}_{3} are defined by \mathcal{Z}_{1}, \mathcal{Z}_{2}, \mathcal{Z}_{3} \in \mathcal{C}([0, \mathcal{T}], \mathcal{R}_{e})\times \mathcal{C}([0, \mathcal{T}], \mathcal{R}_{e})\times \mathcal{C}([0, \mathcal{T}], \mathcal{R}_{e})\to \mathcal{C}([0, \mathcal{T}], \mathcal{R}_{e}) ;

    \begin{equation} \begin{cases} (\mathcal{D}^{\psi }+ \varphi \mathcal{D}^{\psi-1}) \mathfrak{w}(\varpi)-\mathfrak{f} (\varpi, \mathfrak{w}(\varpi), \mathfrak{v}(\varpi), \mathfrak{u}(\varpi)) = {\mathcal{Z}}_{1}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) (\varpi), \\ (\mathcal{D}^{\xi }+ \varphi \mathcal{D}^{\xi-1}) \mathfrak{v}(\varpi)-\mathfrak{g} (\varpi, \mathfrak{w}(\varpi), \mathfrak{v}(\varpi), \mathfrak{u}(\varpi)) = {\mathcal{Z}}_{2}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) (\varpi ), \\(\mathcal{D}^{\zeta }+ \varphi \mathcal{D}^{\zeta-1}) \mathfrak{u}(\varpi)- \mathfrak{h}(\varpi, \mathfrak{w}(\varpi), \mathfrak{v}(\varpi), \mathfrak{u}(\varpi)) = {\mathcal{Z}}_{3}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) (\varpi ), \end{cases} \end{equation} (4.1)

    for \varpi \in [0, \mathcal{T}] . For some \pi_{1}, \pi_{2}, \pi_{3} > 0 , the following inequalities are considered:

    \begin{align} \bigl\Vert {\mathcal{Z}}_{1}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) \bigr\Vert & \leq \pi_{1}, \qquad \bigl\Vert {\mathcal{Z}}_{2} (\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) \bigr\Vert \leq \pi_{2} \qquad \bigl\Vert {\mathcal{Z}}_{3} (\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) \bigr\Vert \leq \pi_{3}. \end{align} (4.2)

    Definition 4.1. The tripled system (1.3) is said to be Hyers-Ulam stable, if there exists \mathcal{K}_1, \mathcal{K}_2, \mathcal{K}_3 > 0 , such that for every solution (\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})\in \mathcal{C}([0, \mathcal{T}], \mathcal{R}_{e})\times \mathcal{C}([0, \mathcal{T}], \mathcal{R}_{e})\times \mathcal{C}([0, \mathcal{T}], \mathcal{R}_{e}) of the Inequality (4.2), there exists a unique solutions ({\mathfrak{w}}, {\mathfrak{v}}, {\mathfrak{u}})\in \mathcal{C}([0, \mathcal{T}], \mathcal{R}_{e})\times \mathcal{C}([0, \mathcal{T}], \mathcal{R}_{e})\times \mathcal{C}([0, \mathcal{T}], \mathcal{R}_{e}) of problem (1.3) with

    \begin{align*} \bigl\Vert (\mathfrak{w}, \mathfrak{v}, \mathfrak{u})-(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}) \bigr\Vert \leq \mathcal{K}_{1}\pi_{1}+ \mathcal{K}_{2}\pi_{2} +\mathcal{K}_{3}\pi_{3}. \end{align*}

    Theorem 4.1. Assume that Theorem 3.1 assumptions hold. Then the boundary value problem (1.3) is Hyers-Ulam stable.

    Proof. Let (\mathfrak{w}, \mathfrak{v}, \mathfrak{u})\in \mathcal{C}([0, \mathcal{T}], \mathcal{R}_{e})\times \mathcal{C}([0, \mathcal{T}], \mathcal{R}_{e})\times \mathcal{C}([0, \mathcal{T}], \mathcal{R}_{e}) be the solution of (1.3) the problem that satisfying (3.1)–(3.3). Let (\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}) be any solution satisfying (4.2):

    \begin{equation} \begin{cases} (\mathcal{D}^{\psi }+ \varphi \mathcal{D}^{\psi-1}) \mathfrak{w}(\varpi) = \mathfrak{f} (\varpi, \mathfrak{w}(\varpi), \mathfrak{v}(\varpi), \mathfrak{u}(\varpi)) +{\mathcal{Z}}_{1}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) (\varpi ), \\ (\mathcal{D}^{\xi }+ \varphi \mathcal{D}^{\xi-1}) \mathfrak{v}(\varpi) = \mathfrak{g} (\varpi, \mathfrak{w}(\varpi), \mathfrak{v}(\varpi), \mathfrak{u}(\varpi)) +{\mathcal{Z}}_{2}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) (\varpi ), \\(\mathcal{D}^{\zeta }+ \varphi \mathcal{D}^{\zeta-1}) \mathfrak{u}(\varpi) = \mathfrak{h}(\varpi, \mathfrak{w}(\varpi), \mathfrak{v}(\varpi), \mathfrak{u}(\varpi)) + {\mathcal{Z}}_{3}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) (\varpi ), \end{cases} \end{equation} (4.3)

    for \varpi\in [0, \mathcal{T}] . So,

    \begin{align*} \widehat{\mathfrak{w}}(\varpi) = &\mathscr{F}_{1}(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})(\varpi) \\&+\frac{(\varphi\varpi-1+e^{-\varphi\varpi})}{\varphi^{2}\mathcal{E}_{1}}\left[ \Upsilon_{1}\sum\limits_{j = 1}^{k-2} \xi_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} {\mathcal{Z}}_{2}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right.\\& \left. +\Pi_{1}\int_{0}^{\varsigma} \frac{(\varsigma-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\phi-2}}{\varGamma(\phi-1)} {\mathcal{Z}}_{2}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})dm \right)d\tau\right)d\rho\right.\\& \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} {\mathcal{Z}}_{1}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right.\\& \left. +\frac{1}{\Delta}\left( \mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{5}\left\lbrace \Upsilon_{2}\sum\limits_{j = 1}^{k-2} \nu_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\omega-2}}{\varGamma(\omega-1)} {\mathcal{Z}}_{3}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right.\right.\right.\\& \left. \left. \left. +\Pi_{2}\int_{0}^{\varrho} \frac{(\varrho-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\omega-2}}{\varGamma(\omega-1)} {\mathcal{Z}}_{3}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})dm \right)d\tau\right)d\rho \right.\right.\right.\\& \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} {\mathcal{Z}}_{2}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right\rbrace \right.\right.\\& \left. \left. + \mathcal{E}_{2}\mathcal{E}_{4}\mathcal{E}_{6}\left\lbrace\Upsilon_{1}\sum\limits_{j = 1}^{k-2} \xi_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} {\mathcal{Z}}_{2}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right.\right.\right.\\& \left. \left. \left. +\Pi_{1}\int_{0}^{\varsigma} \frac{(\varsigma-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\phi-2}}{\varGamma(\phi-1)} {\mathcal{Z}}_{2}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})dm \right)d\tau\right)d\rho \right.\right.\right.\\& \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} {\mathcal{Z}}_{1}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right\rbrace \right.\right.\\& \left.\left. +\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{4}\left\lbrace \Upsilon_{3}\sum\limits_{j = 1}^{k-2} \sigma_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} {\mathcal{Z}}_{1}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right.\right.\right.\\& \left. \left. \left. + \Pi_{3}\int_{0}^{\delta} \frac{(\delta-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\psi-2}}{\varGamma(\psi-1)} {\mathcal{Z}}_{1}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})dm \right)d\tau\right)d\rho \right.\right.\right.\\& \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\omega-2}}{\varGamma(\omega-1)} {\mathcal{Z}}_{3}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right\rbrace \right) \right] \\& + \int_{0}^{\varpi} e^{-\varphi(\varpi-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} {\mathcal{Z}}_{1}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho, \end{align*}
    \begin{align*} |&\widehat{\mathfrak{w}}(\varpi)-\mathscr{F}_{1}(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})(\varpi)| = \\&\times\frac{(\varphi\varpi-1+e^{-\varphi\varpi})}{\varphi^{2}\mathcal{E}_{1}}\left[ \Upsilon_{1}\sum\limits_{j = 1}^{k-2} \xi_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} {\mathcal{Z}}_{2}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right.\\& \left. +\Pi_{1}\int_{0}^{\varsigma} \frac{(\varsigma-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\phi-2}}{\varGamma(\phi-1)} {\mathcal{Z}}_{2}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})dm \right)d\tau\right)d\rho\right.\\& \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} {\mathcal{Z}}_{1}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right.\\& \left. +\frac{1}{\Delta}\left( \mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{5}\left\lbrace \Upsilon_{2}\sum\limits_{j = 1}^{k-2} \nu_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\omega-2}}{\varGamma(\omega-1)} {\mathcal{Z}}_{3}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right.\right.\right.\\& \left. \left. \left. +\Pi_{2}\int_{0}^{\varrho} \frac{(\varrho-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\omega-2}}{\varGamma(\omega-1)} {\mathcal{Z}}_{3}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})dm \right)d\tau\right)d\rho \right.\right.\right.\\& \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} {\mathcal{Z}}_{2}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right\rbrace \right.\right.\end{align*}
    \begin{array}{l} \left. \left. + \mathcal{E}_{2}\mathcal{E}_{4}\mathcal{E}_{6}\left\lbrace\Upsilon_{1}\sum\limits_{j = 1}^{k-2} \xi_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} {\mathcal{Z}}_{2}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right.\right.\right.\\ \left. \left. \left. +\Pi_{1}\int_{0}^{\varsigma} \frac{(\varsigma-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\phi-2}}{\varGamma(\phi-1)} {\mathcal{Z}}_{2}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})dm \right)d\tau\right)d\rho \right.\right.\right.\\ \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} {\mathcal{Z}}_{1}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right\rbrace \right.\right.\\ \left.\left. +\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{4}\left\lbrace \Upsilon_{3}\sum\limits_{j = 1}^{k-2} \sigma_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} {\mathcal{Z}}_{1}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right.\right.\right.\\ \left. \left. \left. + \Pi_{3}\int_{0}^{\delta} \frac{(\delta-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\psi-2}}{\varGamma(\psi-1)} {\mathcal{Z}}_{1}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})dm \right)d\tau\right)d\rho \right.\right.\right.\\ \left. \left. \left. - \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\omega-2}}{\varGamma(\omega-1)} {\mathcal{Z}}_{3}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right\rbrace \right) \right] \\ + \int_{0}^{\varpi} e^{-\varphi(\varpi-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} {\mathcal{Z}}_{1}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho, \\ \leq \frac{(\varphi-1+e^{-\varphi})}{\varphi^{2}\mathcal{E}_{1}} \left\lbrace \left[\frac{\mathcal{T}^{\psi-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\psi)}+ \frac{\mathcal{E}_{2}\mathcal{E}_{4}\mathcal{E}_{6}}{\Delta}\frac{\mathcal{T}^{\psi-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\psi)} \\ +\frac{\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{4}}{\Delta} \left\lbrace \Upsilon_{3}\sum\limits_{j = 1}^{k-2}|\sigma_{j}|\left(\frac{\zeta_{j}^{\psi}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\psi)} \right) \right.\right.\right. \\ \left. \left.\left.+\Pi_{3} \frac{\delta^{\psi+\vartheta-1}}{\varphi^{2}\varGamma(\psi)\varGamma(\vartheta)}(\delta\varphi+e^{-\varphi\delta}-1) \right\rbrace \right] \pi_{1}\right.\\ \left. + \left[ \left\lbrace \Upsilon_{1}\sum\limits_{j = 1}^{k-2}|\xi_{j}|\left(\frac{\zeta_{j}^{\phi}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\phi)} \right) +\Pi_{1} \frac{\varsigma^{\phi+\vartheta-1}}{\varphi^{2}\varGamma(\phi)\varGamma(\vartheta)}(\varsigma\varphi+e^{-\varphi\varsigma}-1) \right\rbrace \right. \right. \\ \left. \left. +\frac{\mathcal{E}_{2}\mathcal{E}_{4}\mathcal{E}_{6}}{\Delta} \left\lbrace \Upsilon_{1}\sum\limits_{j = 1}^{k-2}|\xi_{j}|\left(\frac{\zeta_{j}^{\phi}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\phi)} \right) +\Pi_{1} \frac{\varsigma^{\phi+\vartheta-1}}{\varphi^{2}\varGamma(\phi)\varGamma(\vartheta)}(\varsigma\varphi+e^{-\varphi\varsigma}-1) \right\rbrace \right. \right. \\ \left. \left. +\frac{\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{5}}{\Delta}\frac{\mathcal{T}^{\phi-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\phi)} \right]\pi_{2} +\\ \left[ \frac{\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{4}}{\Delta}\left\lbrace \frac{\mathcal{T}^{\omega-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\omega)}\right\rbrace+ \frac{\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{5}}{\Delta} \left\lbrace\Upsilon_{2}\sum\limits_{j = 1}^{k-2}|\nu_{j}|\left(\frac{\zeta_{j}^{\omega}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\omega)} \right)\right.\right.\right. \\ \left. \left.\left. +\Pi_{2} \frac{\varrho^{\omega+\vartheta-1}}{\varphi^{2}\varGamma(\omega)\varGamma(\vartheta)}(\varrho\varphi+e^{-\varphi\varrho}-1) \right\rbrace \right] \right\rbrace\pi_{3} + \frac{(1-e^{-\varphi})}{\varphi\varGamma(\psi)} \\ \leq \mathcal{P}_{1}\pi_{1}+{\mathcal{Q}_{1}}\pi_{2}+{\mathcal{O}_{1}}\pi_{3}. \end{array}

    Similarly,

    \begin{align*} &\widehat{\mathfrak{v}}(\varpi) = \mathscr{F}_{2}(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})(\varpi)\\+&\frac{(\varphi\varpi-1+e^{- \varphi\varpi})}{\varphi^{2}\Delta}\left[\left( \mathcal{E}_{1}\mathcal{E}_{5}\left\lbrace \Upsilon_{2}\sum\limits_{j = 1}^{k-2} \nu_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\omega-2}}{\varGamma(\omega-1)} {\mathcal{Z}}_{3}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right.\right.\right.\\& \left. \left. \left. +\Pi_{2}\int_{0}^{\varrho} \frac{(\varrho-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\omega-2}}{\varGamma(\omega-1)} {\mathcal{Z}}_{3}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})dm \right)d\tau\right)d\rho \right.\right.\right.\\& \left. \left. \left. + \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} {\mathcal{Z}}_{2}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right\rbrace \right.\right.\\&\left.\left.+ \mathcal{E}_{4}\mathcal{E}_{6}\left\lbrace\Upsilon_{1}\sum\limits_{j = 1}^{k-2} \xi_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} {\mathcal{Z}}_{2}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right.\right.\right.\\& \left. \left. \left. +\Pi_{1}\int_{0}^{\varsigma} \frac{(\varsigma-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\phi-2}}{\varGamma(\phi-1)} {\mathcal{Z}}_{2}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})dm \right)d\tau\right)d\rho \right.\right.\right.\\& \left. \left. \left. + \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} {\mathcal{Z}}_{1}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right\rbrace \right.\right.\\& \left.\left. +\mathcal{E}_{1}\mathcal{E}_{4}\left\lbrace \Upsilon_{3}\sum\limits_{j = 1}^{k-2} \sigma_{j} \int_{0}^{\zeta_{j}} e^{-\varphi(\zeta_{j}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\psi-2}}{\varGamma(\psi-1)} {\mathcal{Z}}_{1}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right.\right.\right.\\& \left. \left. \left. + \Pi_{3}\int_{0}^{\delta} \frac{(\delta-\rho)^{\vartheta-1}}{\varGamma(\vartheta)} \left( \int_{0}^{\rho} e^{-\varphi(\rho-\tau)}\left( \int_{0}^{\tau}\frac{(\tau-m)^{\psi-2}}{\varGamma(\psi-1)} {\mathcal{Z}}_{1}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})dm \right)d\tau\right)d\rho \right.\right.\right.\\& \left. \left. \left.+ \int_{0}^{\mathcal{T}} e^{-\varphi(\mathcal{T}-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\omega-2}}{\varGamma(\omega-1)} {\mathcal{Z}}_{3}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho \right\rbrace \right) \right] \\& + \int_{0}^{\varpi} e^{-\varphi(\varpi-\rho)}\left( \int_{0}^{\rho}\frac{(\rho-\tau)^{\phi-2}}{\varGamma(\phi-1)} {\mathcal{Z}}_{2}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u})d\tau \right)d\rho, \end{align*}
    \begin{align*} &|\widehat{\mathfrak{v}}(\varpi)-\mathscr{F}_{2}(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})(\varpi)| \leq \frac{(\varphi\varpi-1+e^{- \varphi\varpi})}{\varphi^{2}\Delta}\\&\times\left\lbrace \left[\frac{\mathcal{T}^{\psi-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\psi)}+ \frac{\mathcal{E}_{2}\mathcal{E}_{4}\mathcal{E}_{6}}{\Delta}\frac{\mathcal{T}^{\psi-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\psi)} +\frac{\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{4}}{\Delta} \left\lbrace \Upsilon_{3}\sum\limits_{j = 1}^{k-2}|\sigma_{j}|\left(\frac{\zeta_{j}^{\psi}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\psi)} \right) \right.\right.\right. \\& \left. \left.\left.+\Pi_{3} \frac{\delta^{\psi+\vartheta-1}}{\varphi^{2}\varGamma(\psi)\varGamma(\vartheta)}(\delta\varphi+e^{-\varphi\delta}-1) \right\rbrace \right]\pi_{1} \right.\\& \left. + \left[ \left\lbrace \Upsilon_{1}\sum\limits_{j = 1}^{k-2}|\xi_{j}|\left(\frac{\zeta_{j}^{\phi}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\phi)} \right) +\Pi_{1} \frac{\varsigma^{\phi+\vartheta-1}}{\varphi^{2}\varGamma(\phi)\varGamma(\vartheta)}(\varsigma\varphi+e^{-\varphi\varsigma}-1) \right\rbrace \right. \right. \\& \left. \left. +\frac{\mathcal{E}_{2}\mathcal{E}_{4}\mathcal{E}_{6}}{\Delta} \left\lbrace \Upsilon_{1}\sum\limits_{j = 1}^{k-2}|\xi_{j}|\left(\frac{\zeta_{j}^{\phi}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\phi)} \right) +\Pi_{1} \frac{\varsigma^{\phi+\vartheta-1}}{\varphi^{2}\varGamma(\phi)\varGamma(\vartheta)}(\varsigma\varphi+e^{-\varphi\varsigma}-1) \right\rbrace \right. \right. \\& \left. \left. +\frac{\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{5}}{\Delta}\frac{\mathcal{T}^{\phi-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\phi)} \right]\pi_{2} + \left[ \frac{\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{4}}{\Delta}\left\lbrace \frac{\mathcal{T}^{\omega-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\omega)}\right\rbrace+ \frac{\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{5}}{\Delta} \left\lbrace\Upsilon_{2}\sum\limits_{j = 1}^{k-2}|\nu_{j}|\left(\frac{\zeta_{j}^{\omega}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\omega)} \right)\right.\right.\right. \\& \left. \left.\left. +\Pi_{2} \frac{\varrho^{\omega+\vartheta-1}}{\varphi^{2}\varGamma(\omega)\varGamma(\vartheta)}(\varrho\varphi+e^{-\varphi\varrho}-1) \right\rbrace \right]\pi_{3} \right\rbrace +\frac{(1-e^{-\varphi})}{\varphi\varGamma(\phi)} \\\leq& {\mathcal{P}_{2}}\pi_{1}+{\mathcal{Q}_{2}}\pi_{2}+{\mathcal{O}_{2}}\pi_{3}. \end{align*}

    Similarly,

    \begin{align*} &|\widehat{\mathfrak{u}}(\varpi)-\mathscr{F}_{3}(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})(\varpi)|\leq\frac{(\varphi^{2}\varpi^{2}-2\varphi\varpi+2-e^{\varphi\varpi})}{\varphi^{3}\Delta}\\&\times \left\lbrace\left[{\mathcal{E}_{3}\mathcal{E}_{6}} \left\lbrace\frac{\mathcal{T}^{\psi-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\psi)} \right\rbrace +{\mathcal{E}_{1}\mathcal{E}_{3}} \left\lbrace \Upsilon_{3}\sum\limits_{j = 1}^{k-2}|\sigma_{j}|\left(\frac{\zeta_{j}^{\psi}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\psi)} \right) \right.\right.\right.\\& \left. \left.\left.+\Pi_{3} \frac{\delta^{\psi+\vartheta-1}}{\varphi^{2}\varGamma(\psi)\varGamma(\vartheta)}(\delta\varphi+e^{-\varphi\delta}-1) \right\rbrace \right] \pi_{1} + \left[{\mathcal{E}_{3}\mathcal{E}_{6}} \left\lbrace \Upsilon_{1}\sum\limits_{j = 1}^{k-2}|\xi_{j}|\left(\frac{\zeta_{j}^{\phi}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\phi)} \right)\right. \right. \right.\\& \left. \left. \left. +\Pi_{1} \frac{\varsigma^{\phi+\vartheta-1}}{\varphi^{2}\varGamma(\phi)\varGamma(\vartheta)}(\varsigma\varphi+e^{-\varphi\varsigma}-1) \right\rbrace +{\mathcal{E}_{2}\mathcal{E}_{6}}\left\lbrace \frac{\mathcal{T}^{\phi-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\phi)} \right\rbrace \right]\pi_{2} \right.\\& \left. +\left[ {\mathcal{E}_{1}\mathcal{E}_{3}}\left\lbrace \frac{\mathcal{T}^{\omega-1}(1-e^{-\varphi\mathcal{T}})}{\varphi\varGamma(\omega)}\right\rbrace+ {\mathcal{E}_{2}\mathcal{E}_{6}} \left\lbrace\Upsilon_{2}\sum\limits_{j = 1}^{k-2}|\nu_{j}|\left(\frac{\zeta_{j}^{\omega}(1-e^{-\varphi\zeta_{j}})}{\varphi\varGamma(\omega)} \right)\right.\right.\right.\\& \left. \left.\left. +\Pi_{2} \frac{\varrho^{\omega+\vartheta-1}}{\varphi^{2}\varGamma(\omega)\varGamma(\vartheta)}(\varrho\varphi+e^{-\varphi\varrho}-1) \right\rbrace \right]\pi_{3}\right\rbrace +\frac{(1-e^{-\varphi})}{\varphi\varGamma(\omega)}\\\leq& {\mathcal{P}_{3}}\pi_{1}+{\mathcal{Q}_{3}}\pi_{2}+{\mathcal{O}_{3}}\pi_{3}. \end{align*}

    Thus, the operator \mathscr{F} , which is given by (3.1)–(3.3), can be extracted from the fixed-point property, as follows:

    \begin{align} \bigl\vert \mathfrak{w}(\varpi )-\widehat{\mathfrak{w}}(\varpi ) \bigr\vert = {} & \bigl\vert \mathfrak{w}(\varpi )-\mathscr{F}_{1}(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}) (\varpi )+\mathscr{F}_{1}(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}) (\varpi )- \widehat{\mathfrak{w}}(\varpi ) \bigr\vert \\ \leq{}& \bigl\vert \mathscr{F}_{1}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) (\varpi )-\mathscr{F}_{1}(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}) (\varpi ) \bigr\vert + \bigl\vert \mathscr{F} _{1}(\widehat{\mathfrak{\mathfrak{w}}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})(\varpi)-\widehat{\mathfrak{w}}(\varpi ) \bigr\vert \\ \leq{}& ({\mathcal{P}_{1}}\mu_{1}+ {\mathcal{Q}_{1}}{\sigma}_{1}+\mathcal{O}_1\kappa_{1})+ ({\mathcal{P}_{1}}\mu_{2}+ {\mathcal{Q}_{1}} {\sigma}_{2}+\mathcal{O}_1\kappa_{2}) +({\mathcal{P}_{1}}\mu_{3}+ {\mathcal{Q}_{1}} {\sigma}_{3}+\mathcal{O}_1\kappa_{3})\\ & \bigl\Vert (\mathfrak{w}, \mathfrak{v}, \mathfrak{u})-(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}) \bigr\Vert {} +({\mathcal{P}_{1}}\pi _{1}+{\mathcal{Q}_{1}}\pi _{2}+{\mathcal{O}_{1}}\pi_{3}), \end{align} (4.4)

    similarly,

    \begin{align} \bigl\vert \mathfrak{v}(\varpi )-\widehat{\mathfrak{v}}(\varpi ) \bigr\vert = {} & \bigl\vert \mathfrak{v}(\varpi )-\mathscr{F}_{2}(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}) (\varpi )+\mathscr{F} _{2}(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}) (\varpi )- \widehat{\mathfrak{v}}(\varpi ) \bigr\vert \\ \leq{}& \bigl\vert \mathscr{F}_{2}(\mathfrak{w}, \mathfrak{v}, \mathfrak{u}) (\varpi )-\mathscr{F}_{2}(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}) (\varpi) \bigr\vert + \bigl\vert \mathscr{F}_{2}(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})(\varpi )-\widehat{\mathfrak{v}}(\varpi ) \bigr\vert \\ \leq{}& ({\mathcal{P}_{2}}\mu_{1}+ {\mathcal{Q}_{2}}{\sigma}_{1}+\mathfrak {N}_2\kappa_{1})+ ({\mathcal{P}_{2}}\mu_{2}+ {\mathcal{Q}_{2}} {\sigma}_{2}+\mathcal{O}_2\kappa_{2}) +({\mathcal{P}_{2}}\mu_{3}+ {\mathcal{Q}_{2}} {\sigma}_{3}+\mathcal{O}_2\kappa_{3})\\ & \bigl\Vert (\mathfrak{w}, \mathfrak{v}, \mathfrak{u})-(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}) \bigr\Vert {} +({\mathcal{P}_{2}}\pi _{1}+{\mathcal{Q}_{2}}\pi _{2}+{\mathcal{O}_{2}}\pi_{3}), \end{align} (4.5)

    and

    \begin{align} \bigl\vert \mathfrak{u}(\varpi )-\widehat{\mathfrak{u}}(\varpi ) \bigr\vert = {} & \bigl\vert \mathfrak{u}(\varpi )-\mathscr{F}_{3}(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}) (\varpi )+\mathscr{F}_{3}(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}) (\varpi )- \widehat{\mathfrak{u}}(\varpi ) \bigr\vert \\ \leq{}& \bigl\vert \mathscr{F}_{3}({\mathfrak{w}}, {\mathfrak{v}}, {\mathfrak{u}}) (\varpi )-\mathscr{F}_{3}(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}) (\varpi ) \bigr\vert + \bigl\vert \mathscr{F} _{3}(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}})(\varpi )-\widehat{\mathfrak{u}}(\varpi ) \bigr\vert \\ \leq{}& ({\mathcal{P}_{3}}\mu_{1}+ {\mathcal{Q}_{3}}{\sigma}_{1}+\mathcal{O}_3\kappa_{1})+ ({\mathcal{P}_{3}}\mu_{2}+ {\mathcal{Q}_{3}} {\sigma}_{2}+\mathcal{O}_3\kappa_{2}) +({\mathcal{P}_{3}}\mu_{3}+ {\mathcal{Q}_{3}} {\sigma}_{3}+\mathcal{O}_3\kappa_{3})\\ & \bigl\Vert ({\mathfrak{w}}, {\mathfrak{v}}, {\mathfrak{u}})-(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}) \bigr\Vert {} +({\mathcal{P}_{3}}\pi _{1}+{\mathcal{Q}_{3}}\pi _{2}+{\mathcal{O}_{3}}\pi_{3}). \end{align} (4.6)

    From(4.4)–(4.6) it follows that

    \begin{align*} \bigl\Vert ({\mathfrak{w}}, {\mathfrak{v}}, {\mathfrak{u}})-(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}) \bigr\Vert \leq{}& (\mathcal{P}_{1}+ \mathcal{P}_{2}+\mathcal{P}_{3}){\pi }_{1}+(\mathcal{Q}_{1}+\mathcal{Q}_{2}+\mathcal{Q}_{3}){\pi}_{2}+(\mathcal{O}_{1}+\mathcal{O}_{2}+\mathcal{O}_{3}){\pi}_{3} \\&+(\mathcal{P}_{1}+ \mathcal{P}_{2}+\mathcal{P}_{3})(\mu_{1}+\sigma_{1}+\kappa_{1})\\&+(\mathcal{Q}_{1}+\mathcal{Q}_{2}+\mathcal{Q}_{3})(\mu_{2}+\sigma_{2}+\kappa_{2})\\&+(\mathcal{O}_{1}+\mathcal{O}_{2}+\mathcal{O}_{3})(\mu_{3}+\sigma_{3}+\kappa_{3})\bigl\Vert ({\mathfrak{w}}, {\mathfrak{v}}, {\mathfrak{u}})- (\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}) \bigr\Vert , \end{align*}

    then

    \begin{align*} &\bigl\Vert ({\mathfrak{w}}, {\mathfrak{v}}, {\mathfrak{u}})-(\widehat{\mathfrak{w}}, \widehat{\mathfrak{v}}, \widehat{\mathfrak{u}}) \bigr\Vert \\&\leq \frac{(\mathcal{P}_{1}+\mathcal{P}_{2}+\mathcal{P}_{3}){\pi }_{1}+(\mathcal{Q}_{1}+\mathcal{Q}_{2}+\mathcal{Q}_{3}){\pi}_{2}+(\mathcal{O}_{1}+\mathcal{O}_{2}+\mathcal{O}_{3}){\pi}_{3}}{1-((\mathcal{P}_{1}+ \mathcal{P}_{2}+\mathcal{P}_{3})(\mu_{1}+\sigma_{1}+\kappa_{1})+(\mathcal{Q}_{1}+\mathcal{Q}_{2}+\mathcal{Q}_{3})(\mu_{2}+\sigma_{2}+\kappa_{2})+(\mathcal{O}_{1}+\mathcal{O}_{2}+\mathcal{O}_{3})(\mu_{3}+\phi_{3}+\kappa_{3}))} \\&\leq \mathcal{K}_{1}\pi _{1}+\mathcal{K}_{2} \pi_{2}+\mathcal{K}_{3} \pi_{3}, \end{align*}

    Thus, the boundary value problem (1.3) is Hyers-Ulam stable.

    Example 5.1. Consider the following tripled fractional differential system of sequential type.

    \begin{equation} \begin{cases} (^{c}{\mathfrak{D}}^{\psi }+ \varphi ^{c}{\mathfrak{D}}^{\psi-1}) \mathfrak{w}(\varpi) = \mathfrak{f} (\varpi, \mathfrak{w}(\varpi), \mathfrak{v}(\varpi), \mathfrak{u}(\varpi)), \quad 2 < \psi \leq 3, \\ (^{c}{\mathfrak{D}}^{\phi}+ \varphi ^{c}{\mathfrak{D}}^{\phi-1})\mathfrak{v}(\varpi) = \mathfrak{g}(\varpi, \mathfrak{w}(\varpi), \mathfrak{v}(\varpi), \mathfrak{u}(\varpi)), \quad2 < \phi \leq 3, \\ (^{c}{\mathfrak{D}}^{\omega}+ \varphi ^{c}{\mathfrak{D}}^{\omega-1})\mathfrak{u}(\varpi) = \mathfrak{h} (\varpi, \mathfrak{w}(\varpi), \mathfrak{v}(\varpi), \mathfrak{u}(\varpi) ), \quad 3 < \omega \leq 4, \\ \mathfrak{w}(0) = {0}, \qquad \mathfrak{w}'(0) = 0, \qquad \mathfrak{w}(\mathcal{T}) = \Upsilon_{1}\sum\limits_{j = 1}^{k-2} \xi_{j} \mathfrak{v}(\zeta_{j})+\Pi_{1}\mathcal{I}^{\varsigma}\mathfrak{v}(\vartheta), \\ \mathfrak{v}(0) = {0}, \qquad \mathfrak{v}'(0) = 0, \qquad \mathfrak{v}(\mathcal{T}) = \Upsilon_{2}\sum\limits_{j = 1}^{k-2} {\nu}_{j} \mathfrak{u}(\zeta_{j})+\Pi_{2}\mathcal{I}^{\varrho}\mathfrak{u}(\vartheta), \\ \mathfrak{u}(0) = 0, \qquad \mathfrak{u}'(0) = 0, \qquad \mathfrak{u}''(0) = 0, \qquad \mathfrak{u}(\mathcal{T}) = \Upsilon_{3}\sum\limits_{j = 1}^{k-2}\sigma_{j} \mathfrak{w}(\zeta_{j})+\Pi_{3}\mathcal{I}^{\delta}\mathfrak{w}(\vartheta), \end{cases} \end{equation} (5.1)

    Here \psi = {\frac{7}{3}}, \phi = {\frac{5}{2}}, \omega = {\frac{10}{3}}; \varsigma = 9/20; \varrho = 11/20; \delta = 13/20; \vartheta = 93/50;\zeta_{j} = 36/25; \Upsilon_{1} = 17/400; \Upsilon_{2} = 15/300; \Upsilon_{3} = 13/200; \Pi_{1} = 17/200;\Pi_{2} = 8/125;\Pi_{3} = 6/68; \mathcal{T} = 1; \zeta_{1} = 1/20; \zeta_{2} = 2/20;\nu_{1} = 1/100;\nu_{2} = 1/50; \sigma_{1} = 1/1000;\sigma_{2} = 1/500; k = 4; \Delta = 0.067506818609056 with the given data, it is found that

    \begin{align*} &\mathcal{P}_{1} = 1.79143780787545, \mathcal{P}_{2} = 0.83611149394660, \mathcal{P}_{3} = 0.522203861964576 , \\ & \mathcal{Q}_{1} = 0.400530445936702, \mathcal{Q}_{2} = 1.56029202354379, \mathcal{Q}_{3} = 0.109316638513044, \\& \mathcal{O}_{1} = 0.190264056004677, \mathcal{O}_{2} = 0.748929077567517 , \mathcal{O}_{3} = 0.745842301275926. \end{align*}

    To demonstrate the Theorem 3.1, we will use the following

    \begin{align} &{\mathfrak{f}}(\varpi, \mathfrak{w, v, u}) = \frac{e^{-1}}{\sqrt{8+\varpi^{2}}} \cos \mathfrak{w} + \cos \varpi, \\& {\mathfrak{g}}(\varpi, \mathfrak{w, v, u}) = \frac{1}{ 25+\varpi^{2}} (\sin \mathfrak{w} + |\mathfrak{v}|) +e^{-\varpi}, \\&{\mathfrak{h}}(\varpi, \mathfrak{w, v, u}) = \frac{e^{-\varpi}}{9} \sin \mathfrak{u} +\tan^{-1} \varpi, \end{align} (5.2)

    which clearly satisfies condition ({\mathcal{H}}_{2}) with \mathfrak{l}_{\mathfrak{f}}^{*} = \frac{1}{9e}, \mathfrak{l}_{\mathfrak{g}}^{*} = \frac{1}{26}, and \mathfrak{l}_{\mathfrak{h}}^{*} = \frac{1}{9e} . Moreover,

    \begin{align*} \max \{ \mathcal{P}_{1} \mathfrak{l}_{\mathfrak{f}}^{*}+\mathcal{P}_{2} \mathfrak{l}_{\mathfrak{g}}^{*}+ \mathcal{P}_{3} \mathfrak{l}_{\mathfrak{h}}^{*}, \mathcal{Q}_{1} \mathfrak{l}_{\mathfrak{f}}^{*}+\mathcal{Q}_{2} \mathfrak{l}_{\mathfrak{g}}^{*}+ \mathcal{Q}_{3} \mathfrak{l}_{\mathfrak{h}}^{*}, \mathcal{O}_{1} \mathfrak{l}_{\mathfrak{f}}^{*}+\mathcal{O}_{2} \mathfrak{l}_{\mathfrak{g}}^{*}+ \mathcal{O}_{3} \mathfrak{l}_{\mathfrak{h}}^{*} \} < 1, \end{align*}
    \begin{align} \max \{ 0.7309375523, 0.2139832533, 0.3115010395\} = 0.7309375523 < 1. \end{align} (5.3)

    So all conditions of Theorem 3.1 are satisfied, that is the problem (5.1) has at least one solution.

    Figures 13 show the impact of fractional orders ( \psi, \phi, and \omega ) on the condition \mathcal{P}_{i}, \mathcal{Q}_{i}, \mathcal{O}_{i}, i = 1, 2, 3, given by (3.4) is represented graphically. Based on the \mathcal{P}, \mathcal{Q}, and \mathcal{O} values given by (3.4) and the conditions \mathcal{H}_{1} and \mathcal{H}_{2} , the graphs shown above describe the behavior of the solution of the problem (5.1). For different values of \psi, \phi, and \omega . An important observation to be taken in consideration is that: when the orders (\psi, \phi, and \omega) are small, the values of \mathcal{P, Q} and \mathcal{O} decrease with increasing in time. As the to orders (\psi, \phi, and \omega) increase, the values \mathcal{P, Q} and \mathcal{O} increase as well.

    Figure 1.  Graph of the approximate solution \mathfrak{w}(\varpi) for various values of \psi .
    Figure 2.  Graph of the approximate solution \mathfrak{v}(\varpi) for various values of \phi .
    Figure 3.  Graph of the approximate solution \mathfrak{u}(\varpi) for various values of \omega .

    In this article, we study a tripled system of sequential fractional differential equations of order \chi . Within the proposed system, tripled boundary conditions determine the existence and uniqueness of solutions. The existence result on the basis of mönch's fixed point theorem. The stability of the Hyers-Ulam solutions was investigated. We provide examples to demonstrate the study's generalization. The work described in this article is unique, and it adds a lot to the existing body of knowledge on the subject. When the parameters in systems (\Upsilon_{1}, \Upsilon_{2}, \Upsilon_{3}, \Pi_{1}, \Pi_{2}, \Pi_{3}) were specified, our results conformed to a few special cases. Assume we formulate the system (1.3) as follows: in the presented findings, take \Pi_ {1} , \Pi_{2} , and \Pi_{3} .

    \begin{align} \begin{cases} \mathfrak{w}(0) = {0}, \qquad \mathfrak{w}'(0) = 0, \qquad \mathfrak{w}(1) = \Pi_{1}\mathcal{I}^{\varsigma}\mathfrak{v}(\vartheta), \\ \mathfrak{v}(0) = {0}, \qquad \mathfrak{v}'(0) = 0, \qquad \mathfrak{v}(1) = \Pi_{2}\mathcal{I}^{\varrho}\mathfrak{u}(\vartheta), \\ \mathfrak{u}(0) = 0, \qquad \mathfrak{u}'(0) = 0, \qquad \mathfrak{u}''(0) = 0, \qquad \mathfrak{u}(1) = \Pi_{3}\mathcal{I}^{\delta}\mathfrak{w}(\vartheta). \end{cases} \end{align} (6.1)

    The boundary value problems given in (6.1) can be solved by the methodology employed in the previous sections.

    This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Project No. GRANT1386], through its KFU Research summer initiative.

    The authors declare that there is no conflict of interest.



    [1] D. Hinton, Handbook of differential equations (Daniel Zwillinger), SIAM Review, 36 (1994), 126–127. https://doi.org/10.1137/1036029 doi: 10.1137/1036029
    [2] K. Oldham, J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, Elsevier, 1974.
    [3] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993.
    [4] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Switzerland: Gordon and breach science, 1993.
    [5] N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheol. Acta, 45 (2006), 765–771. https://doi.org/10.1007/s00397-005-0043-5 doi: 10.1007/s00397-005-0043-5
    [6] M. Awadalla, Y. Y. Y. Noupoue, K. A. Asbeh, N. Ghiloufi, Modeling drug concentration level in blood using fractional differential equation based on Psi-Caputo derivative, J. Math., 2022 (2022), 9006361. https://doi.org/10.1155/2022/9006361 doi: 10.1155/2022/9006361
    [7] Y. Y. Y. Noupoue, Y. Tandoğdu, M. Awadalla, On numerical techniques for solving the fractional logistic differential equation, Adv. Differ. Equ., 2019 (2019), 108. https://doi.org/10.1186/s13662-019-2055-y doi: 10.1186/s13662-019-2055-y
    [8] M. Manigandan, S. Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran, Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order, AIMS Math., 7 (2022), 723–755. https://doi.org/10.3934/math.2022045 doi: 10.3934/math.2022045
    [9] B. Ahmad, J. J. Nieto, Sequential fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 64 (2012), 3046–3052. https://doi.org/10.1016/j.camwa.2012.02.036 doi: 10.1016/j.camwa.2012.02.036
    [10] M. M. Matar, I. A. Amra, J. Alzabut, Existence of solutions for tripled system of fractional differential equations involving cyclic permutation boundary conditions, Bound. Value Probl., 2020 (2020), 140. https://doi.org/10.1186/s13661-020-01437-x doi: 10.1186/s13661-020-01437-x
    [11] X. Su, Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett., 22 (2021), 64–69. https://doi.org/10.1016/j.aml.2008.03.001 doi: 10.1016/j.aml.2008.03.001
    [12] M. Subramanian, M. Manigandan, C. Tung, T. N. Gopal, J. Alzabut, On system of nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of fractional order, J. Taibah Univ. Sci., 16 (2022), 1–23. https://doi.org/10.1080/16583655.2021.2010984 doi: 10.1080/16583655.2021.2010984
    [13] A. Hamoud, Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integrodifferential equations, Adv. Theor. Nonlinear Anal. Appl., 4 (2020), 321–331. https://doi.org/10.31197/atnaa.799854 doi: 10.31197/atnaa.799854
    [14] H. Khan, C. Tunc, W. Chen, A. Khan, Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with p-Laplacian operator, J. Appl. Anal. Comput., 8 (2018), 1211–1226. https://doi.org/10.11948/2018.1211 doi: 10.11948/2018.1211
    [15] S. Ferraoun, Z. Dahmani, Existence and stability of solutions of a class of hybrid fractional differential equations involving RL-operator, J. Interdiscip. Math., 23 (2020), 885–903. https://doi.org/10.1080/09720502.2020.1727617 doi: 10.1080/09720502.2020.1727617
    [16] A. Al Elaiw, M. M. Awadalla, M. Manigandan, K. Abuasbeh, A novel implementation of Mönch's fixed point theorem to a system of nonlinear Hadamard fractional differential equations, Fractal Fract., 6 (2022), 586. https://doi.org/10.3390/fractalfract6100586 doi: 10.3390/fractalfract6100586
    [17] W. Al-Sadi, Z. Y. Huang, A. Alkhazzan, Existence and stability of a positive solution for nonlinear hybrid fractional differential equations with singularity, J. Taibah Univ. Sci., 13 (2019), 951–960. https://doi.org/10.1080/16583655.2019.1663783 doi: 10.1080/16583655.2019.1663783
    [18] M. Subramanian, M. Manigandan, T. N. Gopal, Fractional differential equations involving Hadamard fractional derivatives with nonlocal multi-point boundary conditions, Discontinuity, Nonlinearity, and Complexity, 9 (2020), 421–431. https://doi.org/10.5890/DNC.2020.09.006 doi: 10.5890/DNC.2020.09.006
    [19] M. Awadalla, K. Abuasbeh, M. Subramanian, M. Manigandan, On a system of \psi-Caputo hybrid fractional differential equations with Dirichlet boundary conditions, Mathematics, 10 (2022), 1681. https://doi.org/10.3390/math10101681 doi: 10.3390/math10101681
    [20] A. Al-khateeb, H. Zureigat, O. Ala'Zyed, S. Bawaneh, Ulam-Hyers stability and uniqueness for nonlinear sequential fractional differential equations involving integral boundary conditions, Fractal Fract, 5 (2021), 235. https://doi.org/10.3390/fractalfract5040235 doi: 10.3390/fractalfract5040235
    [21] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107.
    [22] M. Manigandan, M. Subramanian, T. N. Gopal, B. Unyong, Existence and stability results for a tripled system of the Caputo type with multi-point and integral boundary conditions, Fractal Fract., 6 (2022), 285. https://doi.org/10.3390/fractalfract6060285 doi: 10.3390/fractalfract6060285
    [23] V. Berinde, M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal. Theor., 74 (2011), 4889–4897. https://doi.org/10.1016/j.na.2011.03.032 doi: 10.1016/j.na.2011.03.032
    [24] K. Karakaya, N. E. Bouzara, K. DoLan, Y. Atalan, Existence of tripled fixed points for a class of condensing operators in Banach spaces, Sci. World J., 2014 (2014), 140. https://doi.org/10.1155/2014/541862 doi: 10.1155/2014/541862
    [25] B. Ahmad, S. Hamdan, A. Alsaedi, S. K. Ntouyas, A study of a nonlinear coupled system of three fractional differential equations with nonlocal coupled boundary conditions, Adv. Differ. Equ., 2021 (2021), 278. https://doi.org/10.1186/s13662-021-03440-7 doi: 10.1186/s13662-021-03440-7
    [26] M. M. Matar, I. A. Amra, J. Alzabut, Existence of solutions for tripled system of fractional differential equations involving cyclic permutation boundary conditions, Bound. Value Probl., 2020 (2020), 140. https://doi.org/10.1186/s13661-020-01437-x doi: 10.1186/s13661-020-01437-x
    [27] Y. Alruwaily, B. Ahmad, S. K. Ntouyas, A. S. Alzaidi, Existence results for coupled nonlinear sequential fractional differential equations with coupled Riemann-Stieltjes integro-multipoint boundary conditions, Fractal Fract., 6 (2022), 123. https://doi.org/10.3390/fractalfract6020123 doi: 10.3390/fractalfract6020123
    [28] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
    [29] M. Benchohra, J. Henderson, D. Seba, Measure of noncompactness and fractional differential equations in Banach spaces, Comm. Appl. Anal., 12 (2008), 419–428.
    [30] D. J. Guo, V. Lakshmikantham, X. Z. Liu, Nonlinear integral equations in abstract spaces, Kluwer Academic Publishers, 1996.
    [31] E. Zeidler, Nonlinear functional analysis and its applications: Part 2 B: Nonlinear monotone operators, Springer, 1989.
    [32] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. Theor., 4 (1980), 985–999. https://doi.org/10.1016/0362-546X(80)90010-3 doi: 10.1016/0362-546X(80)90010-3
  • This article has been cited by:

    1. Meraa Arab, Muath Awadalla, Murugesan Manigandan, Kinda Abuasbeh, Nazim I. Mahmudov, Thangaraj Nandha Gopal, On the Existence Results for a Mixed Hybrid Fractional Differential Equations of Sequential Type, 2023, 7, 2504-3110, 229, 10.3390/fractalfract7030229
    2. Muath Awadalla, Mohamed Hannabou, Kinda Abuasbeh, Khalid Hilal, A Novel Implementation of Dhage’s Fixed Point Theorem to Nonlinear Sequential Hybrid Fractional Differential Equation, 2023, 7, 2504-3110, 144, 10.3390/fractalfract7020144
    3. Muath Awadalla, Murugesan Manigandan, Existence Results for Caputo Tripled Fractional Differential Inclusions with Integral and Multi-Point Boundary Conditions, 2023, 7, 2504-3110, 182, 10.3390/fractalfract7020182
    4. Farid Chabane, Maamar Benbachir, Sina Etemad, Shahram Rezapour, İbrahim Avcı, On the \rho -Caputo Impulsive p-Laplacian Boundary Problem: An Existence Analysis, 2024, 23, 1575-5460, 10.1007/s12346-024-00989-y
    5. Saleh Alshammari, Mohammad Alshammari, Mohammed Alabedalhadi, M. Mossa Al-Sawalha, Mohammed Al-Smadi, Numerical investigation of a fractional model of a tumor-immune surveillance via Caputo operator, 2024, 86, 11100168, 525, 10.1016/j.aej.2023.11.026
    6. Muath Awadalla, K. Buvaneswari, P. Karthikeyan, Mohamed Hannabou, K. Karthikeyan, Feryal AlAdsani, Jihan Alahmadi, Analysis on a nonlinear fractional differential equations in a bounded domain [1,\mathcal {T}], 2024, 70, 1598-5865, 1275, 10.1007/s12190-024-01998-5
    7. Mohamed Hannabou, Mohamed Bouaouid, Khalid Hilal, On class of fractional impulsive hybrid integro-differential equation, 2024, 38, 0354-5180, 1055, 10.2298/FIL2403055H
    8. Muath Awadalla, Manigandan Murugesan, Manikandan Kannan, Jihan Alahmadi, Feryal AlAdsani, Utilizing Schaefer's fixed point theorem in nonlinear Caputo sequential fractional differential equation systems, 2024, 9, 2473-6988, 14130, 10.3934/math.2024687
    9. Muath Awadalla, Applications of the {\psi }- caputo fractional operator in the existence of solutions to hybrid differential equations, 2024, 1598-5865, 10.1007/s12190-024-02299-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1723) PDF downloads(92) Cited by(9)

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog