Let $ G $ be a finite group. The intersection graph of subgroups of $ G $ is a graph whose vertices are all non-trivial subgroups of $ G $ and in which two distinct vertices $ H $ and $ K $ are adjacent if and only if $ H\cap K\neq 1 $. In this paper, we classify all finite abelian groups whose thickness and outerthickness of subgroup intersection graphs are 1 and 2, respectively. We also investigate the thickness and outerthickness of subgroup intersection graphs for some finite non-abelian groups.
Citation: Huadong Su, Ling Zhu. Thickness of the subgroup intersection graph of a finite group[J]. AIMS Mathematics, 2021, 6(3): 2590-2606. doi: 10.3934/math.2021157
Let $ G $ be a finite group. The intersection graph of subgroups of $ G $ is a graph whose vertices are all non-trivial subgroups of $ G $ and in which two distinct vertices $ H $ and $ K $ are adjacent if and only if $ H\cap K\neq 1 $. In this paper, we classify all finite abelian groups whose thickness and outerthickness of subgroup intersection graphs are 1 and 2, respectively. We also investigate the thickness and outerthickness of subgroup intersection graphs for some finite non-abelian groups.
[1] | D. F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706-2719. doi: 10.1016/j.jalgebra.2008.06.028 |
[2] | G. Aalipour, S. Akbari, P. J. Cameron, R. Nikandish, F. Shaveisi, On the structure of the power graph and the enhanced power graph of a group, Electron. J. Combin., 24 (2017), 1-22. |
[3] | V. B. Alekseev, V. S. Gončakov, The thickness of an arbitrary complete graph, (Russian) Mat. Sb. (N.S.), 101(143) (1976), 212-230. |
[4] | A. Aggarwal, M. Klawe, P. Shor, Multilayer grid embeddings for VLSI, Algorithmica, 6 (1991), 129-151. doi: 10.1007/BF01759038 |
[5] | D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447. doi: 10.1006/jabr.1998.7840 |
[6] | N. Ashrafi, H. R. Maimani, M. R. Pournaki, S. Yassemi, Unit graphs associated with rings, Commun. Algebra, 38 (2010), 2851-2871. doi: 10.1080/00927870903095574 |
[7] | S. Akbari, F. Heydari, M. Maghasedi, The intersection graph of a group, J. Algebra Appl., 14 (2015), 1550065. doi: 10.1142/S0219498815500656 |
[8] | H. Ahmadi, B. Taeri, Planarity of the intersection graph of subgroups of a finite group, J. Algebra Appl., 15 (2016), 1650040. doi: 10.1142/S0219498816500407 |
[9] | M. Behboodi, Zero divisor graphs for modules over commutative rings, J. Commut. Algebra, 4 (2012), 175-197. |
[10] | J. Bosák, The graphs of semigroups, Theory Graphs Appl. (Proc. Sympos. Smolenice, 1963), (1964), 119-125. |
[11] | J. Battle, F. Harary, Y. Kodama, Every planar graph with nine points has a nonplanar complement, Bull. Am. Math. Soc., 68 (1962), 569-571. doi: 10.1090/S0002-9904-1962-10850-7 |
[12] | L. W. Beineke, F. Harary, The thickness of the complete graph, Canadian J. Math., 17 (1965), 850-859. doi: 10.4153/CJM-1965-084-2 |
[13] | L. W. Beineke, H. Frank, J. W. Moon, On the thickness of the complete bipartite graph, Math. Proc. Cambridge Philos. Soc., 60 (1964), 1-5. doi: 10.1017/S0305004100037385 |
[14] | A. Cayley, Desiderata and suggestions: No. 2. The Theory of groups: Graphical representation, Am. J. Math., 1 (1878), 174-176. doi: 10.2307/2369306 |
[15] | P. J. Cameron, S. Ghosh, The power graph of a finite group, Discrete Math., 311(2011), 1220-1222. doi: 10.1016/j.disc.2010.02.011 |
[16] | B. Csákány, G. Pollák, The graph of subgroups of a finite group (Russian), Czechoslov Math. J., 19 (1969), 241-247. doi: 10.21136/CMJ.1969.100891 |
[17] | F. R. DeMeyer, T. McKenzie, K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum, 65 (2002), 206-214. doi: 10.1007/s002330010128 |
[18] | G. Ding, B. Oporowski, D. P. Sanders, D. Vertigan, Surface, tree-width, clique-minor, and partitions, J. Comb. Theory, Ser. B, 79 (2000), 221-246. |
[19] | R. K. Guy, R. J. Nowwkowski, The outerthickness and outercoarseness of graphs Ⅰ. The complete graph and the $n$-cube, In: Topics in combinatorics and Graph Theory, Physica-Verlag, (1990), 297-310. |
[20] | R. K. Guy, R. J. Nowwkowski, The outerthickness and outercoarseness of graphs Ⅱ. The complete bipartite graph, Contemp. Method. Graph Theory, (1990), 313-322. |
[21] | F. Harary, Graph theory, Addison-Wesley, Reading MA, 1971. |
[22] | A. Mansfield, Determining the thickness of graphs is NP-hard, Math. Proc. Camb. Philos. Soc., 93 (1983), 9-23. doi: 10.1017/S030500410006028X |
[23] | X. Ma, On the diameter of the intersection graph of a finite simple group, Czech. Math. J., 66 (2016), 365-370. doi: 10.1007/s10587-016-0261-2 |
[24] | A. V. Kelarev, S. J. Quinn, A combinatorial property and power graphs of groups, Contrib. General Algebra, 12 (2000), 229-235. |
[25] | S. Kayacan, E. Yaraneri, Finite groups whose intersection graphs are planar, J. Korean Math. Soc., 52 (2015), 81-96. doi: 10.4134/JKMS.2015.52.1.081 |
[26] | R. Rajkumar, P. Devi, Intersection graphs of cyclic subgroups of groups, Electronic Notes Discrete Math., 53 (2016), 15-24. doi: 10.1016/j.endm.2016.05.003 |
[27] | R. Rajkumar, P. Devi, Intersection graph of subgroups of some non-abelian groups, Malaya. J. Math., 4 (2016), 238-242. |
[28] | S. Ramanathan, E. L. Lloyd, Scheduling algorithms for multihop radio networks, IEEE/ACM Trans. Networking, 1 (1993), 166-177. doi: 10.1109/90.222924 |
[29] | R. Shen, Intersection graphs of subgroups of finite groups, Czech. Math. J., 60 (2010), 945-950. doi: 10.1007/s10587-010-0085-4 |
[30] | W. T. Tutte, The non-biplanar character of the complete 9-graph, Can. Math. Bull., 6 (1963), 319-330. doi: 10.4153/CMB-1963-026-x |
[31] | T. White, Graphs, Groups and Surfaces, North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1984. |
[32] | B. Xu, X. Zha, Thickness and outerthickness for embedded graphs, Discrete Math., 341 (2018), 1688-1695. doi: 10.1016/j.disc.2018.02.024 |
[33] | B. Zelinka, Intersection graphs of finite abelian groups, Czech. Math. J., 25 (1975), 171-174. doi: 10.21136/CMJ.1975.101307 |