A simple method to solve the common solution to the pair of linear matrix equations $ AXB = D $ and $ GXH = C $ is introduced. Some necessary and sufficient conditions for the existence of a common solution, and two expressions for the general common solution of the equation pair are provided by the proposed method. Subsequently, the results are applied to determine the solution of the matrix equation $ AXB+GYH = D $ and the Hermitian solution of the matrix equation $ AXB = D. $
Citation: Huiting Zhang, Hairui Zhang, Lina Liu, Yongxin Yuan. A simple method for solving matrix equations $ AXB = D $ and $ GXH = C $[J]. AIMS Mathematics, 2021, 6(3): 2579-2589. doi: 10.3934/math.2021156
A simple method to solve the common solution to the pair of linear matrix equations $ AXB = D $ and $ GXH = C $ is introduced. Some necessary and sufficient conditions for the existence of a common solution, and two expressions for the general common solution of the equation pair are provided by the proposed method. Subsequently, the results are applied to determine the solution of the matrix equation $ AXB+GYH = D $ and the Hermitian solution of the matrix equation $ AXB = D. $
[1] | J. W. van der Woude, Feedback decoupling and stabilization for linear systems with multiple exogenous variables, Ph. D. Thesis, Technical University of Eindhoven, Netherlands, 1987. |
[2] | J. W. van der Woude, Almost non-interating control by measurement feedback, Syst. Control Lett., 9 (1987), 7-16. doi: 10.1016/0167-6911(87)90003-X |
[3] | S. K. Mitra, Common solutions to a pair of linear matrix equations $A_1XB_1 = C_1$ and $A_2XB_2 = C_2$, Math. Proc. Cambridge Philos. Soc., 74 (1973), 213-216. doi: 10.1017/S030500410004799X |
[4] | S. K. Mitra, A pair of simultaneous linear matrix equations $A_1XB_1 = C_1, $ $A_2XB_2 = C_2$ and a matrix programming problem, Linear Algebra Appl., 131 (1990), 107-123. doi: 10.1016/0024-3795(90)90377-O |
[5] | N. Shinozaki, M. Sibuya, Consistency of a pair of matrix equations with an application, Keio Eng. Rep., 27 (1974), 141-146. |
[6] | J. W. van der Woude, On the existence of a common solution $X$ to the matrix equations $A_iXB_j = C_ij, (i, j) \in \Gamma$, Linear Algebra Appl., 375 (2003), 135-145. doi: 10.1016/S0024-3795(03)00608-6 |
[7] | A. Navarra, P. L. Odell, D. M. Young, A representation of the general common solution to the matrix equations $A_1XB_1 = C_1$ and $A_2XB_2 = C_2$ with applications, Comput. Math. Appl., 41 (2001), 929-935. doi: 10.1016/S0898-1221(00)00330-8 |
[8] | A. B. Özgüler, N. Akar, A common solution to a pair of linear matrix equations over a principal domain, Linear Algebra Appl., 144 (1991), 85-99. doi: 10.1016/0024-3795(91)90063-3 |
[9] | Q. W. Wang, A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, Linear Algebra Appl., 384 (2004), 43-54. doi: 10.1016/j.laa.2003.12.039 |
[10] | A. Dajić, Common solutions of linear equations in ring with applications, Electron. J. Linear Algebra, 30 (2015), 66-79. |
[11] | Z. H. He, Q. W. Wang, The general solutions to some systems of matrix equations, Linear Multilinear Algebra, 63 (2015), 2017-2032. doi: 10.1080/03081087.2014.896361 |
[12] | Z. H. He, O. M. Agudelo, Q. W. Wang, B. De Moor, Two-sided coupled generalized Sylvester matrix equations solving using a simultaneous decomposition for fifteen matrices, Linear Algebra Appl., 496 (2016), 549-593. doi: 10.1016/j.laa.2016.02.013 |
[13] | F. Zhang, M. Wei, Y. Li, J. Zhao, An efficient method for special least squares solution of the complex matrix equation $(AXB, CXD) = (E, F)$, Comput. Math. Appl., 76 (2018), 2001-2010. doi: 10.1016/j.camwa.2018.07.044 |
[14] | D. S. Cvetković-llić, J. Nikolov Radenković, Q. W. Wang, Algebraic conditions for the solvability to some systems of matrix equations, Linear Multilinear Algebra, (In Press). |
[15] | Z. H. He, M. Wang, X. Liu, On the general solutions to some systems of quaternion matrix equations, RACSAM, 114 (2020), 1-22. doi: 10.1007/s13398-019-00732-2 |
[16] | J. K. Baksalary, R. Kala, The matrix equation $AXB+CYD = E, $ Linear Algebra Appl., 30 (1980), 141-147. doi: 10.1016/0024-3795(80)90189-5 |
[17] | K. E. Chu, Singular value and generalized singular value decompositions and the solution of linear matrix equations, Linear Algebra Appl., 88/89 (1987), 83-98. doi: 10.1016/0024-3795(87)90104-2 |
[18] | G. Xu, M. Wei, D. Zheng, On solutions of matrix equation $AXB + CYD = F$, Linear Algebra Appl., 279 (1998), 93-109. doi: 10.1016/S0024-3795(97)10099-4 |
[19] | Z. Peng, Y. Peng, An efficient iterative method for solving the matrix equation $AXB + CYD = E$, Numer. Linear Algebra Appl., 13 (2006), 473-485. doi: 10.1002/nla.470 |
[20] | A. B. Özgüler, The equation $AXB + CYD = E$ over a principal ideal domain, SIAM J. Matrix Anal. Appl., 12 (1991), 581-591. doi: 10.1137/0612044 |
[21] | L. Huang, Q. Zeng, The solvability of matrix equation $AXB + CYD = E$ over a simple Artinian ring, Linear Multilinear Algebra, 38 (1995), 225-232. doi: 10.1080/03081089508818358 |
[22] | M. Dehghan, M. Hajarian, An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices, Appl. Math. Model., 34 (2010), 639-654. doi: 10.1016/j.apm.2009.06.018 |
[23] | H. Zhang, H. Yin, Conjugate gradient least squares algorithm for solving the generalized coupled Sylvester matrix equations, Comput. Math. Appl., 73 (2017), 2529-2547. doi: 10.1016/j.camwa.2017.03.018 |
[24] | S. Li, A finite iterative method for solving the generalized Hamiltonian solutions of coupled Sylvester matrix equations with conjugate transpose, Int. J. Comput. Math., 94 (2017), 757-773. doi: 10.1080/00207160.2016.1148810 |
[25] | M. Hajarian, Computing symmetric solutions of general Sylvester matrix equations via Lanczos version of biconjugate residual algorithm, Comput. Math. Appl., 76 (2018), 686-700. doi: 10.1016/j.camwa.2018.05.010 |
[26] | T. Yan, C. Ma, The BCR algorithms for solving the reflexive or anti-reflexive solutions of generalized coupled Sylvester matrix equations, J. Franklin Inst., 357 (2020), 12787-12807. doi: 10.1016/j.jfranklin.2020.09.030 |
[27] | A. Ben-Israel, T. N. E. Greville, Generalized inverses: Theory and applications, 2 Eds., New York: Springer, 2003. |
[28] | J. K. Baksalary, R. Kala, The matrix equation $AX-YB = C, $ Linear Algebra Appl., 25 (1979), 41-43. doi: 10.1016/0024-3795(79)90004-1 |
[29] | C. G. Khatri, S. K. Mitra, Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math., 31 (1976), 579-585. doi: 10.1137/0131050 |
[30] | Y. L. Chen, Representations and cramer rules for the solution of a restricted matrix equation, Linear Multilinear Algebra, 35 (1993), 339-354. doi: 10.1080/03081089308818266 |