Citation: Kahraman Esen Özen. A general method for solving linear matrix equations of elliptic biquaternions with applications[J]. AIMS Mathematics, 2020, 5(3): 2211-2225. doi: 10.3934/math.2020146
[1] | B. L. van der Waerden, Hamilton's discovery of quaternions, Math. Mag., 49 (1976), 227–234. |
[2] | L. A. Wolf, Similarity of matrices in which the elements are real quaternions, Bull. Amer. Math. Soc., 42 (1936), 737–743. |
[3] | Y. Tian, Universal factorization equalities for quaternion matrices and their applications, Mathematical Journal of Okayama University, 41 (1999), 45–62. |
[4] | C. Song, G. Chen, Q. Liu, Explicit solutions to the quaternion matrix equations X-AXF=C and X-A$\tilde{X}$F=C, Int. J. Comput. Math., 89 (2012), 890–900. |
[5] | C. Song, G. Chen, On solutions of matrix equation XF-AX=C and XF-A$\tilde{X}$=C over quaternion field, J. Appl. Math. Comput., 37 (2011), 57–68. |
[6] | Q. W. Wang, J. W. Van der Woude, H. X. Chang, A system of real quaternion matrix equations with applications, Linear Algebra Appl., 431 (2009), 2291–2303. |
[7] | Z. H. He, Q. W. Wang, A real quaternion matrix equation with applications, Linear Multilinear A., 61 (2013), 725–740. |
[8] | F. Zhang, M. Wei, Y. Li, et al. Special least squares solutions of the quaternion matrix equation AX=B with applications, Appl. Math. Comput., 270 (2015), 425–433. |
[9] | F. Zhang, W. Mu, Y. Li, et al. Special least squares solutions of the quaternion matrix equation AXB+CXD=E with applications, Comput. Math. Appl., 72 (2016), 1426–1435. |
[10] | W. R. Hamilton, Lectures on quaternions, Dublin: Hodges and Smith, 1853. |
[11] | Y. Tian, Biquaternions and their complex matrix representations, Beitr Algebra Geom., 54 (2013), 575–592. |
[12] | Y. Huang, S. Zhang, Complex matrix decomposition and quadratic programming, Math. Oper. Res., 32 (2007), 758–768. |
[13] |
F. Zhang, M. Wei, Y. Li, et al. The minimal norm least squares Hermitian solution of the complex matrix equation AXB+CXD=E, J. Franklin I., 355 (2018), 1296–1310. |
[14] | F. Zhang, M. Wei, Y. Li, et al. An efficient method for special least squares solution of the complex matrix equation (AXB, CXD)=(E, F), Comput. Math. Appl., 76 (2018), 2001–2010. |
[15] | K. E. Özen, M. Tosun, Elliptic biquaternion algebra, AIP Conf. Proc., 1926 (2018), 020032. |
[16] | K. E. Özen, M. Tosun, A note on elliptic biquaternions, AIP Conf. Proc., 1926 (2018), 020033. |
[17] | K. E. Özen, M. Tosun, p-Trigonometric approach to elliptic biquaternions, Adv. Appl. Clifford Alg., 28 (2018), 62. |
[18] | K. E. Özen, M. Tosun, Elliptic matrix representations of elliptic biquaternions and their applications, Int. Electron. J. Geom., 11 (2018), 96–103. |
[19] | K. E. Özen, M. Tosun, Further results for elliptic biquaternions, Conference Proceedings of Science and Technology, 1 (2018), 20–27. |
[20] | A. A. Harkin, J. B. Harkin, Geometry of generalized complex numbers, Math. Mag., 77 (2004), 118–129. |
[21] | H. H. Kösal, On commutative quaternion matrices, Ph.D. Thesis, Sakarya: Sakarya University, 2016. |
[22] | K. E. Özen, M. Tosun, On the matrix algebra of elliptic biquaternions, Math. Method. Appl. Sci., 2019. |
[23] | I. M. Yaglom, Complex numbers in geometry, Newyork: Academic Press, 1968. |
[24] | Y. Tian, Universal similarity factorication equalities over real Clifford algebras, Adv. Appl. Clifford Al., 8 (1998), 365–402. |