Research article

Revisiting of the BT-inverse of matrices

  • Received: 14 October 2020 Accepted: 21 December 2020 Published: 28 December 2020
  • MSC : 15A09

  • In this paper, we discuss different characteristics of the BT-inverse of a square matrix introduced by Baksalary and Trenkler [On a generalized core inverse, Appl. Math. Comput., 236 (2014), 450-457]. While the BT-inverse is defined by a expression, we present some necessary and sufficient conditions for a matrix to be the BT-inverse. Then we give a canonical form of BT-inverse and investigate the relationships between BT-inverse and other generalized inverses by Core-EP decomposition. Some properties of BT-inverse concerned with some classes of special matrix are identified by Core-EP decomposition. Furthermore new representations of BT-inverse are given by the maximal classes of matrices.

    Citation: Wanlin Jiang, Kezheng Zuo. Revisiting of the BT-inverse of matrices[J]. AIMS Mathematics, 2021, 6(3): 2607-2622. doi: 10.3934/math.2021158

    Related Papers:

  • In this paper, we discuss different characteristics of the BT-inverse of a square matrix introduced by Baksalary and Trenkler [On a generalized core inverse, Appl. Math. Comput., 236 (2014), 450-457]. While the BT-inverse is defined by a expression, we present some necessary and sufficient conditions for a matrix to be the BT-inverse. Then we give a canonical form of BT-inverse and investigate the relationships between BT-inverse and other generalized inverses by Core-EP decomposition. Some properties of BT-inverse concerned with some classes of special matrix are identified by Core-EP decomposition. Furthermore new representations of BT-inverse are given by the maximal classes of matrices.



    加载中


    [1] R. A. Penrose, A generalized inverse for matrices, Math. Proc. Cambrige Philos. Soc., 51 (1955), 406-413. doi: 10.1017/S0305004100030401
    [2] M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Am. Math. Mon., 65 (1958), 506-514. doi: 10.1080/00029890.1958.11991949
    [3] O. M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra, 58 (2010), 681-697.
    [4] H. Kurata, Some theorems on the core inverse of matrices and the core partial ordering, Appl. Math. Comput., 316 (2018), 43-51.
    [5] G. Luo, K. Zuo, L. Zhou, Revisitation of core inverse, Wuhan Univ. J. Nat. Sci., 20 (2015), 381-385.
    [6] D. S. Rakić, N. Dinčić, D. S. Djordjević, Core inverse and core partial order of Hilbert space operators, Appl. Math. Comput., 244 (2014), 283-302.
    [7] D. E. Ferreyra, F. E. Levis, N. Thome, Revisiting the core-EP inverse and its extension to rectangular matrices, Quaest. Math., 41 (2018), 1-17. doi: 10.2989/16073606.2017.1368732
    [8] K. M. Prasad, K. S. Mohana, Core-EP inverse, Linear Multilinear Algebra, 62 (2014), 792-802.
    [9] H. Wang, Core-EP decomposition and its applications, Linear Algebra Appl., 508 (2016), 289-300. doi: 10.1016/j.laa.2016.08.008
    [10] K. Zuo, Y. Cheng, The new revisitation of core EP inverse of matrices, Filomat, 33 (2019), 3061-3072. doi: 10.2298/FIL1910061Z
    [11] K. Zuo, C. I. Dragana, Y. Cheng, Different characterizations of DMP-inverse of matrices, Linear Multilinear Algebra, (2020), 1-8.
    [12] S. B. Malik, N. Thome, On a new generalized inverse for matrices of an arbitrary index, Appl. Math. Comput., 226 (2014), 575-580.
    [13] O. M. Baksalary, G. Trenkler, On a generalized core inverse, Appl. Math. Comput., 236 (2014), 450-457.
    [14] J. Benitez, E. Boasso, H. Jin, On one-sided (B, C)-inverse of arbitrary matrices, Electron. J. Linear Algebra, 32 (2017), 391-422.
    [15] M. P. Drazin, A class of outer generalized inverses, Linear Algebra Appl., 436 (2012), 1909-1923. doi: 10.1016/j.laa.2011.09.004
    [16] H. Wang, J. Chen, Weak group inverse, Open Math., 16 (2018), 1218-1232.
    [17] R. E. Hartwig, K. Spindelböck, Matrices for which A* and A commute, Linear Multilinear Algebra, 14 (1983), 241-256. doi: 10.1080/03081088308817561
    [18] C. Y. Deng, H. K. Du, Representation of the Moore-Penrose inverse of $2\times2$ block operator valued matrices, J. Korean Math. Soc., 46 (2009), 1139-1150. doi: 10.4134/JKMS.2009.46.6.1139
    [19] D. E. Ferreyra, F. E. Levis, N. Thome, Characterizations of $k$-commutative equalities for some outer generalized inverses, Linear Multilinear Algebra, 68 (2020), 177-192. doi: 10.1080/03081087.2018.1500994
    [20] X. Wang, C. Deng, Properties of $m$-EP operators, Linear Multilinear Algebra, 65 (2017), 1349-1361. doi: 10.1080/03081087.2016.1235131
    [21] D. E. Ferreyra, F. E. Levis, N. Thome, Maximal classes of matrices determining generalized inverses, Appl. Math. Comput., 333 (2018), 42-52.
    [22] A. Ben-Israel, T. N. E.~Greville, Generalized inverses: Theory and applications, 2 Eds., Springer-Verlag, New-York, 2003.
    [23] C. H. Hung, T. L. Markham, The Moore-Penrose inverse of a partioned matrix $M = \left[\begin{array}{cc} A & B \\ C & D\\ \end{array}\right]$, Linear Algebra Appl., 11 (1975), 73-86. doi: 10.1016/0024-3795(75)90118-4
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1347) PDF downloads(47) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog