In this paper, we discuss different characteristics of the BT-inverse of a square matrix introduced by Baksalary and Trenkler [On a generalized core inverse, Appl. Math. Comput., 236 (2014), 450-457]. While the BT-inverse is defined by a expression, we present some necessary and sufficient conditions for a matrix to be the BT-inverse. Then we give a canonical form of BT-inverse and investigate the relationships between BT-inverse and other generalized inverses by Core-EP decomposition. Some properties of BT-inverse concerned with some classes of special matrix are identified by Core-EP decomposition. Furthermore new representations of BT-inverse are given by the maximal classes of matrices.
Citation: Wanlin Jiang, Kezheng Zuo. Revisiting of the BT-inverse of matrices[J]. AIMS Mathematics, 2021, 6(3): 2607-2622. doi: 10.3934/math.2021158
In this paper, we discuss different characteristics of the BT-inverse of a square matrix introduced by Baksalary and Trenkler [On a generalized core inverse, Appl. Math. Comput., 236 (2014), 450-457]. While the BT-inverse is defined by a expression, we present some necessary and sufficient conditions for a matrix to be the BT-inverse. Then we give a canonical form of BT-inverse and investigate the relationships between BT-inverse and other generalized inverses by Core-EP decomposition. Some properties of BT-inverse concerned with some classes of special matrix are identified by Core-EP decomposition. Furthermore new representations of BT-inverse are given by the maximal classes of matrices.
[1] | R. A. Penrose, A generalized inverse for matrices, Math. Proc. Cambrige Philos. Soc., 51 (1955), 406-413. doi: 10.1017/S0305004100030401 |
[2] | M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Am. Math. Mon., 65 (1958), 506-514. doi: 10.1080/00029890.1958.11991949 |
[3] | O. M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra, 58 (2010), 681-697. |
[4] | H. Kurata, Some theorems on the core inverse of matrices and the core partial ordering, Appl. Math. Comput., 316 (2018), 43-51. |
[5] | G. Luo, K. Zuo, L. Zhou, Revisitation of core inverse, Wuhan Univ. J. Nat. Sci., 20 (2015), 381-385. |
[6] | D. S. Rakić, N. Dinčić, D. S. Djordjević, Core inverse and core partial order of Hilbert space operators, Appl. Math. Comput., 244 (2014), 283-302. |
[7] | D. E. Ferreyra, F. E. Levis, N. Thome, Revisiting the core-EP inverse and its extension to rectangular matrices, Quaest. Math., 41 (2018), 1-17. doi: 10.2989/16073606.2017.1368732 |
[8] | K. M. Prasad, K. S. Mohana, Core-EP inverse, Linear Multilinear Algebra, 62 (2014), 792-802. |
[9] | H. Wang, Core-EP decomposition and its applications, Linear Algebra Appl., 508 (2016), 289-300. doi: 10.1016/j.laa.2016.08.008 |
[10] | K. Zuo, Y. Cheng, The new revisitation of core EP inverse of matrices, Filomat, 33 (2019), 3061-3072. doi: 10.2298/FIL1910061Z |
[11] | K. Zuo, C. I. Dragana, Y. Cheng, Different characterizations of DMP-inverse of matrices, Linear Multilinear Algebra, (2020), 1-8. |
[12] | S. B. Malik, N. Thome, On a new generalized inverse for matrices of an arbitrary index, Appl. Math. Comput., 226 (2014), 575-580. |
[13] | O. M. Baksalary, G. Trenkler, On a generalized core inverse, Appl. Math. Comput., 236 (2014), 450-457. |
[14] | J. Benitez, E. Boasso, H. Jin, On one-sided (B, C)-inverse of arbitrary matrices, Electron. J. Linear Algebra, 32 (2017), 391-422. |
[15] | M. P. Drazin, A class of outer generalized inverses, Linear Algebra Appl., 436 (2012), 1909-1923. doi: 10.1016/j.laa.2011.09.004 |
[16] | H. Wang, J. Chen, Weak group inverse, Open Math., 16 (2018), 1218-1232. |
[17] | R. E. Hartwig, K. Spindelböck, Matrices for which A* and A† commute, Linear Multilinear Algebra, 14 (1983), 241-256. doi: 10.1080/03081088308817561 |
[18] | C. Y. Deng, H. K. Du, Representation of the Moore-Penrose inverse of $2\times2$ block operator valued matrices, J. Korean Math. Soc., 46 (2009), 1139-1150. doi: 10.4134/JKMS.2009.46.6.1139 |
[19] | D. E. Ferreyra, F. E. Levis, N. Thome, Characterizations of $k$-commutative equalities for some outer generalized inverses, Linear Multilinear Algebra, 68 (2020), 177-192. doi: 10.1080/03081087.2018.1500994 |
[20] | X. Wang, C. Deng, Properties of $m$-EP operators, Linear Multilinear Algebra, 65 (2017), 1349-1361. doi: 10.1080/03081087.2016.1235131 |
[21] | D. E. Ferreyra, F. E. Levis, N. Thome, Maximal classes of matrices determining generalized inverses, Appl. Math. Comput., 333 (2018), 42-52. |
[22] | A. Ben-Israel, T. N. E.~Greville, Generalized inverses: Theory and applications, 2 Eds., Springer-Verlag, New-York, 2003. |
[23] | C. H. Hung, T. L. Markham, The Moore-Penrose inverse of a partioned matrix $M = \left[\begin{array}{cc} A & B \\ C & D\\ \end{array}\right]$, Linear Algebra Appl., 11 (1975), 73-86. doi: 10.1016/0024-3795(75)90118-4 |