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Abstract: In this paper, we discuss different characteristics of the BT-inverse of a square matrix
introduced by Baksalary and Trenkler [On a generalized core inverse, Appl. Math. Comput., 236
(2014), 450–457]. While the BT-inverse is defined by a expression, we present some necessary
and sufficient conditions for a matrix to be the BT-inverse. Then we give a canonical form of BT-
inverse and investigate the relationships between BT-inverse and other generalized inverses by Core-
EP decomposition. Some properties of BT-inverse concerned with some classes of special matrix are
identified by Core-EP decomposition. Furthermore new representations of BT-inverse are given by the
maximal classes of matrices.
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1. Introduction

For many different generalized inverses such as A†, AD, A #©, A †©, AD,†, A(B,C), Aw© below can all be
characterized by several equations respectively, while there is no such equations to define A♦. Our
main aim is to develop some necessary and sufficient conditions for a matrix to be the BT-inverse by
equations and derive some properties of the BT-inverse.

Throughout this paper, we denote the set of m×n complex matrices by Cm×n. We denote the identity
matrix of order n by In, the range space, the null space, the conjugate transpose and the rank of the
matrix A ∈ Cm×n byR(A),N(A), A∗ and r(A), respectively. The index of A ∈ Cn×n, denoted by Ind(A), is
the smallest nonnegative integer k such that r(Ak) = r(Ak+1). PL,M stands for the projector (idempotent)
on the space L along the M. For A ∈ Cm×n, PA represents the orthogonal projection onto R(A), i.e.
PA = PR(A) = AA†.

For the readers’ convenience, we will first recall the definitions of some generalized inverses. For
A ∈ Cm×n, the Moore-Penrose inverse A† of A is the unique matrix X ∈ Cn×m satisfying the following
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four Penrose equations [1]:

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

A matrix X ∈ Cn×m that satisfies condition (1) above is called an inner inverse of A and is denoted
by A(1). A matrix X ∈ Cn×m that satisfies condition (2) above is called an outer inverse of A and is
denoted by A(2). A matrix X ∈ Cn×m that satisfies condition (1) and condition (3) above is denoted by
A(1,3). The symbol A{1}, A{1, 3} stand for the set of all A(1), A(1,3) respectively. Let A ∈ Cm×n be of rank
r, and T , S be a subspace of Cn,Cm where T , S is of dimension t (6 r), m − t, respectively. Then a
matrix X satisfies X = XAX, R(X) = T and N(X) = S if and only if AT ⊕ S = Cm, and in this case X
denoted by A(2)

T ,S
is unique.

The Drazin inverse of A ∈ Cn×n with Ind(A) = k, denoted by AD [2], is the unique matrix X ∈ Cn×n

satisfying:
XAX = X, AX = XA, XAk+1 = Ak.

Especially, if Ind(A) = 1, then the Drazin inverse of A is called the group inverse of A and is denoted
by A#.

Baksalary and Trenkler [3] introduced the core inverse on the CCM
n

(
CCM

n = {A|A ∈ Cn×n, r(A) =

r(A2)}
)
: the core inverse of A ∈ CCM

n is defined to be the unique matrix X ∈ Cn×n such that

AX = PA, R(X) ⊆ R(A)

and denoted by A #© (
see [3–6]

)
.

Moreover, three kinds of generalizations of the core inverse were given for n× n complex matrices,
called core-EP inverse, DMP-inverse and BT-inverse, respectively.

Firstly, for A ∈ Cn×n with Ind(A) = k, the unique matrix X ∈ Cn×n satisfying:

XAX = X, R(X) = R(X∗) = R(Ak),

is called the Core-EP inverse of A written as A †© (see [7–10]). Moreover, it is seen that A †© =

(Ak+1(Ak)†)† (see [7, Theorem 2.7]).
Secondly, the DMP-inverse of A ∈ Cn×n with Ind(A) = k, written by AD,† [11, 12], is defined as the

unique matrix A ∈ Cn×n satisfying:

XAX = X, XA = ADA, AkX = AkA†.

Moreover, it was proved that AD,† = ADAA†. Also, the dual DMP inverse of A was introduced in [12],
namely A†,D = A†AAD.

Thirdly, the BT-inverse of A ∈ Cn×n, denoted by A♦[13], is defined as

A♦ = (A2A†)† = (APA)†.

In recent years, some new generalized inverses are introduced. The (B,C)-inverse of A ∈ Cm×n,
denoted by A(B,C) [14, 15], is the unique matrix X ∈ Cn×m satisfying:

XAB = B, CAX = C, R(X) = R(B), N(X) = N(C),
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where B,C ∈ Cn×m.

In [16], Wang and Chen introduced a new generalized inverse called the weak group inverse of
A ∈ Cn×n, denoted by Aw©. It is defined as the unique matrix X ∈ Cn×n satisfying:

AX2 = X, AX = A †©A.

Moreover, it is proved that Aw© = (A †©)2A.
While the authors in [13] introduced the BT-inverse defined as A♦ = (APA)†, the characterizations

of how a matrix is A♦, however, seldom gave. In this paper, we concern more on the necessary and
sufficient conditions for a matrix to be A♦ and characterize the relationships between A♦ and other
generalized inverses. The research is as follows. In Section 2, some indispensable matrix classes and
lemmas are given. In Section 3, some characterizations of A♦ are given too. In Section 4, we first derive
a canonical form of A♦ by Core-EP decomposition and verify the validity of it by Example 1. By the
canonical form of A♦ and Core-EP decomposition, we obtain the relationships between A♦ and other
generalized inverses and some properties of A♦ when A♦ or A belongs to some special matrix classes.
In Section 5, we extend the representation A♦ = (APA)† to a more general one by the maximal classes
of matrices.

2. Preliminaries

For convenience, some matrix classes will be given as follows.
These symbols CCM

n , CP
n , COP

n and CEP
n will stand for the subsets of Cn×n consisting of core

matrices, projectors (idempotent matrices), orthogonal projectors (Hermitian idempotent matrices) and
EP (Range-Hermitian) matrices , respectively, i.e.,

CCM
n = {A|A ∈ Cn×n, r(A2) = r(A)},
CP

n = {A|A ∈ Cn×n, A2 = A},

COP
n = {A|A ∈ Cn×n, A2 = A = A∗} = {A|A ∈ Cn×n, A2 = A = A†},

CEP
n = {A|A ∈ Cn×n, AA† = A†A} = {A|A ∈ Cn×n,R(A) = R(A∗)}.

In order to present some characterizations and properties of A♦, we need to introduce the following
lemmas.

Lemma 2.1. [17] Let A ∈ Cn×n, r(A) = r. Then we have

A = U
[

ΣK ΣL
0 0

]
U∗, (2.1)

where U ∈ Cn×n is unitary, Σ = diag(σ1, σ2, . . . , σr) is the diagonal matrix of singular values of A,
σi > 0(i = 1, 2, · · · , r) and K ∈ Cr×r, L ∈ Cr×(n−r) satisfy

KK∗ + LL∗ = Ir. (2.2)

Moreover, from (2.1), it follows that

A† = U
[

K∗Σ−1 0
L∗Σ−1 0

]
U∗, PA = AA† = U

[
Ir 0
0 0

]
U∗. (2.3)
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By [12, 13], we obtain that

AD = U
[

(ΣK)D ((ΣK)D)2ΣL
0 0

]
U∗, (2.4)

A♦ = U
[

(ΣK)† 0
0 0

]
U∗ (2.5)

and

A #© = U
[

(ΣK)−1 0
0 0

]
U∗. (2.6)

The lemma below gives the Core-EP decomposition introduced by Wang which plays an important
role in this paper.

Lemma 2.2. [9] Let A ∈ Cn×n with Ind(A) = k. Then there exists a unitary matrix U ∈ Cn×n such that

A = A1 + A2 = U
[

T S
0 N

]
U∗, (2.7)

A1 = U
[

T S
0 0

]
U∗, A2 = U

[
0 0
0 N

]
U∗,

where T ∈ Ct×t is nonsingular with t = r(T ) = r(Ak) and N is nilpotent of index k.

Lemma 2.3. [18, Lemma 6] Let A ∈ Cn×n with Ind(A) = k be the form of (2.7). Then

A† = U
[

T ∗4 −T ∗4S N†

(In−t − N†N)S ∗4 N† − (In−t − N†N)S ∗4S N†

]
U∗, (2.8)

where N is not necessary nilpotent, 4 = (TT ∗ + S (In−t − N†N)S ∗)−1, t = r(Ak).

From (2.7) and (2.8), a straightforward computation shows that

AA† = U
[

It 0
0 NN†

]
U∗, (2.9)

A†A = U
[

T ∗4T T ∗4S (In−t − N†N)
(In−t − N†N)S ∗4T N†N + (In−t − N†N)S ∗4S (In−t − N†N)

]
U∗. (2.10)

Lemma 2.4. [13, Theorem 1] Let A ∈ Cn×n. Then

AA♦ = PAPA , A♦A = PR(PAA∗),N((APA)†A). (2.11)

3. Different characterizations about BT-inverse

It is well-known that some of generalized inverses such as MP-inverse, Drazin inverse, DMP-
inverse, etc. can be presented as an outer inverse under the condition of prescribed range and null
space. Therefore, we will prove that the same holds in the case of BT-inverse as follows. In the
following theorem, we show the other characterizations of BT-inverse by the fact that A♦AA♦ = A♦.
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Theorem 3.1. Let A, X ∈ Cn×n. Then the following conditions are equivalent:
(a) X = A♦;
(b) XAX = X, R(X) = R(PAA∗) and N(X) = N(PAA∗), i.e., X = A(2)

R(PAA∗),N(PAA∗);
(c) XAX = X, AX = A(APA)† and XA = (APA)†A;
(d) XAX = X, AX = PAPA and XA = (APA)†A.

Proof. (a)⇒ (b). From the definition of BT-inverse and Lemma 2.4, we derive that

A(APA)† = AA♦ = PAPA , (3.1)

moreover
(APA)†A(APA)† = (APA)†APA(APA)†. (3.2)

From the definition of BT-inverse and (3.2), it follows that

A♦AA♦ = (APA)†A(APA)† = (APA)†APA(APA)† = (APA)† = A♦,

R(A♦) = R((APA)†) = R((APA)∗) = R(PAA∗),

N(A♦) = N((APA)†) = N((APA)∗) = N(PAA∗).

(b) ⇒ (c). From [19, Remark 3.1], we have that A(2)
R(A♦),N(A♦) exits. It is easy to check that A♦ =

A(2)
R((APA)†),N((APA)†)

= A(2)
R(PAA∗),N(PAA∗). Since X = A(2)

R(PAA∗),N(PAA∗) and the uniqueness of X, we obtain that
X = A♦. Then the rest of proof is trivial.

(c)⇒ (d). Since AX = A(APA)†, by (3.1), we obtain that AX = APA(APA)† = PAPA .

(d)⇒ (a). By the condition, we conclude that

X = XAX = XAPA(APA)† = (APA)†APA(APA)† = (APA)† = A♦.

�

In the following theorem, we present a connection between (B,C)-inverse and BT-inverse showing
that a BT-inverse of a matrix A ∈ Cn×n is its (PAA∗, PAA∗)-inverse.

Theorem 3.2. Let A ∈ Cn×n. Then A♦ = A(PAA∗,PAA∗).

Proof. From the definition of BT-inverse and (3.1), it follows that

A♦APAA∗ = (APA)†APA(APA)∗ = (APA)∗,

PAA∗AA♦ = (APA)∗A(APA)† = (APA)∗(APA)(APA)† = (APA)∗,

R(A♦) = R(PAA∗),N(A♦) = N(PAA∗).

Hence A♦ = A(PAA∗,PAA∗). �

According to the fact that R(A♦) = R(PAA∗) and N(A♦) = N(PAA∗), there are several different
characterizations of BT-inverse as follows.
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Theorem 3.3. Let A, X ∈ Cn×n. Then the following conditions are equivalent:
(a) X = A♦;
(b) AX = A(APA)†, R(X) = R(PAA∗);
(c) AX = PAPA , R(X) = R(PAA∗);
(d) PAX = (APA)†, R(X) = R(PAA∗);
(e) A†X = A†(APA)†, R(X) = R(PAA∗);
( f ) XA = (APA)†A, N(X) = N(PAA∗);
(g) XA = PR(PAA∗),N((APA)†A), N(X) = N(PAA∗).

Proof. That (a) implies all other items (b), (c), (d), (e), ( f ) and (g) can be checked directly by
Theorem 3.1, the definition of BT-inverse and Lemma 2.4.

(b)⇒ (a). By R(X) = R(PAA∗), we have X = (APA)†T for some T ∈ Cn×n. By (3.2), then

X = (APA)†T = (APA)†APA(APA)†T = (APA)†AX = (APA)†A(APA)† = (APA)†APA(APA)† = A♦.

(c)⇒ (b). Since AX = PAPA , by (3.1), we obtain that AX = PAPA = APA(APA)† = A(APA)†.
(d)⇒ (a). By R(X) = R(PAA∗), we get X = (APA)†T for some T ∈ Cn×n. By (3.2), then

X = (APA)†T = (APA)†APA(APA)†T = (APA)†APAX = (APA)†A(APA)† = (APA)†APA(APA)† = A♦.

(e)⇒ (d). Premultiplying A†X = A†(APA)† by A, we obtain that PAX = PA(APA)† = (APA)†.
( f )⇒ (a). By N(X) = N(PAA∗), we obtain X = K(APA)† for some K ∈ Cn×n. By (3.2), then

X = K(APA)† = K(APA)†A(APA)† = XA(APA)† = (APA)†A(APA)† = (APA)† = A♦.

(g) ⇒ (a). Since XA = PR(PAA∗),N((APA)†A) = PR((APA)†),N((APA)†A), we get XA(APA)† = (APA)†. By
N(X) = N(PAA∗), we have X = K(APA)† for some K ∈ Cn×n. Then

X = K(APA)† = K(APA)†A(APA)† = XA(APA)† = A♦.

�

Remark 3.4. Notice that the conditionR(X) = R(PAA∗) in items (b), (c), (d) and (e) of Theorem 3.3 can
be replaced by R(X) ⊆ R(PAA∗). Also the condition N(X) = N(PAA∗) in items ( f ), (g) of Theorem 3.3
can be replaced by N(PAA∗) ⊆ N(X).

Theorem 3.5. Let A, X ∈ Cn×n. Then the following conditions are equivalent:
(a) X = A♦;
(b) r(X) = r(A2), XA(APA)∗ = (APA)∗ and AX = A(APA)†;
(c) r(X) = r(A2), (APA)∗AX = (APA)∗ and XA = A(APA)†A;
(d) r(X) = r(A2), XA(APA)∗ = (APA)∗ and AX = PAPA;
(e) r(X) = r(A2), XA(APA)∗ = (APA)∗ and PAX = (APA)†;
( f ) r(X) = r(A2), XA(APA)∗ = (APA)∗ and A†X = A†(APA)†;
(g) r(X) = r(A2), (APA)∗AX = (APA)∗ and XA = PR(PAA∗),N(PAA∗).
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Proof. (a)⇒ (b). For X = A♦, we get that r(A♦) = r(APA). For R(A2) = R(APAA) ⊆ R(APA) ⊆ R(A2),
then we get that R(APA) = R(A2), hence r(A♦) = r(APA) = r(A2). From the definition of BT-inverse
and the latter half of (2.11), we derive that A♦A(APA)∗ = (APA)∗ and AA♦ = A(APA)†.

That (a) implies all other items (c), (d), (e), ( f ) and (g) can be similarly proved.
(b) ⇒ (a). Combining r(X) = r(A2) = r(APA) with XA(APA)∗ = (APA)∗, we obtain R(X) =

R(PAA∗). Hence it follows from (b) of Theorem 3.3 that X = A♦.
(c) ⇒ (a). From r(X) = r(A2) = r(APA) and (APA)∗AX = (APA)∗, we get N(X) = N(PAA∗). Hence

we get X = A♦ by ( f ) of Theorem 3.3.
The proofs of (d)⇒ (a), (e)⇒ (a) and ( f )⇒ (a) are analogous to that of (b)⇒ (a). Also (g)⇒ (a)

follows similarly as in the part (c)⇒ (a). �

4. Canonical form and some properties of BT-inverse

In this section, we first give the canonical form of BT-inverse by using Core-EP decomposition.
Then some properties of BT-inverse will be given by utilizing the definition and the canonical form of
BT-inverse.

Theorem 4.1. Let A ∈ Cn×n be of the form (2.7). Then

A♦ = U
[

T ∗4 −T ∗4S N♦

(PN − PN♦)S ∗4 N♦ − (PN − PN♦)S ∗4S N♦

]
U∗, (4.1)

where 4 = [TT ∗ + S (PN − PN♦)S ∗]−1.

Proof. By (2.9) of Lemma 2.3, we get that

A♦ = (APA)† =

(
U

[
T S PN

0 NPN

]
U∗

)†
= U

[
T S PN

0 NPN

]†
U∗.

From (2.8) of Lemma 2.3, we have that

A♦ = U
[

T ∗4 −T ∗4S PN N♦

(PN − PN♦)S ∗4 N♦ − (PN − PN♦)S ∗4S PN N♦

]
U∗,

where 4 = [TT ∗ + S (PN − PN PN♦)S ∗]−1.

It is easy to check that PN N♦ = N♦ by (2.3) and (2.5). Hence

A♦ = U
[

T ∗4 −T ∗4S N♦

(PN − PN♦)S ∗4 N♦ − (PN − PN♦)S ∗4S N♦

]
U∗,

where 4 = [TT ∗ + S (PN − PN PN♦)S ∗]−1 = [TT ∗ + S (PN − PN♦)S ∗]−1. �

Next, we will verify the correctness of the expression (4.1) as follows.
Example 1. Given matrix

A =



0.5191 0.5922 0.8096 0.3341 0.7491 0.0801 0.3664 0.6988 0.1834 0.1987
0.3897 0.2828 0.5073 0.6534 1.1533 0.1098 0.5847 0.7325 0.9618 −0.1729
1.1683 0.3983 0.5191 0.3454 0.5072 0.3863 −0.0372 1.0568 0.5583 0.3311
0.8177 0.3113 1.0133 0.7451 0.6738 0.5783 0.0714 0.1584 0.0524 0.1195
0.8294 0.3371 0.8222 0.9830 1.4529 −0.1282 −0.0299 0.3507 0.7032 0.5101
0.7189 0.0200 0.8032 0.5823 0.5989 0.5793 0.4254 0.0908 0.4943 0.9090
0.5923 0.6193 0.5685 0.4965 0.4073 0.3121 0.1642 0.2414 0.3979 0.3385
1.1399 −0.0433 0.0694 0.6084 0.7149 0.8039 0.2417 0.3485 0.4629 0.3436
0.3883 0.3624 0.9590 0.4811 0.5895 0.2980 0.3599 0.4059 0.3457 0.4983
0.4063 0.3763 0.2283 0.7486 1.0007 0.8114 0.4796 0.3602 −0.1058 0.5583


.
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By the definition of BT-inverse, it turns out that

r1 = (APA)† =



1.2507 −0.0226 −0.0663 −0.6058 0.2154 0.2790 0.0448 1.1114 −0.8224 −1.1597
0.2073 0.1052 −0.0244 −0.6952 0.0287 −0.4345 1.7112 −0.1370 −0.2799 −0.0348
0.0140 0.0540 0.0636 0.7072 −0.1473 0.2573 −0.5076 −0.4322 0.5430 −0.3668
−1.3634 0.0740 0.1260 0.7041 0.1529 −0.4219 0.4008 −0.5087 0.3199 0.6953

0.5619 0.1288 −0.2313 −0.2723 0.5275 −0.0635 −0.6696 0.2278 −0.2854 0.1209
−1.1576 0.1623 0.3274 0.7051 −0.6261 −0.1563 0.1071 −0.2272 0.4554 0.7088

1.5361 0.6173 −0.7601 −0.9706 −0.4480 0.6544 0.0055 0.8060 −0.3946 −0.7210
−0.2661 −0.2618 0.7675 0.4571 −0.2999 −0.3593 −0.7283 −0.5581 0.5152 0.8686
−0.7639 0.1845 −0.2022 0.2158 −0.1960 0.1204 0.9133 −0.0600 0.1465 −0.0297
−0.0314 −0.7461 0.1217 −0.5991 0.2760 0.5232 0.0696 −0.2471 0.2561 0.4946


.

Assume that A is of the form (2.7), we obtain that

U =



0.2922 0.3567 0.2593 0.3427 0.0253 0.2289 0.6603 −0.0103 −0.3353 −0.0323
0.3330 −0.4801 0.1381 0.4201 0.2087 0.3648 −0.0541 0.1485 0.4849 −0.1622
0.3316 0.2241 0.3288 −0.4195 0.1860 −0.2229 0.0996 −0.4765 0.4440 −0.1934
0.2955 −0.1610 −0.2112 0.0892 0.2513 0.1539 −0.3538 −0.5646 −0.5254 −0.1655
0.3824 0.1840 −0.2339 −0.1527 −0.7245 0.4114 −0.1367 −0.0663 0.1455 0.0590
0.3327 0.1261 −0.6005 0.1360 0.0405 −0.4635 0.1275 0.2584 0.0703 −0.4358
0.2649 0.2488 0.0699 −0.4504 0.4074 0.3044 −0.2470 0.5568 −0.1739 −0.0187
0.2975 −0.5624 −0.1892 −0.3928 0.0290 −0.0960 0.4427 0.0202 −0.1203 0.4293
0.3012 0.2960 −0.0514 0.3464 0.1693 −0.2581 −0.2645 −0.0215 0.1389 0.7170
0.3164 −0.2249 0.5499 0.0559 −0.3689 −0.4342 −0.2532 0.2237 −0.2986 −0.1258


,

T =


4.9695 0.5955 0.0256 −0.1136 −0.5071 0.4929 0.5074 −1.0539

0 −0.3745 0.7615 −0.1175 0.0914 −0.1466 0.0771 −0.2335
0 −0.6028 −0.3745 −0.1623 0.0536 0.3600 0.2317 0.3098
0 0 0 −0.6836 0.1055 0.1977 −0.5123 −0.0501
0 0 0 0 0.6185 −0.2633 0.4003 0.1953
0 0 0 0 0.0392 0.6185 −0.0897 −0.5558
0 0 0 0 0 0 0.3705 0.2909
0 0 0 0 0 0 −0.6230 0.3705

 ,

S =


−0.3973 0.0962

0.4349 −0.0431
0.1727 0.1383
0.4068 0.0375
0.2437 0.0132
0.4205 0.5983
−0.1454 0.3339
−0.0429 −0.0343

 ,N =
[

0 1
0 0

]
.

According to (4.1), a straightforward computation shows that

A♦ =



1.2507 −0.0226 −0.0663 −0.6058 0.2154 0.2790 0.0448 1.1114 −0.8224 −1.1597
0.2073 0.1052 −0.0244 −0.6952 0.0287 −0.4345 1.7112 −0.1370 −0.2799 −0.0348
0.0140 0.0540 0.0636 0.7072 −0.1473 0.2573 −0.5076 −0.4322 0.5430 −0.3668
−1.3634 0.0740 0.1260 0.7041 0.1529 −0.4219 0.4008 −0.5087 0.3199 0.6953

0.5619 0.1288 −0.2313 −0.2723 0.5275 −0.0635 −0.6696 0.2278 −0.2854 0.1209
−1.1576 0.1623 0.3274 0.7051 −0.6261 −0.1563 0.1071 −0.2272 0.4554 0.7088

1.5361 0.6173 −0.7601 −0.9706 −0.4480 0.6544 0.0055 0.8060 −0.3946 −0.7210
−0.2661 −0.2618 0.7675 0.4571 −0.2999 −0.3593 −0.7283 −0.5581 0.5152 0.8686
−0.7639 0.1845 −0.2022 0.2158 −0.1960 0.1204 0.9133 −0.0600 0.1465 −0.0297
−0.0314 −0.7461 0.1217 −0.5991 0.2760 0.5232 0.0696 −0.2471 0.2561 0.4946


.

Let ‖ · ‖ be the Frobenius norm, then it follows that

‖ A♦ − r1 ‖= 3.5313 × 10−14

which implies the validity of the representation (4.1).

Lemma 4.2. [20] Let A ∈ Cn×n written as in (2.7). Then

AD = U
[

T−1 (T k+1)−1T̃
0 0

]
U∗, (4.2)

where T̃ =
k−1∑
j=0

T jS Nk−1− j.
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In [13], the necessary and sufficient conditions for A♦ = A†, A #© were given by using the Hartwig-
Spindelböck decomposition in Lemma 2.1. We will prove the conditions that A♦ = AD, A♦ = A†,D and
A♦ = Aw© are equivalent by utilizing Core-EP decomposition as follows.

Theorem 4.3. Let A ∈ Cn×n be decomposed by (2.7). Then the following statements are equivalent:
(a) S = 0 and N2 = 0;
(b) A♦ = AD;
(c) A2 ∈ CEP

n ;
(d) A♦ = A†,D;
(e) A♦ = Aw©.

Proof. (a)⇐⇒ (b). It follows from the definition of A♦, Lemma 2.3 and (4.2).

A♦ = AD ⇐⇒ A2A† = (AD)†

⇐⇒ U
[

T S PN

0 NPN

]
U∗ =

(
U

[
T−1 (T k+1)−1T̃
0 0

]
U∗

)†
⇐⇒ T̃ = 0, S PN = 0, NPN = 0
⇐⇒ S = 0, N2 = 0.

(a)⇐⇒ (c). From (2.7) and (2.8), we can calculate that

A2 = U
[

T 2 TS + S N
0 N2

]
U∗,

(A2)† = U
[

(T 2)∗4′ −(T 2)∗4′(TS + S N)(N2)†

(In−t − (N2)†N2)(TS + S N)∗4′ (N2)† − (In−t − (N2)†N2)(TS + S N)∗4′(TS + S N)(N2)†

]
U∗,

where 4′ = (T 2(T 2)∗ + (TS + S N)(In−t − (N2)†N2)(TS + S N)∗)−1.

Then it follows that

A2 ∈ CEP
n ⇐⇒ A2(A2)† = (A2)†A2

⇐⇒ (TS + S N) = (TS + S N)(N2)†N2, (N2)†N2 = N2(N2)†

⇐⇒ N2 = 0, TS + S N = 0
⇐⇒ S = 0, N2 = 0.

(d) =⇒ (a). We can get AA♦ = AAD by A♦ = A†,D. From (2.1), (2.4) and (2.5), AA♦ = AAD is
equivalent to

U
[

ΣK ΣL
0 0

] [
(ΣK)† 0

0 0

]
U∗ = U

[
ΣK ΣL
0 0

] [
(ΣK)D ((ΣK)D)2ΣL

0 0

]
U∗.

Thus ΣK(ΣK)† = ΣK(ΣK)D. Then we have ΣK = (ΣK)2(ΣK)D which implies Ind(ΣK) ≤ 1, moreover
Ind(A) ≤ 2.

Then let A be the form of (2.7). For Ind(A) ≤ 2, we obtain N2 = 0. Representations (4.1) and (4.2)
directly lead to
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AA♦ = AAD ⇐⇒ U
[

T S
0 N

] [
T ∗4 0

PNS ∗4 0

]
U∗ = U

[
T S
0 N

] [
T−1 (T k+1)−1T̃
0 0

]
U∗

⇐⇒

[
It 0

NPNS ∗4 0

]
U∗ = U

[
It (T k)−1T̃
0 0

]
.

Hence we get T̃ = 0 which implies S = 0.
(a) =⇒ (d). It can be directly checked.
(a)⇐⇒ (e). From the definition of A♦ and Aw© together with Lemma 2.3, it follows that

A♦ = Aw© ⇐⇒ A2A† = (Aw©)†

⇐⇒ U
[

T S PN

0 NPN

]
U∗ =

(
U

[
T−1 T−2S
0 0

]
U∗

)†
⇐⇒ (T−2S )∗ = 0, S PN = 0, NPN = 0
⇐⇒ S = 0, N2 = 0.

�

From [7], it is shown that A♦ = A †© is equivalent to A♦ = AD,† by using the Hartwig-Spindelböck
decomposition. Now we can verify the equivalence of A♦ = A †© and A♦ = AD,† by Core-EP
decomposition.

Theorem 4.4. Let A ∈ Cn×n be decomposed by (2.7). Then the following statements are equivalent:
(a) A♦ = A †©;
(b) S N = 0 and N2 = 0;
(c) A♦ = AD,†.

Proof. (a)⇐⇒ (b). According to Corollary 3.3 in [9], we have that

Ak(Ak)† = U
[

It 0
0 0

]
U∗.

From the definition of A♦, A †© and (2.9) together with the equation above, it follows that

A♦ = A †© ⇐⇒ A2A† = Ak+1(Ak)†

⇐⇒ U
[

T S PN

0 NPN

]
U∗ = U

[
T S
0 N

] [
It 0
0 0

]
U∗

⇐⇒ S N = 0, N2 = 0.

(b) ⇐⇒ (c). From the definition of A♦ and AD,† together with (4.2), by using Lemma 2.3, it
follows that
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A♦ = AD,† ⇐⇒ A2A† = (AD,†)†

⇐⇒ U
[

T S PN

0 NPN

]
U∗ =

(
U

[
T−1 (T k+1)−1T̃ PN

0 0

]
U∗

)†
⇐⇒ S PN = 0, NPN = 0, T̃ PN = 0
⇐⇒ S N = 0, N2 = 0,

where T̃ =
k−1∑
j=0

T jS Nk−1− j. �

Remark 4.5. If A of the form (2.7) is nilpotent, it follows that A = UNU∗. Then the (a) of Theorem 4.3
and the (b) of the Theorem 4.4 are equivalent to N2 = 0. In other words, if A is nilpotent, then it follows
that the conditions A♦ = AD, A♦ = A †©, A♦ = AD,†, A♦ = A†,D and A♦ = Aw© are equivalent.

In [13, Theorem 4], the author gave some equivalent conditions for A♦ ∈ CEP
n . Then we will give

some necessary and sufficient conditions for A♦ which belongs to some special matrix classes by using
Core-EP decomposition.

Theorem 4.6. Let A ∈ Cn×n be the form of (2.7). Then,
(a) A♦ ∈ CCM

n ⇐⇒ N2 = 0;
(b) A♦ ∈ CP

n ⇐⇒ N2 = 0 and T = TT ∗ + S PNS ∗;
(c) A♦ ∈ COP

n ⇐⇒ T = It, S N = 0 and N2 = 0 (or A2 = A1. where A1 is presented in Lemma 2.2.)

Proof. (a). From the definition of BT-inverse, it follows that

A♦ ∈ CCM
n ⇐⇒ (A2A†)† ∈ CCM

n ⇐⇒ A2A† ∈ CCM
n .

By (2.7) and (2.9), we obtain that

A2A† = U
[

T S PN

0 NPN

]
U∗.

Thus A♦ ∈ CCM
n ⇐⇒ N2N† = 0⇐⇒ N2 = 0 which establishes point (a) of the theorem.

(b). For A♦ ∈ CP
n ⊆ C

CM
n , we have N2 = 0. From (4.1), now we have that

A♦ = U
[

T ∗4 0
PNS ∗4 0

]
U∗,

where 4 = (TT ∗ + S PNS ∗)−1.

Since A♦ ∈ CP
n , we get that T ∗4 = It, hence T = (4∗)−1 = 4−1. The sufficient condition of (b) can be

directly checked, therefore point (b) of the theorem holds.
(c). It can be directly checked that A2 = A1 is equivalent to T = It, S N = 0 and N2 = 0 by Core-EP

decomposition. For A♦ ∈ COP
n ⊆ C

P
n , we have N2 = 0 and T = 4−1. From (4.1), we have

A♦ = U
[

Ir 0
PNS ∗4 0

]
U∗,
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where 4 = (TT ∗ + S PNS ∗)−1.

Since A♦ ∈ COP
n , we get that S PN = 0 which implies T = It, S N = 0. The sufficient condition of (c)

can be directly checked, therefore point (c) of the theorem holds.
�

Remark 4.7. If A of the form (2.7) is nilpotent which implies A = UNU∗, then A♦ ∈ CCM
n or CP

n or COP
n

is equivalent to A2 = 0 (or N2 = 0).

From [13], it is known that A♦A = AA♦ and (A♦)† = (A†)♦ are both satisfied when A ∈ CEP
n , but we

can’t conclude A ∈ CEP
n when A♦A = AA♦ or (A♦)† = (A†)♦ holds. How to establish an equivalence

relation between them, the following theorem will give.

Theorem 4.8. Let A ∈ Cn×n written as in (2.1). Then the following statements are equivalent:
(a) A ∈ CEP

n ;
(b) AA♦ = A♦A and A ∈ CCM

n ;
(c) (A♦)† = (A†)♦ and A ∈ CCM

n ;
(d) (A♦)m = (A†)m for some m ≥ 2 and A ∈ CCM

n .

Proof. That (a) implies items (b), (c) and (d) can be checked directly by the definition of A♦.
(b)⇒ (a). For A ∈ CCM

n , we get that K is nonsingular. By (2.5) and (2.6), we get that A♦ = A #© and
AA #© = A #©A. Hence it follows that A ∈ CEP

n by [3, Theorem 3].
(c)⇒ (a). This follows similarly as in the part (b)⇒ (a).
(d) ⇒ (a). It is known that A ∈ CEP

n is equivalent to L = 0. Combining (2.3), (2.5) with (A♦)m =

(A†)m leads to L = 0 which means A ∈ CEP
n . �

5. Representations of BT-inverse by the maximal classes

Finally, we study the representations for the BT-inverse. In [4], let A ∈ CCM
n . While A #© = A#AA†

or (A2A†)†, the author gave new representations by the maximal matrix classes such as A #© = XAY
or (A2Z)† where R(XA) ⊆ R(A) and Y ∈ A{1, 3} or Z ∈ A{1, 3}. Similarly, the author in [21] gave
the representations of A †©, AD,† by the maximal classes. Now, we will derive the representations of
BT-inverse by the maximal classes. We first give the important lemma as follows.

Lemma 5.1. [22] Let A, B,C ∈ Cn×n. Then the matrix equation AXB = C is consistent if and only if
for some A(1) ∈ A{1}, B(1) ∈ B{1},

AA(1)CB(1)B = C,

in which case the general solution is

X = A(1)CB(1) + Z − A(1)AZBB(1),

for arbitrary Z ∈ Cn×n.

Theorem 5.2. Let A ∈ Cn×n of rank r has the form (2.1). Then the following conditions are equivalent:
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(a) A♦ = (A2X)†;
(b) A2X = APA;
(c) X = P(A2)†A† + (In − P(A2)†)Z, for arbitrary Z ∈ Cn×n;
(d) X can be expressed as

X = U
[

P∗R†ΣK + (Ir − P∗R†P)Z1 − P∗R†QZ3 (Ir − P∗R†P)Z2 − P∗R†QZ4

Q∗R†ΣK − Q∗R†PZ1 + (In−r − Q∗R†Q)Z3 −Q∗R†PZ2 + (In−r − Q∗R†Q)Z4

]
U∗,

where R = PP∗ + QQ∗, P = (ΣK)2 and Q = ΣKΣL, for arbitrary Z1,Z2,Z3,Z4.

Proof. (a)⇒ (b). Since A♦ = (APA)† = (A2X)†, we have A2X = APA.

(b)⇒ (c). It is evident that P(A2)†A† satisfies the equation

A2X = APA. (5.1)

Applying Lemma 5.1 to this equation, the general solution of (4.3) is given by

X = P(A2)†A† + (In − P(A2)†)Z,

for arbitrary Z ∈ Cn×n.

(c)⇐⇒ (d). From (2.1), it follows that

A2 = U
[

(ΣK)2 ΣKΣL
0 0

]
U∗, (5.2)

and applying [23, Lemma 1] to (5.2), we obtain that

(A2)† = U
[

P∗R† 0
Q∗R† 0

]
U∗,

where R = PP∗ + QQ∗, P = (ΣK)2 and Q = ΣKΣL. Next, partitioning accordingly

Z = U
[

Z1 Z2

Z3 Z4

]
U∗,

a straightforward computation shows that X = P(A2)†A† + (In − P(A2)†)Z is equivalent to

X = U
[

P∗R†ΣK + (Ir − P∗R†P)Z1 − P∗R†QZ3 (Ir − P∗R†P)Z2 − P∗R†QZ4

Q∗R†ΣK − Q∗R†PZ1 + (In−r − Q∗R†Q)Z3 −Q∗R†PZ2 + (In−r − Q∗R†Q)Z4

]
U∗, (5.3)

where R = PP∗ + QQ∗, P = (ΣK)2 and Q = ΣKΣL, for arbitrary Z1,Z2,Z3,Z4.

(c)⇒ (a). By a direct calculation, we have that A2X = A2A†. Therefore

(A2X)† = (A2A†)† = A♦.

�
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Theorem 5.3. Let A ∈ Cn×n be of the form (2.1), X,Y ∈ APA{1}. Then the following conditions are
equivalent:

(a) A♦ = XAPAY;
(b) XAPA = P(A2)† and APAY = A(APA)†;
(c) X = (APA)† + Z(In − PAPA) and Y = (APA)† + (In − P(APA)†)W, for arbitrary Z,W ∈ Cn×n;
(d) X,Y can be expressed as

X = U
[

(ΣK)† + Z1(Ir − ΣK(ΣK)†) Z2

Z3(Ir − ΣK(ΣK)†) Z4

]
U∗,

for arbitrary Z1,Z2,Z3,Z4;

Y = U
[

(ΣK)† + (Ir − (ΣK)†ΣK)W1 (Ir − (ΣK)†ΣK)W2

W3 W4

]
U∗,

for arbitrary W1,W2,W3,W4.

Proof. (a) ⇒ (b). Postmultiplying A♦ = XAPAY by APA. For Y ∈ APA{1}, it follows that XAPA =

P(A2)† . Premultiplying A♦ = XAPAY by APA. Since X ∈ APA{1}, it follows that APAY = APAA♦ = AA♦.
(b) ⇒ (c). Applying Lemma 5.1 to two equations XAPA = (APA)†APA and APAY = A(APA)†

respectively, the general solutions are given by X = (APA)† + Z(In − PAPA) for arbitrary Z ∈ Cn×n and
Y = (APA)† + (In − P(APA)†)W for arbitrary W ∈ Cn×n.

(c)⇒ (d). Assume that A has the form given in (2.1), we have

In − PAPA = U
[

Ir − ΣK(ΣK)† 0
0 In−r

]
U∗,

In − P(APA)† = U
[

Ir − (ΣK)†ΣK 0
0 In−r

]
U∗.

Next, partitioning accordingly

Z = U
[

Z1 Z2

Z3 Z4

]
U∗,W = U

[
W1 W2

W3 W4

]
U∗,

a straightforward shows that X = (APA)† + Z(In − PAPA) is equivalent to

X = U
[

(ΣK)† + Z1(Ir − ΣK(ΣK)†) Z2

Z3(Ir − ΣK(ΣK)†) Z4

]
U∗, (5.4)

for arbitrary Z1,Z2,Z3,Z4. Y = (APA)† + (In − P(APA)†)W is equivalent to

Y = U
[

(ΣK)† + (Ir − (ΣK)†ΣK)W1 (Ir − (ΣK)†ΣK)W2

W3 W4

]
U∗, (5.5)

for arbitrary W1,W2,W3,W4.

AIMS Mathematics Volume 6, Issue 3, 2607–2622.



2621

(d)⇒ (a). According to (5.4) and (5.5), a straightforward computation shows that

XAPAY = U
[

(ΣK)† + Z1(Ir − ΣK(ΣK)†) Z2

Z3(Ir − ΣK(ΣK)†) Z4

] [
ΣK(ΣK)† 0

0 0

]
U∗

= U
[

(ΣK)† 0
0 0

]
U∗

= A♦.

�

6. Conclusions

In this work, different characteristics of the BT-inverse of a square matrix have been developed.
Some necessary and sufficient conditions for a matrix to be the BT-inverse have been derived. The
Core-EP decomposition is efficient for investigating the relationships between the BT-inverse and other
generalized inverses. The expression of BT-inverse has been extended to more general ones by the
maximal classes of matrices.
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