In this article, we study the weighted Lane-Emden equation
$ \begin{equation*} {\rm div}_{G}\big(\omega_{1}(z)|\nabla_{G}u|^{p-2}\nabla_{G}u\big) = \omega_{2}(z)|u|^{q-1}u, \ z = (x, y)\in \mathbb{R}^{N} = \mathbb{R}^{N_{1}}\times\mathbb{R}^{N_{2}}, \end{equation*} $
where $ N = N_{1}+N_{2}\geq2, $ $ p\geq2 $ and $ q > p-1 $, while $ \omega_{i}(z)\in L^{1}_{\rm loc}(\mathbb{R}^{N})\setminus\{0\}(i = 1, 2) $ are nonnegative functions satisfying $ \omega_{1}(z)\leq C\|z\|_{G}^{\theta} $ and $ \omega_{2}(z)\geq C'\|z\|_{G}^{d} $ for large $ \|z\|_{G} $ with $ d > \theta-p. $ Here $ \alpha\geq0 $ and $ \|z\|_{G} = (|x|^{2(1+\alpha)}+|y|^{2})^{\frac{1}{2(1+\alpha)}}. $ $ \rm div_{G} $ (resp., $ \nabla_{G} $) is Grushin divergence (resp., Grushin gradient). We prove that stable weak solutions to the equation must be zero under various assumptions on $ d, \theta, p, q $ and $ N_{\alpha} = N_{1}+(1+\alpha)N_{2} $.
Citation: Yunfeng Wei, Hongwei Yang, Hongwang Yu. On stable solutions of the weighted Lane-Emden equation involving Grushin operator[J]. AIMS Mathematics, 2021, 6(3): 2623-2635. doi: 10.3934/math.2021159
In this article, we study the weighted Lane-Emden equation
$ \begin{equation*} {\rm div}_{G}\big(\omega_{1}(z)|\nabla_{G}u|^{p-2}\nabla_{G}u\big) = \omega_{2}(z)|u|^{q-1}u, \ z = (x, y)\in \mathbb{R}^{N} = \mathbb{R}^{N_{1}}\times\mathbb{R}^{N_{2}}, \end{equation*} $
where $ N = N_{1}+N_{2}\geq2, $ $ p\geq2 $ and $ q > p-1 $, while $ \omega_{i}(z)\in L^{1}_{\rm loc}(\mathbb{R}^{N})\setminus\{0\}(i = 1, 2) $ are nonnegative functions satisfying $ \omega_{1}(z)\leq C\|z\|_{G}^{\theta} $ and $ \omega_{2}(z)\geq C'\|z\|_{G}^{d} $ for large $ \|z\|_{G} $ with $ d > \theta-p. $ Here $ \alpha\geq0 $ and $ \|z\|_{G} = (|x|^{2(1+\alpha)}+|y|^{2})^{\frac{1}{2(1+\alpha)}}. $ $ \rm div_{G} $ (resp., $ \nabla_{G} $) is Grushin divergence (resp., Grushin gradient). We prove that stable weak solutions to the equation must be zero under various assumptions on $ d, \theta, p, q $ and $ N_{\alpha} = N_{1}+(1+\alpha)N_{2} $.
[1] | C. T. Anh, J. Lee, B. K. My, On the classification of solutions to an elliptic equation involving the Grushin operator, Complex Var. Elliptic Equ., 63 (2018), 671-688. doi: 10.1080/17476933.2017.1332051 |
[2] | I. Birindelli, I. Capuzzo Dolcetta, A. Cutrì, Liouville theorems for semilinear equations on the Heisenberg group, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 295-308. doi: 10.1016/S0294-1449(97)80138-2 |
[3] | C. S. Chen, Liouville type theorem for stable solutions of $p$-Laplace equation in $\mathbb{R}^{N}$, Appl. Math. Lett., 68 (2017), 62-67. doi: 10.1016/j.aml.2016.11.014 |
[4] | C. S. Chen, H. X. Song, H. W. Yang, Liouville-type theorems for stable solutions of singular quasilinear in $\mathbb{R}^{N}$, Electron. J. Differential Equations, 2018 (2018), 1-11. |
[5] | C. Cowan, M. Fazly, On stable entire solutions of semi-linear elliptic equations with weights, Proc. Amer. Math. Soc., 140 (2012), 2003-2012. |
[6] | L. Damascelli, A. Farina, B. Sciunzi, E. Valdinoci, Liouville results for $m$-Laplace equations of Lane-Emden-Fowler type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1099-1119. doi: 10.1016/j.anihpc.2008.06.001 |
[7] | L. D'Ambrosio, S. Lucente, Nonlinear Liouville theorems for Grushin and Tricomi operators, J. Differential Equations, 193 (2003), 511-541. doi: 10.1016/S0022-0396(03)00138-4 |
[8] | E. N. Dancer, Y. H. Du, Z. M. Guo, Finite Morse index solutions of an elliptic equation with supercritical exponent, J. Differential Equations, 250 (2011), 3281-3310. doi: 10.1016/j.jde.2011.02.005 |
[9] | E. Dibenedetto, Degenerate Parabolic Equations, New York: Universitext, Springer, 1993. |
[10] | A. T. Duong, N. T. Nguyen, Liouville type theorems for elliptic equations involving Grushin operator and advection, Electron. J. Differential Equations, 2017 (2017), 1-11. |
[11] | L. Dupaigne, Stable solutions of ellitpic partial differential equations, Chapman and Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 143, Boca Raton, FL, 2011. |
[12] | A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domain of $\mathbb{R}^{N}, $ J. Math. Pures Appl., 87 (2007), 537-561. |
[13] | M. Fazly, Liouville type theorems for stable solutions of certain elliptic systems, Adv. Nonlinear Stud., 12 (2012), 1-17. |
[14] | B. Franchi, C. E. Gutiérrez, R. L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations, 19 (1994), 523-604. doi: 10.1080/03605309408821025 |
[15] | B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., 34 (1981), 525-598. doi: 10.1002/cpa.3160340406 |
[16] | L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. doi: 10.1007/BF02392081 |
[17] | L. G. Hu, Liouville type results for semi-stable solutions of the weigthed Lane-Emden system, J. Math. Anal. Appl., 432 (2015), 429-440. doi: 10.1016/j.jmaa.2015.06.032 |
[18] | X. T. Huang, F. Y. Ma, L. H. Wang, $L^{q}$ regularity for $p$-Laplace type Baouendi-Grushin equations, Nonlinear Anal., 113 (2015), 137-146. doi: 10.1016/j.na.2014.10.001 |
[19] | P. Le, Liouville theorems for stable solutions of $p$-Laplace equations with convex nonlinearities, J. Math. Anal. Appl., 443 (2016), 431-444. doi: 10.1016/j.jmaa.2016.05.040 |
[20] | P. Le, Liouville theorems for stable weak solutions of elliptic problems involving Grushin operator, Commun. Pure Appl. Anal., 19 (2020), 511-525. doi: 10.3934/cpaa.2020025 |
[21] | P. Le, V. Ho, Liouville results for stable solutions of quasilinear equations with weights, Acta Math. Sci. Ser. B (Engl. Ed.), 39 (2019), 357-368. |
[22] | P. Le, V. Ho, Stable solutions to weighted quasilinear problems of Lane-Emden type, Electron. J. Differential Equations, 2018 (2018), 1-11. |
[23] | R. Monti, D. Morbidelli, Kelvin transform for Grushin operators and critical semilinear equations, Duke Math. J., 131 (2006), 167-202. |
[24] | D. D. Monticelli, Maximum principles and the method of moving planes for a class of degenerate elliptic linear operators, J. Eur. Math. Soc., 12 (2010), 611-654. |
[25] | P. Poláčik, P. Quittner, P. Souplet, Singularity and decay estimates in superlinear problems and nonlinear Liouville-type theorems, I: elliptic equations and systems, Duke Math.J., 139 (2007), 555-579. |
[26] | P. Quittner, P. Souplet, Superlinear parabolic problems: blow-up, global existence and steady states, Basel: Birkhäuser, Verlag, 2007. |
[27] | B. Rahal, Liouville-type theorems with finite Morse index for semilinear $\Delta_{\lambda}$-Laplace operators, NoDEA Nonlinear Differential Equations Appl., 25 (2018), 1-19. doi: 10.1007/s00030-017-0493-3 |
[28] | B. Rahal, On stale entire solutions of sub-elliptic system involving advection terms with negative exponents and weights, J. Inequal. Appl., 2020 (2020), 1-16. doi: 10.1186/s13660-019-2265-6 |
[29] | C. Wang, D. Ye, Some Liouville theorems for Hénon type elliptic equations, J. Funct. Anal., 262 (2012), 1705-1727. doi: 10.1016/j.jfa.2011.11.017 |
[30] | L. Wang, Hölder estimates for subelliptic operators, J. Funct. Anal., 199 (2003), 228-242. doi: 10.1016/S0022-1236(03)00093-4 |
[31] | Y. F. Wei, C. S. Chen, Q. Chen, H. W. Yang, Liouville-type theorem for nonlinear elliptic equation involving $p$-Laplace-type Grushin operators, Math. Methods Appl. Sci., 43 (2020), 320-333. doi: 10.1002/mma.5886 |
[32] | X. H. Yu, Liouville type theorem for nonlinear elliptic equation involving Grushin operators, Commun. Contemp. Math., 17 (2015), 1-12. |